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today’s topic

Solving an old problem in signal processing using tools from
randomized algorithms.

(matrix sketching, randomized SVD, Laplacian linear systems.)

2



today’s topic

Solving an old problem in signal processing using tools from
randomized algorithms.

(matrix sketching, randomized SVD, Laplacian linear systems.)

2



basic problem

Observe signal y at sample locations t1, . . . , tq ∈ [0, T].

(possibly with noise)
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basic problem

Goal: Recover signal ỹ which is close to y.
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basic problem

Central questions:

• How many samples do we need to approximately
reconstruct y on [0, T]?

• How can we compute and represent ỹ in a
computationally efficient way?

5



continuous signal reconstruction

Naively, this problem is ill-posed.

We need to assume y is smooth or structured in some way.
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fourier transform structure

In science and engineering, we often impose structure by
assuming y has a “simple” Fourier transform.

ŷ(ξ) =
∫ ∞

−∞
y(t)e−2πitξ dt.
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bandlimited signals

Standard assumption: y is bandlimited, i.e. ŷ(ξ) = 0 for |ξ| > F.

Shannon, Whitaker, Nyquist, Kotelnikov – foundations of
modern signal processing and information theory.
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bandlimited signal reconstruction

Shannon-Nyquist Theorem: O(F) samples per second suffice.

Uniform Nyquist sampling.

Sinc interpolation.

ỹ(t) =
∞∑

s=−∞
sinc(y(t+ s) · F)
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problems with sinc interpolation

Sinc interpolation doesn’t actually work over [0, T]...

(in theory or practice)

ỹ(t) =
FT∑
s=0

sinc(y(t+ s) · F)

O(FT/ϵ) samples for ϵ error at best.
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prolate spheroidal wave functions

This problem was resolved in the 1960s (+ some):
Theorem (Slepian, Landau, Pollak and Rokhlin et al.)
Suppose y = F∗x for bandlimited x and we observe y+ n.
With O(FT+ log(1/ϵ)) samples, it’s possible to recover ỹ with:

∥y− ỹ∥2T ≤ ϵ∥x∥22 + c · ∥n∥22

Prolate spheroid wave functions
provide a smooth basis for
bandlimited interpolation.

Can project to this basis with numerical quadrature.
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∥y− ỹ∥2T ≤ ϵ∥x∥22 + c · ∥n∥22

Prolate spheroid wave functions
provide a smooth basis for
bandlimited interpolation.

Can project to this basis with numerical quadrature.

11



prolate spheroidal wave functions

This problem was resolved in the 1960s (+ some):
Theorem (Slepian, Landau, Pollak and Rokhlin et al.)
Suppose y = F∗x for bandlimited x and we observe y+ n.
With O(FT+ log(1/ϵ)) samples, it’s possible to recover ỹ with:
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non-uniform sampling

Important conclusion: For interpolation on a finite interval
[0, T], uniform sampling is suboptimal.

Non-uniform distribution required to get Õ(FT) samples.

Uniform would give Õ(F2T2) or O(FT/ϵ).

Not surprising if you think about polynomial interpolation.
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Uniform would give Õ(F2T2) or O(FT/ϵ).
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what about other structure?

What about Fourier structure beyond a bandlimit?
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fourier transform structure

E.g. y is Fourier sparse. ŷ(ξ) is supported on k frequencies.

Compressed sensing, applications in medical imaging,
microscopy, RADAR, etc.

14



fourier transform structure

E.g. y is multiband, i.e. ŷ(ξ) supported on k intervals.

15



fourier transform structure

Bayesian perspective: instead of “allowing” or “disallowing”
certain frequencies, we can consider any prior distribution on

y’s power spectral density.

Bandlimited.

vs.

Gaussian prior.
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fourier transform structure

Bayesian perspective: instead of “allowing” or “disallowing”
certain frequencies, we can consider any prior distribution on

y’s power spectral density.

Bandlimited.

vs.

Cauchy-Lorentz Prior.
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other priors

Smooth penalties underly Gaussian process regression,
kriging, kernel ridge regression, etc.

Countless applications in environmental science, geostatistics,
image processing, economics, time series analysis, etc.
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general fourier structure

Knowledge gap: 50 years after PSWFs, no finite sample
guarantees or efficient recovery algorithms for these popular

problems on a finite interval [0, T].

With the exception of Fourier sparse functions.
(Chen, Kane, Price, Song FOCS 2016, Chen, Kane 2018).
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results

Our results:

1. Characterize optimal sample complexity for any prior
distribution µ.

2. Universal non-uniform sampling scheme that matches
this complexity up to logarithmic factors.

3. Efficient algorithm to pair with this sampling scheme that
works for essentially all priors used in practice.
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distribution µ.
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Typically a quadratic improvement on uniform sampling.
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results

All using tools from discrete randomized algorithms!
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relevant paper

On arXiv soon:
“Universal Sampling Strategies for Learning Signals with

Simple Fourier Transforms”

Joint work with:
Haim Avron (TAU)

Michael Kapralov (EPFL)
Cameron Musco (MSR)
Ameya Velingker (EPFL)
Amir Zandieh (EPFL)

21



formal problem statement

Definition (Weighted Inverse Fourier Transform)
For any probability distribution µ over R and frequency
domain function g, let:

[
F∗
µ g

]
(t) =

∫ ∞

−∞
g(ξ)e2πiξt µ(ξ)dξ.

[F∗ g] (t) =
∫ ∞

−∞
g(ξ)e2πiξt dξ.

Standard inverse Fourier
transform.
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formal problem statement

One possible formulation:

Suppose that y can be written as:

y = F∗
µx.

We observe y+ n for some fixed noise function n.

Goal: Find an efficient representation of a function ỹ such that:

∥y− ỹ∥2T ≤ ϵ∥x∥2µ + c · ∥n∥2T.

• ∥z∥2T = 1
T
∫ T
0 |z(t)|2dt = average squared error.

• ∥x∥2µ =
∫
R |x(ξ)|2µ(ξ)dµ = signal energy under µ.

• ϵ is a tunable parameter. Smaller ϵ requires more samples.
• Any fixed constant (e.g. 2) will do for c.
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intuition for indicator priors

Given: y = F∗
µx+ n.

Goal: Find an efficient representation of a function ỹ such that:

∥y− ỹ∥2T ≤ ϵ∥x∥2µ + c · ∥n∥2T.

Easiest to understand for bandlimited, sparse, or multiband.

There’s a natural Bayesian formulation for non-uniform
priors.
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natural approach

Suffices to return ỹ = F∗µg̃ for any constant factor
approximation g̃ to the regression problem:

If g̃ satisfies:
∥y+ n−F∗

µg̃∥2T + ϵ∥g̃∥2µ ≤ C ·
[
ming ∥y+ n−F∗

µg∥2T + ϵ∥g∥2µ
]
,

then: ∥y−F∗
µg̃∥2T ≤ O(C) ·

[
∥n∥2T + ϵ∥x∥2µ

]
.

Solution by discretization.
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time domain discretization

Selecting time samples discretizes time domain.

What about Fourier domain?
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fourier domain

We can avoid discretization entirely as long as we have a
closed form representation of µ̂(t).

µ̂(t) = sinc(t)

µ̂(t) =
∑k

j=1 e−2πi(t)

µ̂(t) = e−|t|2

µ̂(t) = e−|t|

µ̂ is referred to as the autocorrelation function, the
semivariogram, the kernel function, etc.
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handling fourier domain

equivalent to
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equivalence to kernel regression

Kµ(i, j) =
∫ ∞

−∞
e2πitiξe−2πitjξµ(ξ)dξ

=

∫ ∞

−∞
µ(ξ)e−2πi(tj−ti)ξdξ

= µ̂(tj − ti).

We can construct K in O(q2) time.
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equivalence to kernel regression

• Sample t1, . . . , tq.
• Compute µ̂(ti − tj) to build q× q kernel matrix K.
• Solve z = (K+ ϵI)−1 [yn(t1), . . . , yn(tq)].
• Evaluate ỹ(t) =

∑1
i=1 ziµ̂(ti − t) · f(ti).
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time domain discretization

Key Challenge: How to select samples in time domain.

Approach: Lean on well developed theory for randomly
sampling discrete regression problems.
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time domain discretization

For an approximate solution, suffices to sample rows (i.e. time
points) by their statistical leverage score:

τµ,ϵ(t) = max
g

1
T
∣∣F∗

µg(t)
∣∣2

∥F∗
µg∥2T + ϵ∥g∥2µ

0 ≤ τµ,ϵ(t) ≤ 1
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leverage score sampling

τµ,ϵ is a regularized version of effective resistance, a central
quantity in recent work on randomized algorithms for graph

problems and matrix sketching.

[Drineas, Mahoney, Muthukrishnan 2006]

[Spielman, Srivastava 2008]
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leverage score sampling

How many samples are required?

∫ T

0
τµ,ϵ(t)dt = Sµ,ϵ = “statistical dimension”.

We need to take Sµ,ϵ total samples to approximate the
regression problem.

For finite dimension problems, Sµ,ϵ is bounded by d.
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statistical dimension

Sµ,ϵ = tr (Kµ + ϵI)−1Kµ

=
∞∑
i=1

λi
λi + ϵ

≈ number of eigenvalues larger than ϵ.

Bound of Sµ,ϵ samples is tight.
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leverage score sampling

Leverage scores are hard to compute, even for discrete
regression problems.

For our problem the challenge is even
more daunting... we need scores for a continuum of values.

But... we have structure on our side.
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leverage scores

What is the leverage score?

τµ,ϵ(t) =
1
T maxg

∣∣F∗
µg(t)

∣∣2
∥F∗

µg∥2T + ϵ∥g∥2µ

Squared value of a function at t over the average squared
value. I.e. how much can the function “spike” at time t.

Worst case, but over a restricted class of functions –
need to have small norm under µ.
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polynomial leverage

Leverage for degree k polynomials:

Bernstein Inequality.
τ(t) ≤ k/

√
min(t, T− t)

Markov Brother’s Inequality.
τ(t) ≤ k2

In general, a polynomial can “spike” more near the edge of an
interval.

Total leverage:

Extends to bandlimited functions, which can be approximated
by degree k = O(FT+ log(1/ϵ)) degree polynomials.

39



polynomial leverage

Leverage for degree k polynomials:

Total leverage:

Extends to bandlimited functions, which can be approximated
by degree k = O(FT+ log(1/ϵ)) degree polynomials.

39



polynomial leverage

Leverage for degree k polynomials:

Total leverage:

Extends to bandlimited functions, which can be approximated
by degree k = O(FT+ log(1/ϵ)) degree polynomials.

39



polynomial leverage

Leverage for degree k polynomials:

Uniform samples. Chebyshev samples.
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fourier sparse leverage

[Chen, Kane, Price, Song, FOCS 2016], [Chen, Price 2018]

Nearly the same bounds holds for k-sparse Fourier functions.

|fk(t)|2

∥fk∥2T
= Õ

(
min

[
k4, k/min(t, T− t)

])
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fourier sparse leverage

Intuition: Sums of close frequencies look like modulated
polynomials. Far frequencies are nearly orthogonal.
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fourier leverage

Leverage for k sparse Fourier functions:

Total leverage:

k+ O(k log k)
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fourier leverage

Leverage for k sparse Fourier functions:

Total leverage: k+ O(k log k)
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general constraints

How do we extend these bounds to more general constraint
distributions µ? Want Õ(Sµ,ϵ) samples.

More tools from randomized matrix algorithms!
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general leverage

Lesson from past decade: Top q singular vectors of a matrix
are approximately spanned by O(q) columns from that matrix.

(rank-revealing QR, randomized SVD, columns subset selection, CUR
decomposition, Nyström approximation, graph sparsification,

random Fourier features, etc.)
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sparse approximation of weighted fourier transform
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final bound

τµ,ϵ(t) = max
g

1
T
∣∣F∗

µg(t)
∣∣2

∥F∗
µg∥2T + ϵ∥g∥2µ

≤ Õ
(
min

[
S4µ,ϵ, Sµ,ϵ/min(t, T− t)

])

Total number of samples: Õ(Sµ,ϵ)
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final bound

τµ,ϵ(t) = max
g

1
T
∣∣F∗

µg(t)
∣∣2

∥F∗
µg∥2T + ϵ∥g∥2µ

≤ Õ
(
min

[
S4µ,ϵ, Sµ,ϵ/min(t, T− t)

])

Total number of samples: Õ(Sµ,ϵ). 46



final algorithm

Simple Fourier function fitting:

• Sample t1, . . . , tq according to D.

• Compute µ̂(ti − tj) to build q× q kernel matrix K.
• Solve z = (K+ ϵI)−1 [yn(t1), . . . , yn(tq)].
• Evaluate ỹ(t) =

∑1
i=1 ziµ̂(ti − t) · f(ti).

That’s it!

Matches known results for sparse and bandlimited function up
to log factors, while achieving nearly optimal sample

complexity for any other Fourier constraints.
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That’s it!
Matches known results for sparse and bandlimited function up

to log factors, while achieving nearly optimal sample
complexity for any other Fourier constraints.
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final algorithm

Lots of open questions:

• Streaming reconstruction? Anything more local?
• Does uniform sampling work if we look outside [0, T]?
• Deterministic sampling patterns in noiseless case, or
under reasonable noise model?

Other connections between random graph/matrix sampling
and classic function interpolation?
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thank you!
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