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PROBLEM WE ARE STUDYING

Have a matrix A ∈ Rd×n and want to quickly compute an
optimal rank-k approximation.

Need to find the top k singular vectors of A.

Call them
Uk ∈ d× k. Then we can form the approximation:

A ≈ UkUT
kA

def
= Ak

Ak is the optimal k-rank approximation to A.

How do we find it quickly without computing a full SVD?
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TYPICAL KRYLOV METHOD

Most common approach: Run a Krylov subspace method.

1. Choose random starting block B ∈ Rd×b (b = 1 or larger).
2. Compute orthonormal basis Z for the Krylov subspace:

K =
[
B AATB (AAT)2B · · · (AAT)tB

]
3. Return Q = ZŨk where Ũk contains the top k eigenvectors

of ZTAATZ. This choice of Q minimizes ∥A− QQTA∥F
amoung all rank k matrices in the span of K.

Runtime of this method? Often dominated by the cost of
multiplying vectors by A, so O(TMV(A) · b · t).
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TYPICAL KRYLOV METHOD

Two parameters to choose1:

• Number of iterations t.
• Size of starting block b.

Main question: For a choice of block-size b, how many matrix
vector multiplications b · t do we need to ensure that:

∥A− QQTA∥ ≤ (1+ ϵ)∥A− Ak∥?

1Lots of other choices related to how to orthogonalize and post-process the
Krylov subspace. These are not the focus of my talk, but very important!
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LARGE BLOCK METHODS

Most prior theoretical work on k-rank approximation focuses
on “large block” methods where b ≥ k.

Two main regimes:

Sketching. Run for single iteration.

[Sarlós, 2006] [Martinsson, Rokhlin, Tygert, 2006] [Halko,
Martinsson, Tropp 2011] [Clarkson, Woodruff 2009, 2013]
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LARGE BLOCK METHODS

Most prior theoretical work on k-rank approximation focuses
on “large block” methods where b ≥ k. Two main regimes:

Block size k. Run for multiple iterations

[Rokhlin, Szlam, and Tygert, 2009] [Halko, Martinsson, Tropp
2011] [Gu, 2015] [Musco, Musco 2015] [Drineas, Ipsen,

Kontopoulous, Magdon-Ismail 2017]
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SMALL BLOCK METHODS

Surely the case of b = 1 has also been studied? This is
textbook single vector Krylov iteration.

Yes and no. Single vector Krylov methods have been studied
extensively for the problem of eigenvector/eigenspace
approximation. But this problem differs in subtle but
important ways from the low-rank approximation problem.
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THE VIRTUES OF LARGE BLOCK METHODS

1. Effectively take advantage of parallelism. Multiplying AAT
by k vectors all at once might not be that much more
expensive than multiplying by 1 vector.

2. Do not require iteration for very large b. Useful in
streaming and distributed computing environments, for
constrained low-rank approximation, and more.

3. Enjoy “gap-independent” theoretical guarantees.
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EXAMPLE THEORETICAL BOUND

Theorem (Musco, Musco 2015)

When run for O
(
log d√

ϵ

)
iterations with a random starting

block with b = k columns, the Krylov method returns a rank k
matrix Q satisfying:

∥A− QQTA∥2,F ≤ (1+ ϵ)∥A− Ak∥2,F

O
(
k log d√

ϵ

)
matrix-vector multiplications total.

In contrast, guarantees for eigenvector approximation always
depend on matrix dependent quantities like σi+1

σi−σi+1
.
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GAP DEPENDENT VS. GAP INDEPENDENT

The following matrix has top singular vectors e1 and e2:

Convergence to the top subspace, span(e1, e2), inherently
depends polynomially on the inverse gap σ3

σ2−σ3
.

But for accurate rank 2 approximation, we can converge to any
two vectors in the span of e1, e2, e3. No gap dependence
necessary.
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GAP DEPENDENT VS. GAP INDEPENDENT

The following matrix has top singular vectors e1 and e2:

Convergence to the top subspace, span(e1, e2), inherently
depends polynomially on the inverse gap σ3

σ2−σ3
.

For more discussion, see e.g. Low-Rank Matrix Approximations
Do Not Need a Singular Value Gap [Drineas, Ipsen, 2019].
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SINGLE VECTOR METHODS AND SPECTRAL GAP DEPENDENCE

Without additional modifications, the convergence of single
vector Krylov iteration must depend inversely on spectral gaps.
Even for low-rank approximation!

Krylov subspace never contains a good low-rank
approximation.

∥A− A2∥F = 0 but ∥A− QQTA∥F is never less then 1, no matter
how many iterations we take. 11



SINGLE VECTOR METHODS AND GAP DEPENDENCE

“Despite decades of research on [single vector] Lanczos
methods, the theory for [large block] randomized methods is
more complete and provides strong guarantees of excellent
accuracy, whether or not there exist any gaps between the

singular values.” – Slzam, Kluger, Tygert, 2014
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THEORY/PRACTICE GAP

Most major numerical linear algebra libraries use a single
random starting vector. And they usually work fine!
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THEORY/PRACTICE GAP

If you are careful about numerical issues (e.g. build the Krylov
subspace with sufficient reothogonalization) it is hard to find a
problem where single vector Krylov methods lose to large
block methods (in terms of number of matrix-vector products).

14



THEORY PRACTICE GAP
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OUR MAIN RESULTS

Research question: For low-rank approximation, when and
why do single vector Krylov methods require the same or fewer
matrix-vector multiplications than large block methods?

Answer: For low-rank approximation, single vector methods
depend on gaps, but only in a very mild way!

Up to a logarithmic dependence on spectral gaps, single vector
methods match (or beat) the performance of large block Krylov
iteration run with any block size b ≥ k.
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EXAMPLE RESULTS

Theorem (Existing Large Block Result)

When run for O
(
log d√

ϵ

)
iterations with block size b = k, the

Krylov method returns a rank k matrix Q satisfying:

∥A− QQTA∥2,F ≤ (1+ ϵ)∥A− Ak∥2,F

Let gmin = mini=1,...,k−1

(
σi−σi+1
σi+1

)
be the minimum singular

value gap in the top subspace.
Theorem (Small block result)

When run for O
(
k log(1/gmin)+log d√

ϵ

)
iterations with block size

b = 1, the Krylov method returns a rank k matrix Q satisfying:

∥A− QQTA∥2,F ≤ (1+ ϵ)∥A− Ak∥2,F
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EXAMPLE RESULTS

Block size k method: O
(
k log d√

ϵ

)
matvecs for error ϵ.

Single vector method: O
(
k log(1/gmin)+log d√

ϵ

)
matvecs for error ϵ.
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EXAMPLE RESULTS

Theorem (Existing Large Block Result)

When run for O
(

log(d/ϵ)√
(σk−σk+p)/σk+p

)
iterations with block size

b = k+ p, Krylov iteration returns a rank k Q satisfying:

∥A− QQTA∥2,F ≤ (1+ ϵ)∥A− Ak∥2,F

Let gmin = mini=1,...,k+p−1

(
σi−σi+1
σi+1

)
.

Theorem (New small block result)

When run for O
(

(k+p) log(1/gmin)+log(d/ϵ)√
(σk−σk+p)/σk+p

)
iterations with block

size b = 1, Krylov iteration returns a rank k Q satisfying:

∥A− QQTA∥2,F ≤ (1+ ϵ)∥A− Ak∥2,F
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EXAMPLE RESULTS

Block size k+ p: O
(

(k+p) log(d/ϵ)√
(σk−σk+p)/σk+p

)
matvecs for error ϵ.

Single vector: O
(

(k+p) log(1/gmin)+log(d/ϵ)√
(σk−σk+p)/σk+p

)
matvecs for error ϵ,

where we can minimize over p.

Single-vector method obtains the “best of all worlds” without
having to do any parameter selection.
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EXAMPLE RESULTS

[Bakshi, Clarkson, Woodruff, 2022] shows how to compute Q
satisfying: ∥A− QQTA∥F ≤ (1+ ϵ)∥A− Ak∥F

using Õ
(
k/ϵ1/3

)
. They run Krylov iteration with block sizes k

and k/ϵ1/3 and take the best result in both subspaces.

Corollary of our result: Up to a logarithmic dependence on the
minimum gap, we obtain the same bound with a simpler,
parameter free method – simply run single vector Krylov.
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PROOF APPROACH

All of these theorems can be proven using a single “gray box”
reduction.

Start with a naive observation:

span
[
b AATb (AAT)2b · (AAT)tb

]
is equal to

span
[
Sk AATSk (AAT)2b · (AAT)t−k+1Sk

]
where Sk =

[
b AATb · · · (AAT)k−1b

]
contains the first k

columns of the Krylov subsoace.
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PROOF APPROACH

Single vector iteration is equivalent to large block iteration
with a particular choice of starting block.
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IS THIS A REASONABLE IDEA?

• Upside: Every additional “iteration” of the block method
only requires one matrix-vector multiply with AAT.
Typically would need kt matrix-vector multiplies to iterate
a block of size k for t iterations. Only need k+ t if our
starting block is Sk.

• Downside: The starting block Sk looks very different from a
random matrix. E.g. will typically be numerically low-rank.

Sk =
[
b AATb · · · (AAT)kb

]
This is huge upside and a huge downside.
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WHAT MAKES A GOOD STARTING BLOCK?

Almost all prior analysis of block Krylov methods depend on
showing that the random starting block B satisfies a condition
similar to the following:

Definition ((k, L)-good starting matrix)
A starting matrix B ∈ Rd×k is a (k, L)-good starting matrix for
A if, Q = span(B) satisfies ∥

(
UT
kQ

)−1 ∥22 ≤ L.

We want L to be as small as possible. Requires that Q has good
inner product with any vector in the span of Uk.

Equivalent to requiring that all principal angles between
subspaces Uk and Q have cos(θi) ≥ 1/

√
L.
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Almost all prior analysis of block Krylov methods depend on
showing that the random starting block B satisfies a condition
similar to the following:
Definition ((k, L)-good starting matrix)
A starting matrix B ∈ Rd×k is a (k, L)-good starting matrix for
A if, Q = span(B) satisfies ∥

(
UT
kQ

)−1 ∥22 ≤ L.

We want L to be as small as possible. Requires that Q has good
inner product with any vector in the span of Uk.

Now standard result [Rudelson, Vershynin 2010]: A random
Gaussian matrix is (k, L) good with probability 1− δ for:

L = O(kd/δ).

25



RESULT FOR GENERIC STARTING BLOCKS

Theorem (Musco, Musco 2015)

When run for O
(
log dL√

ϵ

)
iterations with a (k, L)-good starting

block, the block Krylov method returns a rank k matrix Q
satisfying:

∥A− QQTA∥2,F ≤ (1+ ϵ)∥A− Ak∥2,F

Plugging in L = O(kd/δ) gives the desired bound for a random
starting block.
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SINGLE VECTOR ANALYSIS

Main question: Is the following matrix (k, L) good?

Sk =
[
b AATb · · · (AAT)kb

]

Claim: With probability (1− δ), Sk is (k, L)-good for:

L = poly(k,d, 1/δ) · 1
g4kmin

,

where gmin = mini=1,...,k−1

(
σi−σi+1
σi+1

)
.

This is exponentially worse than what we know for random
matrices.
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SINGLE VECTOR ANALYSIS

Which is great!!
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SINGLE VECTOR ANALYSIS

Theorem (Musco, Musco 2015)

When run for O
(
log dL√

ϵ

)
iterations with a (k, L)-good starting

block, the block Krylov method returns a rank k matrix Q
satisfying:

∥A− QQTA∥2,F ≤ (1+ ϵ)∥A− Ak∥2,F

Plugging in L = poly(k,d, 1/δ) · 1
g4kmin

gives the desired bound for
the single vector starting block Sk with:

t = O
(
k log(1/gmin) + log(d/δ)√

ϵ

)
iterations.

And running this many iterations only requires t+ k
matrix-vector multiplications with AAT.
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SINGLE VECTOR ANALYSIS

How to show that Sk =
[
b AATb · · · (AAT)kb

]
is (k, L)-good?

Reduce to a problem about polynomials, by taking advantage
of the fact that:

∥(UT
kQ)−1∥22 = ∥Sk(UT

kSk)−1∥22max
x

∥Skx∥22
∥UT

kSkx∥22
.

After applying some Gaussian anti-concentration, need to
bound:

max
degree k−1 poly p

maxi∈1,...,d p(σ2
i )

maxi∈1,...,k p(σ2
i )
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SINGLE VECTOR ANALYSIS

Need to bound:
max

degree k−1 poly p

maxi∈k+1,...,d p(σ2
i )

maxi∈1,...,k p(σ2
i )

Obtain a bound of O(1/g4kmin) following an approach from
[Saad, 1980].
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CONCLUSION

Punchline: For low-rank approximation, single vector Krylov
iteration matches large block methods (in terms of
matrix-vector products) up to a logarithmic factor.

Theorem

When run for O
(
k log(1/gmin)+log d√

ϵ

)
iterations with block size

b = 1, the Krylov method returns a rank k matrix Q satisfying:

∥A− QQTA∥2,F ≤ (1+ ϵ)∥A− Ak∥2,F
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CONCLUSION

Other results in the paper:

• Bounds for block size 1 < b < k. Depend on minimum
bth-order gap.

• By adding a small random perturbation to A, we can
replace the log(1/gmin) with a log(d) without hurting
accuracy.

• More experiments.
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CONCLUSION

Future work:

• Better understanding finite precision. Can we obtain
similar results with partial orthogonalization?

• Improving bounds for block size 1 < b < k. For b = c · k,
we require O(k2) matrix-vector multiplies. Not sure if tight.

• Are our current low-rank approximation algorithms
optimal in terms of matrix-vector products? [Bakshi,
Narayanan 2023].
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questions?
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