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PROBLEM WE ARE STUDYING

Have a matrix A € R?*" and want to quickly compute an
optimal rank-k approximation.

n

d A -l v, 3

Need to find the top k singular vectors of A. Call them

Uy € d x k. Then we can form the approximation:
A~ UUTA L A,

A is the optimal k-rank approximation to A.

How do we find it quickly without computing a full SVD?



TYPICAL KRYLOV METHOD

Most common approach: Run a Krylov subspace method.

1. Choose random starting block B € R¥*? (b = 1 or larger).
2. Compute orthonormal basis Z for the Krylov subspace:

K=|B AATB (AAT)’B ... (AAT)'B

3. Return Q = Z0,, where U, contains the top k eigenvectors
of Z'AATZ. This choice of Q minimizes ||A — QQ'A||r
amoung all rank k matrices in the span of K.

Runtime of this method? Often dominated by the cost of
multiplying vectors by A, so O(Tuy(A) - b - t).



TYPICAL KRYLOV METHOD

Two parameters to choose':

- Number of iterations t.

- Size of starting block b.

Main question: For a choice of block-size b, how many matrix
vector multiplications b - t do we need to ensure that:

1A~ QQTA|l < (1+€)[|A - Al?

"Lots of other choices related to how to orthogonalize and post-process the
Krylov subspace. These are not the focus of my talk, but very important!



LARGE BLOCK METHODS

Most prior theoretical work on k-rank approximation focuses
on “large block” methods where b > k.
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Sketching. Run for single iteration.

[Sarlos, 2006] [Martinsson, Rokhlin, Tygert, 2006] [Halko,
Martinsson, Tropp 2011] [Clarkson, Woodruff 2009, 2013]



LARGE BLOCK METHODS

Most prior theoretical work on k-rank approximation focuses
on “large block” methods where b > k. Two main regimes:
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Block size k. Run for multiple iterations

[Rokhlin, Szlam, and Tygert, 2009] [Halko, Martinsson, Tropp
2011] [Gu, 2015] [Musco, Musco 2015] [Drineas, Ipsen,
Kontopoulous, Magdon-Ismail 2017]



SMALL BLOCK METHODS

Surely the case of b = 1 has also been studied? This is
textbook single vector Krylov iteration.

The Symmetric MATRIX

3 [
Eigenvalue Problem Wi TAT e

Yousef Saad

Yes and no. Single vector Krylov methods have been studied
extensively for the problem of eigenvector/eigenspace
approximation. But this problem differs in subtle but
important ways from the low-rank approximation problem.



THE VIRTUES OF LARGE BLOCK METHODS

1. Effectively take advantage of parallelism. Multiplying AAT
by k vectors all at once might not be that much more
expensive than multiplying by 1 vector.

2. Do not require iteration for very large b. Useful in
streaming and distributed computing environments, for
constrained low-rank approximation, and more.

3. Enjoy “gap-independent” theoretical guarantees.
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EXAMPLE THEORETICAL BOUND

Theorem (Musco, Musco 2015)

When run for O ("igfd> iterations with a random starting

&

block with b = k columns, the Krylov method returns a rank R
matrix Q satisfying:

IA = QQ'All2, < (1+ €)l|A — Agllz

In contrast, guarantees for eigenvector approximation always
depend on matrix dependent quantities like 21—

Ti=0iy1’




GAP DEPENDENT VS. GAP INDEPENDENT

The following matrix has top singular vectors e; and e;:

1
1

999

Convergence to the top subspace, span(es, e;), inherently
depends polynomially on the inverse gap =%

02—03"

But for accurate rank 2 approximation, we can converge to any
two vectors in the span of e, e,, e3. No gap dependence
necessary.

10



GAP DEPENDENT VS. GAP INDEPENDENT

The following matrix has top singular vectors e and ey:

1
1

.999

Convergence to the top subspace, span(es, e;), inherently
depends polynomially on the inverse gap

03

0y—03"

For more discussion, see e.g. Low-Rank Matrix Approximations
Do Not Need a Singular Value Gap [Drineas, Ipsen, 2019].
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SINGLE VECTOR METHODS AND SPECTRAL GAP DEPENDENCE

Without additional modifications, the convergence of single
vector Krylov iteration must depend inversely on spectral gaps.
Even for low-rank approximation!

1 1 URIERE 1
1 -3 -3| [-3] |-3 -3
Y A 4l lolfo] = |o

0 -2 -2 |of]o 0

0] -1l oo 0

AAT B Krylov subspace

Krylov subspace never contains a good low-rank
approximation.

|A — AzllF = 0 but ||A — QQ"A|| is never less then 1, no matter

how many iterations we take. i



SINGLE VECTOR METHODS AND GAP DEPENDENCE

“Despite decades of research on [single vector] Lanczos
methods, the theory for [large block] randomized methods is
more complete and provides strong guarantees of excellent
accuracy, whether or not there exist any gaps between the
singular values.” - Slzam, Kluger, Tygert, 2014

12



THEORY/PRACTICE GAP

Most major numerical linear algebra libraries use a single
random starting vector. And they usually work fine!
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THEORY/PRACTICE GAP

If you are careful about numerical issues (e.g. build the Krylov
subspace with sufficient reothogonalization) it is hard to find a
problem where single vector Krylov methods lose to large

block methods (in terms of number of matrix-vector products).
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THEORY PRACTICE GAP
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OUR MAIN RESULTS

Research question: For low-rank approximation, when and
why do single vector Krylov methods require the same or fewer
matrix-vector multiplications than large block methods?



OUR MAIN RESULTS

Research question: For low-rank approximation, when and
why do single vector Krylov methods require the same or fewer
matrix-vector multiplications than large block methods?

Answer: For low-rank approximation, single vector methods
depend on gaps, but only in a very mild way!

Up to a logarithmic dependence on spectral gaps, single vector
methods match (or beat) the performance of large block Krylov
iteration run with any block size b > k.




EXAMPLE RESULTS

Theorem (Existing Large Block Result)

When run for O ('°84) jterations with block size b = k, the

Ve

Krylov method returns a rank k matrix Q satisfying:

A —QQ"A|2r < (1+ €)[|A — Agllor

Let Gmin = mini— 1 <”’;7:“) be the minimum singular
value gap in the top subspace.

Theorem (Small block result)

When run for O %f';)*"’gd iterations with block size
b =1, the Krylov method returns a rank k matrix Q satisfying:

IA = QQ'All2, < (1+ €)[|A — Agllz



EXAMPLE RESULTS

Block size k method: O (f”\"/ggd) matvecs for error e.

Single vector method: O (%ﬂ”"’gd) matvecs for error e.



EXAMPLE RESULTS

Theorem (Existing Large Block Result)

When run for O —_logld/d ) jtergtions with block size
V/(0r—0r1p)/Ok1p

b = kR + p, Krylov iteration returns a rank k Q satisfying:
1A~ QQTA[l2.¢ < (1+ €)l|A — Agllz,e

Let gmin = mini:17.‘.7k+pf1 (UI_UM)

Ot

Theorem (New small block result)

When run for O (UHP) '°g(1/gm’”)+'°g(d/5)> iterations with block

(0r—0k+p)/Tkep
size b =1, Krylov iteration returns a rank k Q satisfying:

IA = QQ'All2,f < (1+ €)l|A — Agllz



EXAMPLE RESULTS

Block size R+ p: O (WW> matvecs for error e.

(Or—0k1p)/Trep

Single vector: O ( (2)1o8(1/9mn) +log(d/€) ) atyecs for error ¢,
V(0k—=0k1p)/Oksp

where we can minimize over p.

Single-vector method obtains the “best of all worlds” without
having to do any parameter selection.
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EXAMPLE RESULTS

[Bakshi, Clarkson, Woodruff, 2022] shows how to compute Q
satistying: A — QQTA[lr < (14 €)[|A — Arl¢

using O (k/€"/3). They run Krylov iteration with block sizes k
and k/€'/3 and take the best result in both subspaces.

Corollary of our result: Up to a logarithmic dependence on the
minimum gap, we obtain the same bound with a simpler,
parameter free method - simply run single vector Krylov.

21



PROOF APPROACH

All of these theorems can be proven using a single “gray box”
reduction.
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PROOF APPROACH

All of these theorems can be proven using a single “gray box”
reduction. Start with a naive observation:

span [b AATD (AATY2D (AAT)tb}
is equal to

span (S, AATS, (AAT)D - (AAT)HTS,]

where S, = [b AA'b ... (AAT)*='b| contains the first k
columns of the Krylov subsoace.
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PROOF APPROACH

Single vector iteration is equivalent to large block iteration
with a particular choice of starting block.

b AATb (AAT)'D

(AAT)S,.  (AAT)S, (AAT)FFLS,

23



IS THIS A REASONABLE IDEA?

- Upside: Every additional “iteration” of the block method
only requires one matrix-vector multiply with AAT.
Typically would need kt matrix-vector multiplies to iterate
a block of size k for t iterations. Only need k + t if our
starting block is Sy,.

- Downside: The starting block S, looks very different from a
random matrix. E.g. will typically be numerically low-rank.

Sp=|b AATD ... (AATYb

This is huge upside and a huge downside.

2%



WHAT MAKES A GOOD STARTING BLOCK?

Almost all prior analysis of block Krylov methods depend on
showing that the random starting block B satisfies a condition
similar to the following:

Definition ((k, L)-good starting matrix)

A starting matrix B € Rk is a (k, L)-good starting matrix for
A if, Q = span(B) satisfies || (UTQ) |2 < L.

We want L to be as small as possible. Requires that Q has good
inner product with any vector in the span of U,

Equivalent to requiring that all principal angles between
subspaces Uy, and Q have cos(6;) > 1/v/L.

25



WHAT MAKES A GOOD STARTING BLOCK?

Almost all prior analysis of block Krylov methods depend on
showing that the random starting block B satisfies a condition
similar to the following:

Definition ((k, L)-good starting matrix)

A starting matrix B € R9<* is a (k, L)-good starting matrix for
A if, Q = span(B) satisfies || (UTQ) ' |2 < L.

We want L to be as small as possible. Requires that Q has good
inner product with any vector in the span of Uy.

Now standard result [Rudelson, Vershynin 2010]: A random
Gaussian matrix is (k, L) good with probability 1 — ¢ for:

L = O(kd/s).
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RESULT FOR GENERIC STARTING BLOCKS

Theorem (Musco, Musco 2015)

€

block, the block Krylov method returns a rank k matrix Q
satisfying:

When run for O ('°§5’L> iterations with a (k, L)-good starting

IA = QQ'All2,¢ < (1+ €)l|A = Agllz
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SINGLE VECTOR ANALYSIS

Main question: Is the following matrix (k, L) good?

sh:[b AATH - (AAT)hb}
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SINGLE VECTOR ANALYSIS

Main question: Is the following matrix (k, L) good?

sh:[b AATH - (AAT)hb}

Claim: With probability (1 —4), S is (k,L)-good for:

1

4R 7
min

L = poly(k,d,1/0) -

where gmin = minj_;
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SINGLE VECTOR ANALYSIS

Main question: Is the following matrix (k, L) good?

S,?:[b AATH - (AAT)hb}

Claim: With probability (1 —4), S is (k,L)-good for:

1

4R 7
min

L = poly(k,d,1/0) -

o — A 9i—0it1
where gpip = minj—q 4 ( T )
This is exponentially worse than what we know for random

matrices.
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SINGLE VECTOR ANALYSIS

Which is great!!

28



SINGLE VECTOR ANALYSIS

Theorem (Musco, Musco 2015)

When run for O ('°\gde> iterations with a (k, L)-good starting
block, the block Krylov method returns a rank k matrix Q
satisfying:

A —QQ"A|l2f < (1+ €)[|A — All2r

Plugging in L = poly(k,d,1/6) - M gives the desired bound for
the single vector starting block S,? with:

_ o ((R108(1/gmin) + log(d/0)\ o .
t—O< NG > Iterations.
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SINGLE VECTOR ANALYSIS

Theorem (Musco, Musco 2015)

When run for O '°\gde iterations with a (k, L)-good starting
block, the block Krylov method returns a rank k matrix Q
satisfying:

A —QQ"A|l2f < (1+ €)[|A — All2r

Plugging in L = poly(k,d,1/6) - M gives the desired bound for
the single vector starting block S,? with:
o ( *1°8(1/Gmin) +108(d/9)
NG
And running this many iterations only requires t + R
matrix-vector multiplications with AA’.

> iterations.
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SINGLE VECTOR ANALYSIS

How to show that S, = [b AATD ... (AAT)”b] is (k, L)-good?
Reduce to a problem about polynomials, by taking advantage
of the fact that:

ISkX|13

1(UFQ) I3 = [ISk(UESK) |5 max ———2_.
X ||ULSx||3
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SINGLE VECTOR ANALYSIS

How to show that S, = [b AATD ... (AAT)’?b] is (k, L)-good?

Reduce to a problem about polynomials, by taking advantage
of the fact that:

. . S|

UT 1 2: S UTS 1112 Hl?iz
I(UFQ)IE = ISa(URS) I max rc o
After applying some Gaussian anti-concentration, need to
bound:

max =~ — ’2
degree kR—1 poly p MmaXjcq :

30



SINGLE VECTOR ANALYSIS

Need to bound:

max 2
degree k—1poly p  maxie1__p P(0?)

\

o-—
Q
o
Q
z
2
Q
N
2
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SINGLE VECTOR ANALYSIS

Need to bound:

max 5
degree k—Tpoly p mMaXjcqy . k p(ai )

\

1 1 LIL|
Oy O Ok 0204

o T

Obtain a bound of O(1/g‘,;7’?m) following an approach from
[Saad, 1980]. 31



CONCLUSION

Punchline: For low-rank approximation, single vector Krylov
iteration matches large block methods (in terms of
matrix-vector products) up to a logarithmic factor.

Theorem

When run for O %ﬁ”)*"’gd iterations with block size
b =1, the Krylov method returns a rank k matrix Q satisfying:

IA = QQ'All2, < (1+ €)l|A — Agllz
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CONCLUSION

Other results in the paper:

- Bounds for block size 1 < b < k. Depend on minimum
bth-order gap.

- By adding a small random perturbation to A, we can
replace the log(1/gmin) With a log(d) without hurting
accuracy.

- More experiments.

Impact of Minimum Gap on Single Vector Krylov

||et=25
—e—t =26
et =27

t =28
—o—t =29
—o—t=230
o t=31

t=32
—e—t=233
—e—t =234

at)

Relative Error (€empiric
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CONCLUSION

Future work:

- Better understanding finite precision. Can we obtain
similar results with partial orthogonalization?

- Improving bounds for block size 1< b < k. Forb =c -k,
we require O(k?) matrix-vector multiplies. Not sure if tight.

- Are our current low-rank approximation algorithms
optimal in terms of matrix-vector products? [Bakshi,
Narayanan 2023].
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questions?



