
The Lanczos Method in Data Science

Christopher Musco

Massachusetts Institute of Technology.

1

a remarkable algorithm

The Lanczos Method

Used for solving linear systems, eigendecomposition, matrix
exponentials, and approximating any matrix function.

• Introduced in 1950, developed through the 70s, ubiquitous
in well-developed scientific computing libraries.

• Resurgence of interest due to new applications in data
science and machine learning.

2

a remarkable algorithm

The Lanczos Method
Used for solving linear systems, eigendecomposition, matrix
exponentials, and approximating any matrix function.

• Introduced in 1950, developed through the 70s, ubiquitous
in well-developed scientific computing libraries.

• Resurgence of interest due to new applications in data
science and machine learning.

2

a remarkable algorithm

The Lanczos Method
Used for solving linear systems, eigendecomposition, matrix
exponentials, and approximating any matrix function.

• Introduced in 1950, developed through the 70s, ubiquitous
in well-developed scientific computing libraries.

• Resurgence of interest due to new applications in data
science and machine learning.

2

a remarkable algorithm

The Lanczos Method
Used for solving linear systems, eigendecomposition, matrix
exponentials, and approximating any matrix function.

• Introduced in 1950, developed through the 70s, ubiquitous
in well-developed scientific computing libraries.

• Resurgence of interest due to new applications in data
science and machine learning.

2

lanczos in data science

New applications combine Lanczos with super-scalable
stochastic iterative and randomized sketching methods.

Require understanding of performance with noisy inputs.

Today’s results:

1. Lanczos is very noise stable, performing essentially
optimally amongst other polynomial methods.

2. Except when solving linear systems! We provide strong
low-bounds that noise can significantly impair Lanczos
and the closely related conjugate gradient method.

3

lanczos in data science

New applications combine Lanczos with super-scalable
stochastic iterative and randomized sketching methods.

Require understanding of performance with noisy inputs.

Today’s results:

1. Lanczos is very noise stable, performing essentially
optimally amongst other polynomial methods.

2. Except when solving linear systems! We provide strong
low-bounds that noise can significantly impair Lanczos
and the closely related conjugate gradient method.

3

lanczos in data science

New applications combine Lanczos with super-scalable
stochastic iterative and randomized sketching methods.

Require understanding of performance with noisy inputs.

Today’s results:

1. Lanczos is very noise stable, performing essentially
optimally amongst other polynomial methods.

2. Except when solving linear systems! We provide strong
low-bounds that noise can significantly impair Lanczos
and the closely related conjugate gradient method.

3

lanczos in data science

New applications combine Lanczos with super-scalable
stochastic iterative and randomized sketching methods.

Require understanding of performance with noisy inputs.

Today’s results:

1. Lanczos is very noise stable, performing essentially
optimally amongst other polynomial methods.

2. Except when solving linear systems! We provide strong
low-bounds that noise can significantly impair Lanczos
and the closely related conjugate gradient method.

3

relevant paper

Stability of the Lanczos Method for Matrix Function
Approximation [SODA 2018]

Aaron Sidford
(Stanford)

Cameron Musco
(MIT)

Roy Frostig
(Google)

Principal Component Projection Without Principal Component
Analysis [ICML 2016]

4

relevant paper

Stability of the Lanczos Method for Matrix Function
Approximation [SODA 2018]

Aaron Sidford
(Stanford)

Cameron Musco
(MIT)

Roy Frostig
(Google)

Principal Component Projection Without Principal Component
Analysis [ICML 2016]

4

what is a matrix function?

4

what is a matrix function?

Every matrix A ∈ Rn×d has a singular value decomposition:

U, V are orthogonal, Σ is diagonal, σ1 ≥ . . . ≥ σd ∈ R+.

5

what is a matrix function?

Every matrix A ∈ Rn×d has a singular value decomposition:

U, V are orthogonal, Σ is diagonal, σ1 ≥ . . . ≥ σd ∈ R+.

5

what is a matrix function?

Every symmetric matrix A ∈ Rd×d has an orthogonal
eigendecomposition:

6

what is a matrix function?

For any scalar function f : R → R define f(A):

7

computing matrix functions

Cost to compute f (A):

O(n3)︸ ︷︷ ︸
eigendecompose A = VΛVT

+ O(n)︸︷︷︸
compute f(Λ)

+ O(n3)︸ ︷︷ ︸
form Vf (Λ) VT

= O(n3) in practice

In theory can be improved to O(nω) ≈ O(n2.3728639).
(but this is still slow)

8

computing matrix functions

Cost to compute f (A):

O(n3)︸ ︷︷ ︸
eigendecompose A = VΛVT

+ O(n)︸︷︷︸
compute f(Λ)

+ O(n3)︸ ︷︷ ︸
form Vf (Λ) VT

= O(n3) in practice

In theory can be improved to O(nω) ≈ O(n2.3728639).
(but this is still slow)

8

computing matrix functions

Cost to compute f (A):

O(n3)︸ ︷︷ ︸
eigendecompose A = VΛVT

+ O(n)︸︷︷︸
compute f(Λ)

+ O(n3)︸ ︷︷ ︸
form Vf (Λ) VT

= O(n3) in practice

In theory can be improved to O(nω) ≈ O(n2.3728639).
(but this is still slow)

8

computing matrix functions

Cost to compute f (A):

O(n3)︸ ︷︷ ︸
eigendecompose A = VΛVT

+ O(n)︸︷︷︸
compute f(Λ)

+ O(n3)︸ ︷︷ ︸
form Vf (Λ) VT

= O(n3) in practice

In theory can be improved to O(nω) ≈ O(n2.3728639).
(but this is still slow)

8

computing matrix functions

Cost to compute f (A):

O(n3)︸ ︷︷ ︸
eigendecompose A = VΛVT

+ O(n)︸︷︷︸
compute f(Λ)

+ O(n3)︸ ︷︷ ︸
form Vf (Λ) VT

= O(n3) in practice

In theory can be improved to O(nω) ≈ O(n2.3728639).
(but this is still slow)

8

computing matrix functions

Cost to compute f (A):

O(n3)︸ ︷︷ ︸
eigendecompose A = VΛVT

+ O(n)︸︷︷︸
compute f(Λ)

+ O(n3)︸ ︷︷ ︸
form Vf (Λ) VT

= O(n3) in practice

In theory can be improved to O(nω) ≈ O(n2.3728639).
(but this is still slow)

8

faster matrix functions

Typically only interested in computing f(A)x for some x ∈ Rn.

f


 A


 ·

x


Often much cheaper than computing f(A) explicitly!

(this is what Lanczos and other algorithms target)

9

faster matrix functions

Typically only interested in computing f(A)x for some x ∈ Rn.

f


 A


 ·

x


Often much cheaper than computing f(A) explicitly!

(this is what Lanczos and other algorithms target)

9

applications in
data problems

9

matrix functions in data analysis

Least squares regression

Find w that minimizes
n∑
i=1

|bi − aTiw|2 = ∥Aw− b∥22

Solution: w =
(
ATA
)−1 ATb

10

matrix functions in data analysis

Least squares regression

Find w that minimizes
n∑
i=1

|bi − aTiw|2 = ∥Aw− b∥22

Solution: w =
(
ATA
)−1 ATb

10

matrix functions in data analysis

Least squares regression

Find w that minimizes
n∑
i=1

|bi − aTiw|2 = ∥Aw− b∥22

Solution: w =
(
ATA
)−1 ATb

10

matrix inverse

f

 ATA

 ·

x


Where f(λ) = 1/λ and x = ATb.

Since VTV = VVT = I :
ATA︷ ︸︸ ︷[V

][
λ1 . . .

λn

][
VT

]
(ATA)−1︷ ︸︸ ︷[V

] 1
λ1 . . . 1

λn

[VT
] = I

11

matrix inverse

f

 ATA

 ·

x


Where f(λ) = 1/λ and x = ATb.

Since VTV = VVT = I :
ATA︷ ︸︸ ︷[V

][
λ1 . . .

λn

][
VT

]
(ATA)−1︷ ︸︸ ︷[V

] 1
λ1 . . . 1

λn

[VT
] = I

11

matrix inverse

Example
Linear system solving, A−1x

Function
f(x) = 1/x

0 0.2 0.4 0.6 0.8 1

20

40

60

80

100

Countless applications...

12

matrix exponential

Example
Matrix exponential, eAx

Function
f(x) = ex

0 0.2 0.4 0.6 0.8 1

1

1.5

2

2.5

Applications in semidefinite programming, graph algorithms
(balanced separator), differential equations.

[Arora, Hazan, Kale, ‘05], [Iyengar, Phillips, and Stein ’11],
[Orecchia, Sachdeva, Vishnoi, ‘12], [Higham ‘08] (very complete survey) 12

matrix log

Example
Matrix log, log(A)x

Function
f(x) = log(x)

0 0.2 0.4 0.6 0.8 1

-5

-4

-3

-2

-1

0

Used to estimate log(det(A)) = tr(log(A)).
Appears in log-likelihood equation for multivariate Gaussian.
Applications in Gaussian process regression, learning distance

kernels, Markov random fields.
[Dhillon, et al ‘06, ‘07,‘08], [Han, Malioutov, Shin ‘15], [Saibaba, Alexanderian, Ipsen ‘17]

12

matrix step function

Example
Step function, stepλ(A)x

Function

f(x) =

1, x ≥ λ

0, x < λ
0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

Projection to top eigenvectors, eigenvalue counting, computing
matrix norms, spectral filtering, many more...

[Frostig, Musco, Musco, Sidford ‘16], [Saad, Ubaru ‘16], [Allen-Zhu, Li ‘17], [Tremblay, Puy,
Gribonval, Vandergheynst ‘16], [Musco, Netrapalli, Sidford, Ubaru and Woodruff ‘18]

12

principal component regression

Standard Regression:

Given: A, b
Solve: x∗ = argminx ∥Ax− b∥2

Principal Component Regression:

Given: A, b, λ
Solve: x∗ = argminx ∥Aλx− b∥2

13

principal component regression

Standard Regression:

Given: A, b
Solve: x∗ = argminx ∥Ax− b∥2

Principal Component Regression:

Given: A, b, λ
Solve: x∗ = argminx ∥Aλx− b∥2

13

principal component regression

Standard Regression:

Given: A, b
Solve: x∗ = argminx ∥Ax− b∥2

Principal Component Regression:

Given: A, b, λ
Solve: x∗ = argminx ∥Aλx− b∥2

13

principal component regression

Standard Regression:

Given: A, b
Solve: x∗ = argminx ∥Ax− b∥2

Principal Component Regression:

Given: A, b, λ
Solve: x∗ = argminx ∥Aλx− b∥2

13

principal component regression

Singular values of A

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

i

σ
i

2

14

principal component regression

Singular values of A

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

i

σ
i

“Signal”

“Noise”

λ

2

14

principal component regression

Singular values of Aλ

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

i

σ
i

“Signal”

λ

“Noise”

2

14

principal component regression

Principal Component Regression (PCR):
Goal: x∗ = argminx ∥Aλx− b∥2

Solution: x = (ATλAλ)−1ATb

Fastest way to apply ATλAλ and (ATλAλ)−1 to a vector is with a
matrix step function.

15

principal component regression

Principal Component Regression (PCR):
Goal: x∗ = argminx ∥Aλx− b∥2

Solution: x = (ATλAλ)−1ATb

Fastest way to apply ATλAλ and (ATλAλ)−1 to a vector is with a
matrix step function.

15

principal component regression

16

eigenvalue counting

How many eigenvalues does A have that are greater than λ?

d∑
i=1

I[λi > λ] =
d∑
i=1

stepλ(λi(A))

= trace (stepλ(A))

Hutchinson’s estimator:

Ex∼Nd

[
xTf(A)x

]
= trace (f(A))

Same method used for estimating log-determinants and
matrix norms.

17

eigenvalue counting

How many eigenvalues does A have that are greater than λ?
d∑
i=1

I[λi > λ] =
d∑
i=1

stepλ(λi(A))

= trace (stepλ(A))

Hutchinson’s estimator:

Ex∼Nd

[
xTf(A)x

]
= trace (f(A))

Same method used for estimating log-determinants and
matrix norms.

17

eigenvalue counting

How many eigenvalues does A have that are greater than λ?
d∑
i=1

I[λi > λ] =
d∑
i=1

stepλ(λi(A)) = trace (stepλ(A))

Hutchinson’s estimator:

Ex∼Nd

[
xTf(A)x

]
= trace (f(A))

Same method used for estimating log-determinants and
matrix norms.

17

eigenvalue counting

How many eigenvalues does A have that are greater than λ?
d∑
i=1

I[λi > λ] =
d∑
i=1

stepλ(λi(A)) = trace (stepλ(A))

Hutchinson’s estimator:

Ex∼Nd

[
xTf(A)x

]
= trace (f(A))

Same method used for estimating log-determinants and
matrix norms.

17

eigenvalue counting

How many eigenvalues does A have that are greater than λ?
d∑
i=1

I[λi > λ] =
d∑
i=1

stepλ(λi(A)) = trace (stepλ(A))

Hutchinson’s estimator:

Ex∼Nd

[
xTf(A)x

]
= trace (f(A))

Same method used for estimating log-determinants and
matrix norms. 17

fast algorithms for
matrix functions

17

matrix polynomials

Matrix polynomials can be computed iteratively.

f
([

A
])

·

x


Akx = VΛVTVΛVT · · · VΛVTx = VΛkVTx

Total time to compute p(A)x = c0x+ c1Ax+ c2A2x+ . . .+ ckAkx:

O(k · nnz(A))

18

matrix polynomials

Matrix polynomials can be computed iteratively.

p
([

A
])

·

x


Akx = VΛVTVΛVT · · · VΛVTx = VΛkVTx

Total time to compute p(A)x = c0x+ c1Ax+ c2A2x+ . . .+ ckAkx:

O(k · nnz(A))

18

matrix polynomials

Matrix polynomials can be computed iteratively.

p
([

A
])

·

x


Akx = VΛVTVΛVT · · · VΛVTx = VΛkVTx

Total time to compute p(A)x = c0x+ c1Ax+ c2A2x+ . . .+ ckAkx:

O(k · nnz(A))

18

matrix polynomials

Matrix polynomials can be computed iteratively.

p
([

A
])

·

x


Akx = VΛVTVΛVT · · · VΛVTx = VΛkVTx

Total time to compute p(A)x = c0x+ c1Ax+ c2A2x+ . . .+ ckAkx:

O(k · nnz(A))
18

matrix polynomials

Matrix polynomials can be computed iteratively.

p
([

A
])

·

x


Akx = VΛVTVΛVT · · · VΛVTx = VΛkVTx

Total time to compute p(A)x = c0x+ c1Ax+ c2A2x+ . . .+ ckAkx:

O(k · nnz(A)) ≤ O(k · n2) ≪ O(n3)
18

polynomial approximation

For general matrix functions:
approximate f(x) with low-degree polynomial p(x).

0 0.2 0.4 0.6 0.8 1

0

20

40

60

80

100

f(A)x ≈ p(A)x

How does error in approximating scale function f(·)
translate to error on matrix function?

19

polynomial approximation

For general matrix functions:
approximate f(x) with low-degree polynomial p(x).

0 0.2 0.4 0.6 0.8 1

0

20

40

60

80

100

f(A)x ≈ p(A)x

How does error in approximating scale function f(·)
translate to error on matrix function?

19

polynomial approximation

For general matrix functions:
approximate f(x) with low-degree polynomial p(x).

0 0.2 0.4 0.6 0.8 1

0

20

40

60

80

100

f(A)x ≈ p(A)x

How does error in approximating scale function f(·)
translate to error on matrix function?

19

polynomial approximation

∥f(A)x− p(A)x∥ ≤ ∥f(A)− p(A)∥ · ∥x∥

≤ ϵ · ∥x∥
where

ϵ = max
i=1,...,n

|f(λi)− p(λi)|.

20

polynomial approximation

∥f(A)x− p(A)x∥ ≤ ∥f(A)− p(A)∥ · ∥x∥ ≤ ϵ · ∥x∥
where

ϵ = max
i=1,...,n

|f(λi)− p(λi)|.

20

polynomial approximation

∥f(A)x− p(A)x∥ ≤ ∥f(A)− p(A)∥ · ∥x∥ ≤ ϵ · ∥x∥
where

ϵ = max
i=1,...,n

|f(λi)− p(λi)|.

20

polynomial approximation

∥f(A)x− p(A)x∥ ≤ ∥f(A)− p(A)∥ · ∥x∥ ≤ ϵ · ∥x∥
where

ϵ = max
i=1,...,n

|f(λi)− p(λi)|.

20

polynomial approximation

∥f(A)x− p(A)x∥ ≤ ∥f(A)− p(A)∥ · ∥x∥ ≤ ϵ · ∥x∥
where

ϵ = max
i=1,...,n

|f(λi)− p(λi)|.

20

finding good approximating polynomials

If we know λmin(A) and λmax(A) we can explicitly compute a
near optimal polynomial p via Chebyshev interpolation.

δk = min
p a degree k polynomial

(
max

x∈[λmin(A),λmax(A)]
|f(x)− p(x)|

)

Final bound: Output y such that

∥f(A)x− y∥ ≤ O(log k) · δk · ∥x∥.

21

finding good approximating polynomials

If we know λmin(A) and λmax(A) we can explicitly compute a
near optimal polynomial p via Chebyshev interpolation.

δk = min
p a degree k polynomial

(
max

x∈[λmin(A),λmax(A)]
|f(x)− p(x)|

)

Final bound: Output y such that

∥f(A)x− y∥ ≤ O(log k) · δk · ∥x∥.

21

finding good approximating polynomials

If we know λmin(A) and λmax(A) we can explicitly compute a
near optimal polynomial p via Chebyshev interpolation.

δk = min
p a degree k polynomial

(
max

x∈[λmin(A),λmax(A)]
|f(x)− p(x)|

)

Final bound: Output y such that

∥f(A)x− y∥ ≤ O(log k) · δk · ∥x∥.

21

applications of lanczos

Example bounds:

• Linear systems in O
(√

λmax / λmin

)
iterations.

• Matrix exponential in O (∥A∥) iterations.
• Matrix sign function in O (1/ϵ) iterations.
• Top eigenvector in O (log(n)/

√
ϵ) iterations.

No one actually uses Chebyshev interpolation!

22

applications of lanczos

Example bounds:

• Linear systems in O
(√

λmax / λmin

)
iterations.

• Matrix exponential in O (∥A∥) iterations.
• Matrix sign function in O (1/ϵ) iterations.
• Top eigenvector in O (log(n)/

√
ϵ) iterations.

No one actually uses Chebyshev interpolation!

22

the lanczos method
for matrix functions

22

the lanczos method

Cornelius Lanczos, 1950

• Simple to implement.
• No need to know λmin(A) and λmax(A).
• Much better convergence in practice (for many reasons).

• Matches optimal uniform approximation up to factor 2.

Final bound: Output y such that ∥f(A)x− y∥ ≤ 2δk · ∥x∥.

23

the lanczos method

Cornelius Lanczos, 1950

• Simple to implement.
• No need to know λmin(A) and λmax(A).
• Much better convergence in practice (for many reasons).

• Matches optimal uniform approximation up to factor 2.

Final bound: Output y such that ∥f(A)x− y∥ ≤ 2δk · ∥x∥.

23

the lanczos method

Cornelius Lanczos, 1950

• Simple to implement.
• No need to know λmin(A) and λmax(A).
• Much better convergence in practice (for many reasons).
• Matches optimal uniform approximation up to factor 2.

Final bound: Output y such that ∥f(A)x− y∥ ≤ 2δk · ∥x∥.

23

the lanczos method

Cornelius Lanczos, 1950

• Simple to implement.
• No need to know λmin(A) and λmax(A).
• Much better convergence in practice (for many reasons).
• Matches optimal uniform approximation up to factor 2.

Final bound: Output y such that ∥f(A)x− y∥ ≤ 2δk · ∥x∥.
23

lanczos method for matrix functions

Step 1: Form orthogonal matrix Q = [q0,q1, . . . ,qk] that spans
the Krylov subspace

K = {x,Ax,A2x, . . .Akx}.

Step 2: Compute
T = QTAQ

Step 3: Approximate f(A)x by

Qf(T)QTx

24

lanczos method for matrix functions

Step 1: Form orthogonal matrix Q = [q0,q1, . . . ,qk] that spans
the Krylov subspace

K = {x,Ax,A2x, . . .Akx}.

Step 2: Compute
T = QTAQ

Step 3: Approximate f(A)x by

Qf(T)QTx

24

lanczos method for matrix functions

Step 1: Form orthogonal matrix Q = [q0,q1, . . . ,qk] that spans
the Krylov subspace

K = {x,Ax,A2x, . . .Akx}.

Step 2: Compute
T = QTAQ

Step 3: Approximate f(A)x by

Qf(T)QTx

24

lanczos method for matrix functions

Runtime: O(k · nnz(A)) +O(nk2)+O(k3)

Runtime: O(k · nnz(A) + nk)

Reduce the problem to the cost of computing a matrix
function for a k× k matrix.

Final bound: Output y such that ∥f(A)x− y∥ ≤ 2δk · ∥x∥.

25

lanczos method for matrix functions

Runtime: O(k · nnz(A)) +O(nk2)

+O(k3)

Runtime: O(k · nnz(A) + nk)

Reduce the problem to the cost of computing a matrix
function for a k× k matrix.

Final bound: Output y such that ∥f(A)x− y∥ ≤ 2δk · ∥x∥.

25

lanczos method for matrix functions

Runtime: O(k · nnz(A)) +O(nk2)

+O(k3)

Runtime: O(k · nnz(A) + nk)

Reduce the problem to the cost of computing a matrix
function for a k× k matrix.

Final bound: Output y such that ∥f(A)x− y∥ ≤ 2δk · ∥x∥.

25

lanczos method for matrix functions

Runtime: O(k · nnz(A)) +O(nk2)+O(k3)

Runtime: O(k · nnz(A) + nk)

Reduce the problem to the cost of computing a matrix
function for a k× k matrix.

Final bound: Output y such that ∥f(A)x− y∥ ≤ 2δk · ∥x∥.

25

lanczos method for matrix functions

Runtime: O(k · nnz(A)) +O(nk2)+O(k3)

Runtime: O(k · nnz(A) + nk)

Reduce the problem to the cost of computing a matrix
function for a k× k matrix.

Final bound: Output y such that ∥f(A)x− y∥ ≤ 2δk · ∥x∥.

25

lanczos method for matrix functions

Runtime: O(k · nnz(A)) +O(nk2)+O(k3)

Runtime: O(k · nnz(A) + nk)

Reduce the problem to the cost of computing a matrix
function for a k× k matrix.

Final bound: Output y such that ∥f(A)x− y∥ ≤ 2δk · ∥x∥.

25

quick analysis of lanczos

Claim: Lanczos applies degree k polynomials exactly.

Proof:

x,Ax,A2x all lie in the span of Q.

26

quick analysis of lanczos

Claim: Lanczos applies degree k polynomials exactly.

Proof:

x,Ax,A2x all lie in the span of Q.

26

quick analysis of lanczos

Claim: Lanczos applies degree k polynomials exactly.

Proof:

x,Ax,A2x all lie in the span of Q.

26

quick analysis of lanczos

Claim: Lanczos applies degree k polynomials exactly.

Proof:

x,Ax,A2x all lie in the span of Q.

26

quick analysis of lanczos

Claim: Lanczos applies degree k polynomials exactly.

Proof:

x,Ax,A2x all lie in the span of Q.

26

quick analysis of lanczos

Claim: Lanczos applies degree k polynomials exactly.

Proof:

x,Ax,A2x all lie in the span of Q.

26

quick analysis of lanczos

Claim: Lanczos applies degree k polynomials exactly.

Proof:

x,Ax,A2x all lie in the span of Q.

26

quick analysis of lanczos

Claim: Lanczos applies degree k polynomials exactly.

Proof:

x,Ax,A2x all lie in the span of Q.

26

quick analysis of lanczos

How about for a general functions f(x)?

Lanczos automatically applies the polynomial “part” of f.
(simple application of triangle inequality)

For any degree k polynomial p,

∥f(A)x− Qf(T)QTx∥ ≤ ∥f(A)x− p(A)x∥
+ ∥p(A)x− Qp(T)QTx∥
+ ∥Qp(T)QTx− Qf(T)QTx∥

≤ δk∥x∥

+ 0+ ∥p(T)− f(T)∥ · ∥QTx∥

Since T = QTAQ, [λmin(T), λmax(T)] ⊆ [λmin(A), λmax(A)].

27

quick analysis of lanczos

How about for a general functions f(x)?

Lanczos automatically applies the polynomial “part” of f.
(simple application of triangle inequality)

For any degree k polynomial p,

∥f(A)x− Qf(T)QTx∥ ≤ ∥f(A)x− p(A)x∥
+ ∥p(A)x− Qp(T)QTx∥
+ ∥Qp(T)QTx− Qf(T)QTx∥

≤ δk∥x∥

+ 0+ ∥p(T)− f(T)∥ · ∥QTx∥

Since T = QTAQ, [λmin(T), λmax(T)] ⊆ [λmin(A), λmax(A)].

27

quick analysis of lanczos

How about for a general functions f(x)?

Lanczos automatically applies the polynomial “part” of f.
(simple application of triangle inequality)

For any degree k polynomial p,

∥f(A)x− Qf(T)QTx∥ ≤ ∥f(A)x− p(A)x∥
+ ∥p(A)x− Qp(T)QTx∥
+ ∥Qp(T)QTx− Qf(T)QTx∥

≤ δk∥x∥

+ 0+ ∥p(T)− f(T)∥ · ∥QTx∥

Since T = QTAQ, [λmin(T), λmax(T)] ⊆ [λmin(A), λmax(A)].

27

quick analysis of lanczos

How about for a general functions f(x)?

Lanczos automatically applies the polynomial “part” of f.
(simple application of triangle inequality)

For any degree k polynomial p,

∥f(A)x− Qf(T)QTx∥ ≤ ∥f(A)x− p(A)x∥
+ ∥p(A)x− Qp(T)QTx∥
+ ∥Qp(T)QTx− Qf(T)QTx∥
≤ δk∥x∥

+ 0+ ∥p(T)− f(T)∥ · ∥QTx∥

Since T = QTAQ, [λmin(T), λmax(T)] ⊆ [λmin(A), λmax(A)].

27

quick analysis of lanczos

How about for a general functions f(x)?

Lanczos automatically applies the polynomial “part” of f.
(simple application of triangle inequality)

For any degree k polynomial p,

∥f(A)x− Qf(T)QTx∥ ≤ ∥f(A)x− p(A)x∥
+ ∥p(A)x− Qp(T)QTx∥
+ ∥Qp(T)QTx− Qf(T)QTx∥
≤ δk∥x∥+ 0

+ ∥p(T)− f(T)∥ · ∥QTx∥

Since T = QTAQ, [λmin(T), λmax(T)] ⊆ [λmin(A), λmax(A)].

27

quick analysis of lanczos

How about for a general functions f(x)?

Lanczos automatically applies the polynomial “part” of f.
(simple application of triangle inequality)

For any degree k polynomial p,

∥f(A)x− Qf(T)QTx∥ ≤ ∥f(A)x− p(A)x∥
+ ∥p(A)x− Qp(T)QTx∥
+ ∥Qp(T)QTx− Qf(T)QTx∥
≤ δk∥x∥+ 0+ ∥p(T)− f(T)∥ · ∥QTx∥

Since T = QTAQ, [λmin(T), λmax(T)] ⊆ [λmin(A), λmax(A)].

27

quick analysis of lanczos

How about for a general functions f(x)?

Lanczos automatically applies the polynomial “part” of f.
(simple application of triangle inequality)

For any degree k polynomial p,

∥f(A)x− Qf(T)QTx∥ ≤ ∥f(A)x− p(A)x∥
+ ∥p(A)x− Qp(T)QTx∥
+ ∥Qp(T)QTx− Qf(T)QTx∥
≤ δk∥x∥+ 0+ δk∥x∥.

Since T = QTAQ, [λmin(T), λmax(T)] ⊆ [λmin(A), λmax(A)].

27

polynomial methods
with noise

27

matrix functions with noise

In many data applications, we do not multiply by A exactly!

Natural model when Lanczos is combined with
super-scalable randomized methods.

28

matrix functions with noise

In many data applications, we do not multiply by A exactly!

Natural model when Lanczos is combined with
super-scalable randomized methods.

28

matrix functions with noise

In many data applications, we do not multiply by A exactly!

Natural model when Lanczos is combined with
super-scalable randomized methods.

28

matrix functions with noise

In many data applications, we do not multiply by A exactly!

Natural model when Lanczos is combined with
super-scalable randomized methods.

28

matrix functions with noise

In many data applications, we do not multiply by A exactly!

Natural model when Lanczos is combined with
super-scalable randomized methods.

28

matrix functions with noise

Powerful paradigm:

• A = B−1 for some matrix B.
• Apply B−1 to vectors very quickly and approximately.

29

matrix step function

Fastest algorithms for computing S = stepλ(ATA) actually
compute step1/2(R) where R = (ATA+ λI)−1ATA.

0 100 200 300 400 500 600 700 800 900 1000
−0.5

0

0.5

1

1.5

Spectrum of S

Spectrum of R

i(large σi) (small σi)

Most of the work is computing Rx.

30

matrix step function

Fastest algorithms for computing S = stepλ(ATA) actually
compute step1/2(R) where R = (ATA+ λI)−1ATA.

0 100 200 300 400 500 600 700 800 900 1000
−0.5

0

0.5

1

1.5

Spectrum of S

Spectrum of R

i(large σi) (small σi)

Most of the work is computing Rx.
30

lanczos and randomized methods

Rx = (ATA+ λI)−1ATAx is a convex optimization problem.

31

lanczos and randomized methods

Lots of recent interest and new algorithms for convex problems
on massive datasets (i.e. when A does not fit in memory).

Stochastic Iterative
Methods

Randomized Sketching

Runtimes scale roughly as O (nnz(A) · log(1/ϵ)).
(for ϵ approximate solution)

32

lanczos and randomized methods

Lots of recent interest and new algorithms for convex problems
on massive datasets (i.e. when A does not fit in memory).

Stochastic Iterative
Methods

Randomized Sketching

Runtimes scale roughly as O (nnz(A) · log(1/ϵ)).
(for ϵ approximate solution)

32

lanczos and randomized methods

• Faster eigenvector algorithms (in many regimes).
• Faster eigenvalue counting algorithms.
• Faster log-determinant and matrix norm algorithms.
• Faster balanced separator algorithms for graphs (via
Laplacian matrix exponential).

33

lanczos and randomized methods

• Faster eigenvector algorithms (in many regimes).
• Faster eigenvalue counting algorithms.
• Faster log-determinant and matrix norm algorithms.
• Faster balanced separator algorithms for graphs (via
Laplacian matrix exponential).

33

lanczos and randomized methods

We need to understand how the performance of our
algorithms change when we replace every matrix-vector

multiplication Ax with an approximate solution.

Are matrix function algorithms stable?

Same stability questions were asked decades ago to
understand roundoff error when computing Ax!

fl(x ◦ y) = (1± ϵ)(x ◦ y) for ◦ = +,−,×,÷

34

lanczos and randomized methods

We need to understand how the performance of our
algorithms change when we replace every matrix-vector

multiplication Ax with an approximate solution.

Are matrix function algorithms stable?

Same stability questions were asked decades ago to
understand roundoff error when computing Ax!

fl(x ◦ y) = (1± ϵ)(x ◦ y) for ◦ = +,−,×,÷

34

lanczos and randomized methods

We need to understand how the performance of our
algorithms change when we replace every matrix-vector

multiplication Ax with an approximate solution.

Are matrix function algorithms stable?

Same stability questions were asked decades ago to
understand roundoff error when computing Ax!

fl(x ◦ y) = (1± ϵ)(x ◦ y) for ◦ = +,−,×,÷

34

lanczos and randomized methods

It is very easy to design iterative methods that converge very
slowly when Ax is computed approximately. But the Lanczos
method (with no modifications) continues to perform well.

Can we explain this phenomena?

35

lanczos and randomized methods

It is very easy to design iterative methods that converge very
slowly when Ax is computed approximately. But the Lanczos
method (with no modifications) continues to perform well.

Can we explain this phenomena?

35

stable polynomial computation

How can we apply polynomials in a stable way?

1. Want to compute p(x) = c0 + c1x+ . . .+ ckxk.
2. We do not know x, but we have access to a function
approxMult that for any input z outputs:

approxMult(z) = z · x+ ϵ.

36

stable polynomial computation

How can we apply polynomials in a stable way?

1. Want to compute p(x) = c0 + c1x+ . . .+ ckxk.
2. We do not know x, but we have access to a function
approxMult that for any input z outputs:

approxMult(z) = z · x+ ϵ.

36

stable polynomial computation

Goal: Compute p(x) = 64x7 − 112x5 + 56x3 − 7x.
Using approxMult with ϵ = .05.

Directly compute and sum monomials.

xi = approxMult(approxMult(. . .approxMult(1) . . .))

37

stable polynomial computation

Goal: Compute p(x) = 64x7 − 112x5 + 56x3 − 7x.
Using approxMult with ϵ = .05.

Directly compute and sum monomials.

xi = approxMult(approxMult(. . .approxMult(1) . . .))
37

stable polynomial computation

Goal: Compute p(x) = 64x7 − 112x5 + 56x3 − 7x.
Using approxMult with ϵ = .05.

Factor p(x) = (x− .98)(x− .78) . . . (x− .43).

t1 = (approxMult(1)− .98), t2 = approxMult(t1)− .78 · t1, . . .
37

stable polynomial computation

Goal: Compute p(x) = 64x7 − 112x5 + 56x3 − 7x.
Using approxMult with ϵ = .05.

Use special recurrence relation for this polynomial.

ti = 2 · approxMult(ti−1)− ti−2
37

stable polynomial computation

Assume we want to approximate p(x) for x ∈ [−1, 1].
Assume |p(x)| ≤ C.

Claim
We can compute any p(x) to accuracy ϵ · Ck3 if approxMult
has accuracy ϵ.

38

stable polynomial computation

Assume we want to approximate p(x) for x ∈ [−1, 1].
Assume |p(x)| ≤ C.

Claim
We can compute any p(x) to accuracy ϵ · Ck3 if approxMult
has accuracy ϵ.

38

stable polynomial computation

Assume we want to approximate p(x) for x ∈ [−1, 1].
Assume |p(x)| ≤ C.

Claim
We can compute any p(x) to accuracy ϵ · Ck3 if approxMult
has accuracy ϵ. 38

first attempt

Compute monomials:

(x+ ϵ1)

Since |x| ≤ 1, error on xi bounded by ϵ1 + ϵ2 + . . .+ ϵ3 ≤ ϵi.

We can then compute p(x) = c0 + c1x+ . . . ckxk up to error:

c1ϵ+ 2 · c2ϵ+ . . .+ k · ckϵ ≤ ϵk ·
k∑
i=1

|ck|

39

first attempt

Compute monomials:

(x (x+ ϵ1) + ϵ2)

Since |x| ≤ 1, error on xi bounded by ϵ1 + ϵ2 + . . .+ ϵ3 ≤ ϵi.

We can then compute p(x) = c0 + c1x+ . . . ckxk up to error:

c1ϵ+ 2 · c2ϵ+ . . .+ k · ckϵ ≤ ϵk ·
k∑
i=1

|ck|

39

first attempt

Compute monomials:

(x (x (x+ ϵ1) + ϵ2) + ϵ3)

Since |x| ≤ 1, error on xi bounded by ϵ1 + ϵ2 + . . .+ ϵ3 ≤ ϵi.

We can then compute p(x) = c0 + c1x+ . . . ckxk up to error:

c1ϵ+ 2 · c2ϵ+ . . .+ k · ckϵ ≤ ϵk ·
k∑
i=1

|ck|

39

first attempt

Compute monomials:

xi + xi−1ϵ1 + xi−2ϵ2 + . . .+ ϵi.

Since |x| ≤ 1, error on xi bounded by ϵ1 + ϵ2 + . . .+ ϵ3 ≤ ϵi.

We can then compute p(x) = c0 + c1x+ . . . ckxk up to error:

c1ϵ+ 2 · c2ϵ+ . . .+ k · ckϵ ≤ ϵk ·
k∑
i=1

|ck|

39

first attempt

Compute monomials:

xi + xi−1ϵ1 + xi−2ϵ2 + . . .+ ϵi.

Since |x| ≤ 1, error on xi bounded by ϵ1 + ϵ2 + . . .+ ϵ3 ≤ ϵi.

We can then compute p(x) = c0 + c1x+ . . . ckxk up to error:

c1ϵ+ 2 · c2ϵ+ . . .+ k · ckϵ ≤ ϵk ·
k∑
i=1

|ck|

39

first attempt

Compute monomials:

xi + xi−1ϵ1 + xi−2ϵ2 + . . .+ ϵi.

Since |x| ≤ 1, error on xi bounded by ϵ1 + ϵ2 + . . .+ ϵ3 ≤ ϵi.

We can then compute p(x) = c0 + c1x+ . . . ckxk up to error:

c1ϵ+ 2 · c2ϵ+ . . .+ k · ckϵ ≤ ϵk ·
k∑
i=1

|ck|

39

first attempt

∑k
i=1 |ck| can be far larger than our goal of ϵ · Ck3.

There are polynomials with C = 1 but
∑k

i=1 |ck| = O(2k).

Exponential instead of polynomial loss in k.

Runtimes of randomized system solvers depended on log(1/ϵ).

40

first attempt

∑k
i=1 |ck| can be far larger than our goal of ϵ · Ck3.

There are polynomials with C = 1 but
∑k

i=1 |ck| = O(2k).

Exponential instead of polynomial loss in k.

Runtimes of randomized system solvers depended on log(1/ϵ).

40

first attempt

∑k
i=1 |ck| can be far larger than our goal of ϵ · Ck3.

There are polynomials with C = 1 but
∑k

i=1 |ck| = O(2k).

Exponential instead of polynomial loss in k.

Runtimes of randomized system solvers depended on log(1/ϵ).

40

first attempt

∑k
i=1 |ck| can be far larger than our goal of ϵ · Ck3.

There are polynomials with C = 1 but
∑k

i=1 |ck| = O(2k).

Exponential instead of polynomial loss in k.

Runtimes of randomized system solvers depended on log(1/ϵ).
40

“bad” polynomials

What are those polynomials?

Chebyshev polynomials of the first kind.

T0(x) = 1
T1(x) = x
T2(x) = 2x2 − 1

...
Tk(x) = 2xTk−1(x)− Tk−2(x)

41

“bad” polynomials

What are those polynomials?

Chebyshev polynomials of the first kind.

T0(x) = 1
T1(x) = x
T2(x) = 2x2 − 1

...
Tk(x) = 2xTk−1(x)− Tk−2(x)

41

“bad” polynomials

What are those polynomials?

Chebyshev polynomials of the first kind.

We can apply these in a stable way, using their recurrence!

42

“bad” polynomials

What are those polynomials?

Chebyshev polynomials of the first kind.

We can apply these in a stable way, using their recurrence! 42

“good” polynomials?

ti = 2 · approxMult(ti−1)− ti−2

Not hard to show that when computing Tk(x) the error ≤ ϵk2.

43

“good” polynomials?

ti = 2 · approxMult(ti−1)− ti−2

Not hard to show that when computing Tk(x) the error ≤ ϵk2.

43

key observation

Chebyshev polynomails are the only hard case.

Property: If a degree k polynomial p(x) is bounded by C on
[−1, 1], it can be written as

p(x) = c0T0(x) + c1T1(x) + . . . ckTk(x)

where every ci ≤ C.

Total error of sum p(x) is bounded by
C · 12ϵ+ C · 22ϵ+ . . .+ C · k2ϵ ≤ Ck3ϵ.

44

key observation

Chebyshev polynomails are the only hard case.

Property: If a degree k polynomial p(x) is bounded by C on
[−1, 1], it can be written as

p(x) = c0T0(x) + c1T1(x) + . . . ckTk(x)

where every ci ≤ C.

Total error of sum p(x) is bounded by
C · 12ϵ+ C · 22ϵ+ . . .+ C · k2ϵ ≤ Ck3ϵ.

44

key observation

Chebyshev polynomails are the only hard case.

Property: If a degree k polynomial p(x) is bounded by C on
[−1, 1], it can be written as

p(x) = c0T0(x) + c1T1(x) + . . . ckTk(x)

where every ci ≤ C.

Total error of sum p(x) is bounded by
C · 12ϵ+ C · 22ϵ+ . . .+ C · k2ϵ ≤ Ck3ϵ.

44

stability of lanczos

Same arguments extends from scalar polynomials to matrix
polynomials.

Framework allows us to analyze Lanczos as well.

Step 1: Lanczos stably applies Chebyshev polynomials
(building on results of Paige [‘71, ‘76, ‘80]).

Step 2: By linearity, Lanczos stably applies polynomials
bounded by C.

Step 3: If |f(x)| ≤ C, a good approximating polynomial has
|p(x)| ≤ O(C), so Lanczos is stable for bounded functions.

Use Lanczos without fear (on bounded functions)!

45

stability of lanczos

Same arguments extends from scalar polynomials to matrix
polynomials. Framework allows us to analyze Lanczos as well.

Step 1: Lanczos stably applies Chebyshev polynomials
(building on results of Paige [‘71, ‘76, ‘80]).

Step 2: By linearity, Lanczos stably applies polynomials
bounded by C.

Step 3: If |f(x)| ≤ C, a good approximating polynomial has
|p(x)| ≤ O(C), so Lanczos is stable for bounded functions.

Use Lanczos without fear (on bounded functions)!

45

stability of lanczos

Same arguments extends from scalar polynomials to matrix
polynomials. Framework allows us to analyze Lanczos as well.

Step 1: Lanczos stably applies Chebyshev polynomials
(building on results of Paige [‘71, ‘76, ‘80]).

Step 2: By linearity, Lanczos stably applies polynomials
bounded by C.

Step 3: If |f(x)| ≤ C, a good approximating polynomial has
|p(x)| ≤ O(C), so Lanczos is stable for bounded functions.

Use Lanczos without fear (on bounded functions)!

45

stability of lanczos

Same arguments extends from scalar polynomials to matrix
polynomials. Framework allows us to analyze Lanczos as well.

Step 1: Lanczos stably applies Chebyshev polynomials
(building on results of Paige [‘71, ‘76, ‘80]).

Step 2: By linearity, Lanczos stably applies polynomials
bounded by C.

Step 3: If |f(x)| ≤ C, a good approximating polynomial has
|p(x)| ≤ O(C), so Lanczos is stable for bounded functions.

Use Lanczos without fear (on bounded functions)!

45

stability of lanczos

Same arguments extends from scalar polynomials to matrix
polynomials. Framework allows us to analyze Lanczos as well.

Step 1: Lanczos stably applies Chebyshev polynomials
(building on results of Paige [‘71, ‘76, ‘80]).

Step 2: By linearity, Lanczos stably applies polynomials
bounded by C.

Step 3: If |f(x)| ≤ C, a good approximating polynomial has
|p(x)| ≤ O(C), so Lanczos is stable for bounded functions.

Use Lanczos without fear (on bounded functions)!

45

stability of lanczos

Same arguments extends from scalar polynomials to matrix
polynomials. Framework allows us to analyze Lanczos as well.

Step 1: Lanczos stably applies Chebyshev polynomials
(building on results of Paige [‘71, ‘76, ‘80]).

Step 2: By linearity, Lanczos stably applies polynomials
bounded by C.

Step 3: If |f(x)| ≤ C, a good approximating polynomial has
|p(x)| ≤ O(C), so Lanczos is stable for bounded functions.

Use Lanczos without fear (on bounded functions)!

45

stability of lanczos

Stochastic Iterative
Methods

Randomized Sketching

See paper for applications to step function, matrix
exponential, top eigenvector, etc. 46

full result

Answer to old question on Lanczos in finite precision:

Theorem (Lanczos is stable for any bounded function)
If |f(x)| ≤ C for x ∈ [λmin(A), λmax(A)], then if Lanczos is run for
k iterations on a computer with O(log(nCκ)) bits of precision,
it outputs a vector y such that

∥f(A)x− y∥ ≤ 7k · δk · ∥x∥

where δk is the error of the best degree k uniform
approximation to f.

• Compare to ∥f(A)x− y∥ ≤ 2 · δk · ∥x∥ in exact arithmetic.
• Matches known bound for A−1x (Greenbaum, ‘89).

47

full result

Answer to old question on Lanczos in finite precision:

Theorem (Lanczos is stable for any bounded function)
If |f(x)| ≤ C for x ∈ [λmin(A), λmax(A)], then if Lanczos is run for
k iterations on a computer with O(log(nCκ)) bits of precision,
it outputs a vector y such that

∥f(A)x− y∥ ≤ 7k · δk · ∥x∥

where δk is the error of the best degree k uniform
approximation to f.

• Compare to ∥f(A)x− y∥ ≤ 2 · δk · ∥x∥ in exact arithmetic.

• Matches known bound for A−1x (Greenbaum, ‘89).

47

full result

Answer to old question on Lanczos in finite precision:

Theorem (Lanczos is stable for any bounded function)
If |f(x)| ≤ C for x ∈ [λmin(A), λmax(A)], then if Lanczos is run for
k iterations on a computer with O(log(nCκ)) bits of precision,
it outputs a vector y such that

∥f(A)x− y∥ ≤ 7k · δk · ∥x∥

where δk is the error of the best degree k uniform
approximation to f.

• Compare to ∥f(A)x− y∥ ≤ 2 · δk · ∥x∥ in exact arithmetic.
• Matches known bound for A−1x (Greenbaum, ‘89).

47

negative result for
linear systems

47

lanczos for linear systems

We proved earlier that Lanczos always matches the best
uniform approximating polynomial for f(x):

For linear systems it actually does better than that.

48

lanczos for linear systems

We proved earlier that Lanczos always matches the best
uniform approximating polynomial for f(x):

For linear systems it actually does better than that.
48

lanczos for linear systems

We proved earlier that Lanczos always matches the best
uniform approximating polynomial for f(x):

For linear systems it actually does better than that.
48

lanczos for linear systems

• The best uniform approximation to 1/x has degree√
λmax / λmin · log(1/ϵ).

• 1/x can be represented exactly by a degree n− 1
polynomial if A only has n eigenvalues.

Claim: On exact arithmetic computers, linear systems can be
solved in O(nnz(A) · n) time (i.e. n iterations of Lanczos)

Research question: To what extent does this bound hold true
in finite precision? Are n logn iterations sufficient? n2?

49

lanczos for linear systems

• The best uniform approximation to 1/x has degree√
λmax / λmin · log(1/ϵ).

• 1/x can be represented exactly by a degree n− 1
polynomial if A only has n eigenvalues.

Claim: On exact arithmetic computers, linear systems can be
solved in O(nnz(A) · n) time (i.e. n iterations of Lanczos)

Research question: To what extent does this bound hold true
in finite precision? Are n logn iterations sufficient? n2?

49

lanczos for linear systems

• The best uniform approximation to 1/x has degree√
λmax / λmin · log(1/ϵ).

• 1/x can be represented exactly by a degree n− 1
polynomial if A only has n eigenvalues.

Claim: On exact arithmetic computers, linear systems can be
solved in O(nnz(A) · n) time (i.e. n iterations of Lanczos)

Research question: To what extent does this bound hold true
in finite precision? Are n logn iterations sufficient? n2?

49

lanczos for linear systems

• The best uniform approximation to 1/x has degree√
λmax / λmin · log(1/ϵ).

• 1/x can be represented exactly by a degree n− 1
polynomial if A only has n eigenvalues.

Claim: On exact arithmetic computers, linear systems can be
solved in O(nnz(A) · n) time (i.e. n iterations of Lanczos)

Research question: To what extent does this bound hold true
in finite precision? Are n logn iterations sufficient? n2?

49

linear systems in finite precision

Greenbaum (1989): Finite precision Lanczos and conjugate
gradient match the best polynomial approximating 1/x in tiny
intervals around A’s eigenvalues:

η is on the order of machine precision! 50

lower bound

Theorem (Stable polynomial lower bound.)
For any n, there is a matrix A ∈ Rn×n with condition number
λmax / λmin such that no k degree polynomial satisfies
Greenbaum’s condition with error ≤ 1/3 for all

k ≤ (λmax / λmin)
1/5

even when η ≤ 1
2n/ logκ .

In other words, we cannot avoid polynomial dependence on
condition number unless we have nearly n bits of precision.

51

lower bound

Theorem (Stable polynomial lower bound.)
For any n, there is a matrix A ∈ Rn×n with condition number
λmax / λmin such that no k degree polynomial satisfies
Greenbaum’s condition with error ≤ 1/3 for all

k ≤ (λmax / λmin)
1/5

even when η ≤ 1
2n/ logκ .

In other words, we cannot avoid polynomial dependence on
condition number unless we have nearly n bits of precision.

51

lower bound

Construction: Eigenvalues roughly uniform on geometric scale.

Proof: Simple potential function argument.

52

open questions

• Can (λmax / λmin)
1/5 be tightened to (λmax / λmin)

1/2

• Does Greenbaum’s estimate fully characterize Lanczos?
Can the lower bound be extend to an actual runtime lower
bound?

• How about for a more general class of algorithms? Any
method accessing A only through noisy matrix-vector
products?

53

thank you!

53

