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Cut Sparsification (Benczúr, Karger ’96)

Let B ∈ R(n2)×n be the vertex-edge incidence matrix for a
graph G .

Let x ∈ {0, 1}n be an “indicator vector” for some cut.

‖Bx‖22 = cut value

v1 v2 v3 v4



e12 1 -1 0 0
e13 1 0 -1 0
e14 0 0 0 0
e23 0 1 -1 0
e24 0 1 0 -1
e34 0 0 0 0

B

×




1
1
0
0
x

=





0
1
0
1
1
0
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Graph Sparsification

Cut Sparsification (Benczúr, Karger ’96) So, ‖Bx‖22 = cut value.

Goal

Find some B̃ such that, for all x ∈ {0, 1}n,

(1− ε)‖Bx‖22 ≤ ‖B̃x‖22 ≤ (1 + ε)‖Bx‖22

x>B̃>B̃x ≈ x>B>Bx.

L = B>B is the graph Laplacian.
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Graph Sparsification

Spectral Sparsification (Spielman, Teng ’04)

Goal

Find some B̃ such that, for all x ∈ {0, 1}n Rn,

(1− ε)‖Bx‖22 ≤ ‖B̃x‖22 ≤ (1 + ε)‖Bx‖22

Applications: Anything cut sparsifiers can do, Laplacian system
solves, computing effective resistances, spectral clustering,
calculating random walk properties, etc.
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Graph Sparsification

Again, recall that ‖y‖22 = y>y.

All Equivalent:

‖B̃x‖22 ≈ε ‖Bx‖22 x>L̃x ≈ε x>Lx x>L̃−1x ≈ε x>L−1x

Spectral matrix approximation also useful for approximate
regression, constructing preconditioners, low rank approximation,
RIP/compressed sensing, etc.
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How are sparsifiers constructed?

Sampling probabilities:

Connectivity for cut sparsifiers [Benczúr, Karger ’96], [Fung,
Hariharan, Harvey, Panigrahi ’11].

Effective resistances (i.e statistical leverage scores) for
spectral sparsifiers [Spielman, Srivastava ’08].

Actually oversample: by (effective resistance)× O(log n).
Gives sparsifiers with O(n log n) edges – reducing from O(n2).
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Motivation

Makes sense to compress a graph, but what if we cannot
afford to store it in the first place?

Is it possible to “sketch” a graph in small space by
maintaining a sparsifier or some other representation?
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Sparsifer Chain

Full Procedure:
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Number of levels depends on log condition number of B, which is
bounded for an unweighted graph.

Works for any matrix!

To work for a general matrix B and general quadratic form
B>B we need:

A row dictionary to test every possible entry.
A condition number bound.

Generically, storing a compression of B>B takes Ω(n2) space.
Avoid lower bound simply when the row dictionary is poly(n)
size.
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Using a Pseudorandom Number Generator

Recall

Requires O(n2 log n) bits in total. We need to store these bits
persistently.



Using a Pseudorandom Number Generator

Nisan’s PRG [Nisan ’92]

Theorem

Any algorithm running in S space and using R random bits can be
simulated using a PRG that uses a seed of O(S logR) truly
random bits.

1 The probability of any outcome changes by at most 2−O(S).

2 Each random bit can be generated in S logR time.

We have S = O(n logc n) and R = O(n2 log n), so S logR is just
O(n logc n) truly random bits for our seed.
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But out algorithm doesn’t run in S space as described!

Solution: [Indyk ’00] Our algorithm can run in O(n logc n) if our
edges come in order → we can throw away hash bits as we go.
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So, we can apply the PRG to our algorithm assuming ordered
insertions/deletions.

But, since the algorithm is linear, the order in which edges are
received does not matter. Thus, the algorithm works for any edge
stream.

Unfortunately, every time we need a random has bit, we require
S logR = O(n logc n) computation → slow update time.
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Conclusion

Thank you!
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