
Single Pass Spectral Sparsification

in Dynamic Streams

2014.11.10 M. Kapralov, Y.T. Lee, C. Musco, C. Musco, A. Sidford
Massachusetts Institute of Technology



1-Pass Spectral Sparsification in Dynamic Streams

Overview

In Õ(n) space, maintain a graph compression from which we
can always return a spectral sparsifier.

Main technique

Use `2 heavy hitter sketches to sample by effective resistance
in the streaming model.



1-Pass Spectral Sparsification in Dynamic Streams

Overview

In Õ(n) space, maintain a graph compression from which we
can always return a spectral sparsifier.

Main technique

Use `2 heavy hitter sketches to sample by effective resistance
in the streaming model.



Outline

1 Graph Sparsification

2 Semi-Streaming Computational Model

3 Prior Work Review

4 Our Algorithm
Recover High Effective Resistance Edges
Sampling by Effective Resistance
Recursive Sparsification [Li, Miller, Peng ’12]



Overview

1 Graph Sparsification

2 Semi-Streaming Computational Model

3 Prior Work Review

4 Our Algorithm
Recover High Effective Resistance Edges
Sampling by Effective Resistance
Recursive Sparsification [Li, Miller, Peng ’12]



Graph Sparsification

General Idea

Approximate a dense graph with a much sparser graph.

Reduce O(n2) edges → O(n log n) edges



Graph Sparsification

General Idea

Approximate a dense graph with a much sparser graph.

Reduce O(n2) edges → O(n log n) edges



Graph Sparsification

Cut Sparsification (Benczúr, Karger ’96)

Preserve every cut value to within (1± ε) factor

Applications: Minimum cut, sparsest cut, etc.



Graph Sparsification

Cut Sparsification (Benczúr, Karger ’96)

Preserve every cut value to within (1± ε) factor

Applications: Minimum cut, sparsest cut, etc.



Graph Sparsification

Cut Sparsification (Benczúr, Karger ’96)

Preserve every cut value to within (1± ε) factor

Applications: Minimum cut, sparsest cut, etc.



Graph Sparsification

Cut Sparsification (Benczúr, Karger ’96)

Preserve every cut value to within (1± ε) factor

Applications: Minimum cut, sparsest cut, etc.



Graph Sparsification

Cut Sparsification (Benczúr, Karger ’96)

Preserve every cut value to within (1± ε) factor

Applications: Minimum cut, sparsest cut, etc.



Graph Sparsification

Cut Sparsification (Benczúr, Karger ’96)

Preserve every cut value to within (1± ε) factor

Applications: Minimum cut, sparsest cut, etc.



Graph Sparsification

Cut Sparsification (Benczúr, Karger ’96)

Preserve every cut value to within (1± ε) factor

Applications: Minimum cut, sparsest cut, etc.



Graph Sparsification

Cut Sparsification (Benczúr, Karger ’96)

Preserve every cut value to within (1± ε) factor

Applications: Minimum cut, sparsest cut, etc.



Graph Sparsification

Cut Sparsification (Benczúr, Karger ’96)

Preserve every cut value to within (1± ε) factor

Applications: Minimum cut, sparsest cut, etc.



Graph Sparsification

Cut Sparsification (Benczúr, Karger ’96)

Let B ∈ R(n2)×n be the vertex-edge incidence matrix for a
graph G .

Let x ∈ {0, 1}n be an “indicator vector” for some cut.

‖Bx‖22 = cut value

v1 v2 v3 v4



e12 1 -1 0 0
e13 1 0 -1 0
e14 0 0 0 0
e23 0 1 -1 0
e24 0 1 0 -1
e34 0 0 0 0

B

×




1
1
0
0
x

=





0
1
0
1
1
0



Graph Sparsification

Cut Sparsification (Benczúr, Karger ’96)

Let B ∈ R(n2)×n be the vertex-edge incidence matrix for a
graph G .

Let x ∈ {0, 1}n be an “indicator vector” for some cut.

‖Bx‖22 = cut value

v1 v2 v3 v4



e12 1 -1 0 0
e13 1 0 -1 0
e14 0 0 0 0
e23 0 1 -1 0
e24 0 1 0 -1
e34 0 0 0 0

B

×




1
1
0
0
x

=





0
1
0
1
1
0



Graph Sparsification

Cut Sparsification (Benczúr, Karger ’96)

Let B ∈ R(n2)×n be the vertex-edge incidence matrix for a
graph G .

Let x ∈ {0, 1}n be an “indicator vector” for some cut.

‖Bx‖22 = cut value

v1 v2 v3 v4



e12 1 -1 0 0
e13 1 0 -1 0
e14 0 0 0 0
e23 0 1 -1 0
e24 0 1 0 -1
e34 0 0 0 0

B

×




1
1
0
0
x

=





0
1
0
1
1
0



Graph Sparsification

Cut Sparsification (Benczúr, Karger ’96)

Let B ∈ R(n2)×n be the vertex-edge incidence matrix for a
graph G .

Let x ∈ {0, 1}n be an “indicator vector” for some cut.

‖Bx‖22 = cut value

v1 v2 v3 v4



e12 1 -1 0 0
e13 1 0 -1 0
e14 0 0 0 0
e23 0 1 -1 0
e24 0 1 0 -1
e34 0 0 0 0

B

×




1
1
0
0
x

=





0
1
0
1
1
0



Graph Sparsification

Cut Sparsification (Benczúr, Karger ’96)

Let B ∈ R(n2)×n be the vertex-edge incidence matrix for a
graph G .

Let x ∈ {0, 1}n be an “indicator vector” for some cut.

‖Bx‖22 = cut value

v1 v2 v3 v4



e12 1 -1 0 0
e13 1 0 -1 0
e14 0 0 0 0
e23 0 1 -1 0
e24 0 1 0 -1
e34 0 0 0 0

B

×




1
1
0
0
x

=





0
1
0
1
1
0



Graph Sparsification

Cut Sparsification (Benczúr, Karger ’96)

Let B ∈ R(n2)×n be the vertex-edge incidence matrix for a
graph G .

Let x ∈ {0, 1}n be an “indicator vector” for some cut.

‖Bx‖22 = cut value

v1 v2 v3 v4



e12 1 -1 0 0
e13 1 0 -1 0
e14 0 0 0 0
e23 0 1 -1 0
e24 0 1 0 -1
e34 0 0 0 0

B

×




1
1
0
0
x

=





0
1
0
1
1
0



Graph Sparsification

Cut Sparsification (Benczúr, Karger ’96)

Let B ∈ R(n2)×n be the vertex-edge incidence matrix for a
graph G .

Let x ∈ {0, 1}n be an “indicator vector” for some cut.

‖Bx‖22 = cut value

v1 v2 v3 v4



e12 1 -1 0 0
e13 1 0 -1 0
e14 0 0 0 0
e23 0 1 -1 0
e24 0 1 0 -1
e34 0 0 0 0

B

×




1
1
0
0
x

=





0
1
0
1
1
0



Graph Sparsification

Cut Sparsification (Benczúr, Karger ’96)

Let B ∈ R(n2)×n be the vertex-edge incidence matrix for a
graph G .

Let x ∈ {0, 1}n be an “indicator vector” for some cut.

‖Bx‖22 = cut value

v1 v2 v3 v4



e12 1 -1 0 0
e13 1 0 -1 0
e14 0 0 0 0
e23 0 1 -1 0
e24 0 1 0 -1
e34 0 0 0 0

B

×




1
1
0
0
x

=





0
1
0
1
1
0



Graph Sparsification

Cut Sparsification (Benczúr, Karger ’96)

Let B ∈ R(n2)×n be the vertex-edge incidence matrix for a
graph G .

Let x ∈ {0, 1}n be an “indicator vector” for some cut.

‖Bx‖22 = cut value

v1 v2 v3 v4



e12 1 -1 0 0
e13 1 0 -1 0
e14 0 0 0 0
e23 0 1 -1 0
e24 0 1 0 -1
e34 0 0 0 0

B

×




1
1
0
0
x

=





0
1
0
1
1
0



Graph Sparsification

Cut Sparsification (Benczúr, Karger ’96)

Let B ∈ R(n2)×n be the vertex-edge incidence matrix for a
graph G .

Let x ∈ {0, 1}n be an “indicator vector” for some cut.

‖Bx‖22 = cut value

v1 v2 v3 v4



e12 1 -1 0 0
e13 1 0 -1 0
e14 0 0 0 0
e23 0 1 -1 0
e24 0 1 0 -1
e34 0 0 0 0

B

×




1
1
0
0
x

=





0
1
0
1
1
0



Graph Sparsification

Cut Sparsification (Benczúr, Karger ’96)

Let B ∈ R(n2)×n be the vertex-edge incidence matrix for a
graph G .

Let x ∈ {0, 1}n be an “indicator vector” for some cut.

‖Bx‖22 = cut value

v1 v2 v3 v4



e12 1 -1 0 0
e13 1 0 -1 0
e14 0 0 0 0
e23 0 1 -1 0
e24 0 1 0 -1
e34 0 0 0 0

B

×




1
1
0
0
x

=





0
1
0
1
1
0



Graph Sparsification

Cut Sparsification (Benczúr, Karger ’96)

Let B ∈ R(n2)×n be the vertex-edge incidence matrix for a
graph G .

Let x ∈ {0, 1}n be an “indicator vector” for some cut.

‖Bx‖22 = cut value

v1 v2 v3 v4



e12 1 -1 0 0
e13 1 0 -1 0
e14 0 0 0 0
e23 0 1 -1 0
e24 0 1 0 -1
e34 0 0 0 0

B

×




1
1
0
0
x

=





0
1
0
1
1
0



Graph Sparsification

Cut Sparsification (Benczúr, Karger ’96)

Let B ∈ R(n2)×n be the vertex-edge incidence matrix for a
graph G .

Let x ∈ {0, 1}n be an “indicator vector” for some cut.

‖Bx‖22 = cut value

v1 v2 v3 v4



e12 1 -1 0 0
e13 1 0 -1 0
e14 0 0 0 0
e23 0 1 -1 0
e24 0 1 0 -1
e34 0 0 0 0

B

×




1
1
0
0
x

=





0
1
0
1
1
0



Graph Sparsification

Cut Sparsification (Benczúr, Karger ’96)

Let B ∈ R(n2)×n be the vertex-edge incidence matrix for a
graph G .

Let x ∈ {0, 1}n be an “indicator vector” for some cut.

‖Bx‖22 = cut value

v1 v2 v3 v4



e12 1 -1 0 0
e13 1 0 -1 0
e14 0 0 0 0
e23 0 1 -1 0
e24 0 1 0 -1
e34 0 0 0 0

B

×




1
1
0
0
x

=





0
1
0
1
1
0



Graph Sparsification

Cut Sparsification (Benczúr, Karger ’96)

Let B ∈ R(n2)×n be the vertex-edge incidence matrix for a
graph G .

Let x ∈ {0, 1}n be an “indicator vector” for some cut.

‖Bx‖22 = cut value

v1 v2 v3 v4



e12 1 -1 0 0
e13 1 0 -1 0
e14 0 0 0 0
e23 0 1 -1 0
e24 0 1 0 -1
e34 0 0 0 0

B

×




1
1
0
0
x

=





0
1
0
1
1
0



Graph Sparsification

Cut Sparsification (Benczúr, Karger ’96)

Let B ∈ R(n2)×n be the vertex-edge incidence matrix for a
graph G .

Let x ∈ {0, 1}n be an “indicator vector” for some cut.

‖Bx‖22 = cut value

v1 v2 v3 v4



e12 1 -1 0 0
e13 1 0 -1 0
e14 0 0 0 0
e23 0 1 -1 0
e24 0 1 0 -1
e34 0 0 0 0

B

×




1
1
0
0
x

=





0
1
0
1
1
0



Graph Sparsification

Cut Sparsification (Benczúr, Karger ’96)

Let B ∈ R(n2)×n be the vertex-edge incidence matrix for a
graph G .

Let x ∈ {0, 1}n be an “indicator vector” for some cut.

‖Bx‖22 = cut value

v1 v2 v3 v4



e12 1 -1 0 0
e13 1 0 -1 0
e14 0 0 0 0
e23 0 1 -1 0
e24 0 1 0 -1
e34 0 0 0 0

B

×




1
1
0
0
x

=





0
1
0
1
1
0



Graph Sparsification

Cut Sparsification (Benczúr, Karger ’96)

Let B ∈ R(n2)×n be the vertex-edge incidence matrix for a
graph G .

Let x ∈ {0, 1}n be an “indicator vector” for some cut.

‖Bx‖22 = cut value

v1 v2 v3 v4



e12 1 -1 0 0
e13 1 0 -1 0
e14 0 0 0 0
e23 0 1 -1 0
e24 0 1 0 -1
e34 0 0 0 0

B

×




1
1
0
0
x

=





0
1
0
1
1
0



Graph Sparsification

Cut Sparsification (Benczúr, Karger ’96) So, ‖Bx‖22 = cut value.

Goal

Find some B̃ such that, for all x ∈ {0, 1}n,

(1− ε)‖Bx‖22 ≤ ‖B̃x‖22 ≤ (1 + ε)‖Bx‖22

x>B̃>B̃x ≈ x>B>Bx.

L = B>B is the graph Laplacian.



Graph Sparsification

Cut Sparsification (Benczúr, Karger ’96) So, ‖Bx‖22 = cut value.

Goal

Find some B̃ such that, for all x ∈ {0, 1}n,

(1− ε)‖Bx‖22 ≤ ‖B̃x‖22 ≤ (1 + ε)‖Bx‖22

x>B̃>B̃x ≈ x>B>Bx.

L = B>B is the graph Laplacian.



Graph Sparsification

Cut Sparsification (Benczúr, Karger ’96) So, ‖Bx‖22 = cut value.

Goal

Find some B̃ such that, for all x ∈ {0, 1}n,

(1− ε)‖Bx‖22 ≤ ‖B̃x‖22 ≤ (1 + ε)‖Bx‖22

x>B̃>B̃x ≈ x>B>Bx.

L = B>B is the graph Laplacian.



Graph Sparsification

Spectral Sparsification (Spielman, Teng ’04)

Goal

Find some B̃ such that, for all x ∈ {0, 1}n Rn,

(1− ε)‖Bx‖22 ≤ ‖B̃x‖22 ≤ (1 + ε)‖Bx‖22

Applications: Anything cut sparsifiers can do, Laplacian system
solves, computing effective resistances, spectral clustering,
calculating random walk properties, etc.



Graph Sparsification

Spectral Sparsification (Spielman, Teng ’04)

Goal

Find some B̃ such that, for all x ∈ {0, 1}n Rn,

(1− ε)‖Bx‖22 ≤ ‖B̃x‖22 ≤ (1 + ε)‖Bx‖22

Applications: Anything cut sparsifiers can do, Laplacian system
solves, computing effective resistances, spectral clustering,
calculating random walk properties, etc.



Graph Sparsification

Again, recall that ‖y‖22 = y>y.

All Equivalent:

‖B̃x‖22 ≈ε ‖Bx‖22 x>L̃x ≈ε x>Lx x>L̃−1x ≈ε x>L−1x

Spectral matrix approximation also useful for approximate
regression, constructing preconditioners, low rank approximation,
RIP/compressed sensing, etc.



Graph Sparsification

Again, recall that ‖y‖22 = y>y.

All Equivalent:

‖B̃x‖22 ≈ε ‖Bx‖22 x>L̃x ≈ε x>Lx x>L̃−1x ≈ε x>L−1x

Spectral matrix approximation also useful for approximate
regression, constructing preconditioners, low rank approximation,
RIP/compressed sensing, etc.



Graph Sparsification

Again, recall that ‖y‖22 = y>y.

All Equivalent:

‖B̃x‖22 ≈ε ‖Bx‖22 x>L̃x ≈ε x>Lx x>L̃−1x ≈ε x>L−1x

Spectral matrix approximation also useful for approximate
regression, constructing preconditioners, low rank approximation,
RIP/compressed sensing, etc.



Graph Sparsification

Again, recall that ‖y‖22 = y>y.

All Equivalent:

‖B̃x‖22 ≈ε ‖Bx‖22 x>L̃x ≈ε x>Lx x>L̃−1x ≈ε x>L−1x

Spectral matrix approximation also useful for approximate
regression, constructing preconditioners, low rank approximation,
RIP/compressed sensing, etc.



Graph Sparsification

Again, recall that ‖y‖22 = y>y.

All Equivalent:

‖B̃x‖22 ≈ε ‖Bx‖22 x>L̃x ≈ε x>Lx x>L̃−1x ≈ε x>L−1x

Spectral matrix approximation also useful for approximate
regression, constructing preconditioners, low rank approximation,
RIP/compressed sensing, etc.



Graph Sparsification

How are sparsifiers constructed?

Randomly sample edges (i.e. rows from B):



Graph Sparsification

How are sparsifiers constructed?

Randomly sample edges (i.e. rows from B):



Graph Sparsification

How are sparsifiers constructed?

Randomly sample edges (i.e. rows from B):



Graph Sparsification

How are sparsifiers constructed?

Randomly sample edges (i.e. rows from B):



Graph Sparsification

How are sparsifiers constructed?

Randomly sample edges (i.e. rows from B):



Graph Sparsification

How are sparsifiers constructed?

Randomly sample edges (i.e. rows from B):



Graph Sparsification

How are sparsifiers constructed?

Randomly sample edges (i.e. rows from B):



Graph Sparsification

How are sparsifiers constructed?

Randomly sample edges (i.e. rows from B):



Graph Sparsification

How are sparsifiers constructed?

Randomly sample edges (i.e. rows from B):



Graph Sparsification

How are sparsifiers constructed?

Sampling probabilities:

Connectivity for cut sparsifiers [Benczúr, Karger ’96], [Fung,
Hariharan, Harvey, Panigrahi ’11].

Effective resistances (i.e statistical leverage scores) for
spectral sparsifiers [Spielman, Srivastava ’08].

Actually oversample: by (effective resistance)× O(log n).
Gives sparsifiers with O(n log n) edges – reducing from O(n2).



Graph Sparsification

How are sparsifiers constructed?

Sampling probabilities:

Connectivity for cut sparsifiers [Benczúr, Karger ’96], [Fung,
Hariharan, Harvey, Panigrahi ’11].

Effective resistances (i.e statistical leverage scores) for
spectral sparsifiers [Spielman, Srivastava ’08].

Actually oversample: by (effective resistance)× O(log n).
Gives sparsifiers with O(n log n) edges – reducing from O(n2).



Graph Sparsification

How are sparsifiers constructed?

Sampling probabilities:

Connectivity for cut sparsifiers [Benczúr, Karger ’96], [Fung,
Hariharan, Harvey, Panigrahi ’11].

Effective resistances (i.e statistical leverage scores) for
spectral sparsifiers [Spielman, Srivastava ’08].

Actually oversample: by (effective resistance)× O(log n).
Gives sparsifiers with O(n log n) edges – reducing from O(n2).



Graph Sparsification

How are sparsifiers constructed?

Sampling probabilities:

Connectivity for cut sparsifiers [Benczúr, Karger ’96], [Fung,
Hariharan, Harvey, Panigrahi ’11].

Effective resistances (i.e statistical leverage scores) for
spectral sparsifiers [Spielman, Srivastava ’08].

Actually oversample: by (effective resistance)× O(log n).
Gives sparsifiers with O(n log n) edges – reducing from O(n2).



Graph Sparsification

How are sparsifiers constructed?

Sampling probabilities:

Connectivity for cut sparsifiers [Benczúr, Karger ’96], [Fung,
Hariharan, Harvey, Panigrahi ’11].

Effective resistances (i.e statistical leverage scores) for
spectral sparsifiers [Spielman, Srivastava ’08].

Actually oversample: by (effective resistance)× O(log n/ε2).
Gives sparsifiers with O(n log n/ε2) edges – reducing from O(n2).



Motivation

Makes sense to compress a graph, but what if we cannot
afford to store it in the first place?

Is it possible to “sketch” a graph in small space by
maintaining a sparsifier or some other representation?



Overview

1 Graph Sparsification

2 Semi-Streaming Computational Model

3 Prior Work Review

4 Our Algorithm
Recover High Effective Resistance Edges
Sampling by Effective Resistance
Recursive Sparsification [Li, Miller, Peng ’12]



Semi-Streaming Model

Introduced by Feigenbaum, Kannan, McGregor, Suri, Zhang ’05.

Space allowance n logc(n).

Receive data via edge updates.

Minimum spanning tree, maximal matching, graph
connectivity, etc.



Semi-Streaming Model

Introduced by Feigenbaum, Kannan, McGregor, Suri, Zhang ’05.

Space allowance n logc(n).

Receive data via edge updates.

Minimum spanning tree, maximal matching, graph
connectivity, etc.



Semi-Streaming Model

Introduced by Feigenbaum, Kannan, McGregor, Suri, Zhang ’05.

Space allowance n logc(n).

Receive data via edge updates.

Minimum spanning tree, maximal matching, graph
connectivity, etc.



Semi-Streaming Model

Introduced by Feigenbaum, Kannan, McGregor, Suri, Zhang ’05.

Space allowance n logc(n).

Receive data via edge updates.

Minimum spanning tree, maximal matching, graph
connectivity, etc.



Semi-Streaming Model

Introduced by Feigenbaum, Kannan, McGregor, Suri, Zhang ’05.

Space allowance n logc(n).

Receive data via edge updates.

Minimum spanning tree, maximal matching, graph
connectivity, etc.



Semi-Streaming Model

Introduced by Feigenbaum, Kannan, McGregor, Suri, Zhang ’05.

Space allowance n logc(n).

Receive data via edge updates.

Minimum spanning tree, maximal matching, graph
connectivity, etc.



Semi-Streaming Model

Introduced by Feigenbaum, Kannan, McGregor, Suri, Zhang ’05.

Space allowance n logc(n).

Receive data via edge updates.

Minimum spanning tree, maximal matching, graph
connectivity, etc.



Semi-Streaming Model

Introduced by Feigenbaum, Kannan, McGregor, Suri, Zhang ’05.

Space allowance n logc(n).

Receive data via edge updates.

Minimum spanning tree, maximal matching, graph
connectivity, etc.



Semi-Streaming Model

Introduced by Feigenbaum, Kannan, McGregor, Suri, Zhang ’05.

Space allowance n logc(n).

Receive data via edge updates.

Minimum spanning tree, maximal matching, graph
connectivity, etc.



Semi-Streaming Model

Introduced by Feigenbaum, Kannan, McGregor, Suri, Zhang ’05.

Space allowance n logc(n).

Receive data via edge updates.

Minimum spanning tree, maximal matching, graph
connectivity, etc.



Semi-Streaming Model

Introduced by Feigenbaum, Kannan, McGregor, Suri, Zhang ’05.

Space allowance n logc(n).

Receive data via edge updates.

Minimum spanning tree, maximal matching, graph
connectivity, etc.



Overview

1 Graph Sparsification

2 Semi-Streaming Computational Model

3 Prior Work Review

4 Our Algorithm
Recover High Effective Resistance Edges
Sampling by Effective Resistance
Recursive Sparsification [Li, Miller, Peng ’12]



Prior Work

[Ahn, Guha ’09], [Kelner, Levin ’11]: Cut and spectral
sparsifiers in insertion only streams.

[Ahn, Guha, McGregor ’12a]: Introduced linear sketching
for graphs. This breakthrough work is the first to handle edge
deletions for graph problems. Connectivity, MST, multi-pass
sparsifiers.

[Ahn, Guha, McGregor ’12b], [Goel, Kapralov, Post ’12]:
Extend techniques to get single pass cut sparsifiers.

[Ahn, Guha, McGregor ’13]: Dynamic spectral sparsifiers,
but O(n5/3) space.

[Kapralov, Woodruff ’14]: Dynamic spectral sparsifiers, but
multi-pass.

Our result: 1-Pass dynamic spectral sparsifiers in Õ(n) space.



Prior Work

[Ahn, Guha ’09], [Kelner, Levin ’11]: Cut and spectral
sparsifiers in insertion only streams.

[Ahn, Guha, McGregor ’12a]: Introduced linear sketching
for graphs. This breakthrough work is the first to handle edge
deletions for graph problems. Connectivity, MST, multi-pass
sparsifiers.

[Ahn, Guha, McGregor ’12b], [Goel, Kapralov, Post ’12]:
Extend techniques to get single pass cut sparsifiers.

[Ahn, Guha, McGregor ’13]: Dynamic spectral sparsifiers,
but O(n5/3) space.

[Kapralov, Woodruff ’14]: Dynamic spectral sparsifiers, but
multi-pass.

Our result: 1-Pass dynamic spectral sparsifiers in Õ(n) space.



Prior Work

[Ahn, Guha ’09], [Kelner, Levin ’11]: Cut and spectral
sparsifiers in insertion only streams.

[Ahn, Guha, McGregor ’12a]: Introduced linear sketching
for graphs. This breakthrough work is the first to handle edge
deletions for graph problems. Connectivity, MST, multi-pass
sparsifiers.

[Ahn, Guha, McGregor ’12b], [Goel, Kapralov, Post ’12]:
Extend techniques to get single pass cut sparsifiers.

[Ahn, Guha, McGregor ’13]: Dynamic spectral sparsifiers,
but O(n5/3) space.

[Kapralov, Woodruff ’14]: Dynamic spectral sparsifiers, but
multi-pass.

Our result: 1-Pass dynamic spectral sparsifiers in Õ(n) space.



Prior Work

[Ahn, Guha ’09], [Kelner, Levin ’11]: Cut and spectral
sparsifiers in insertion only streams.

[Ahn, Guha, McGregor ’12a]: Introduced linear sketching
for graphs. This breakthrough work is the first to handle edge
deletions for graph problems. Connectivity, MST, multi-pass
sparsifiers.

[Ahn, Guha, McGregor ’12b], [Goel, Kapralov, Post ’12]:
Extend techniques to get single pass cut sparsifiers.

[Ahn, Guha, McGregor ’13]: Dynamic spectral sparsifiers,
but O(n5/3) space.

[Kapralov, Woodruff ’14]: Dynamic spectral sparsifiers, but
multi-pass.

Our result: 1-Pass dynamic spectral sparsifiers in Õ(n) space.



Prior Work

[Ahn, Guha ’09], [Kelner, Levin ’11]: Cut and spectral
sparsifiers in insertion only streams.

[Ahn, Guha, McGregor ’12a]: Introduced linear sketching
for graphs. This breakthrough work is the first to handle edge
deletions for graph problems. Connectivity, MST, multi-pass
sparsifiers.

[Ahn, Guha, McGregor ’12b], [Goel, Kapralov, Post ’12]:
Extend techniques to get single pass cut sparsifiers.

[Ahn, Guha, McGregor ’13]: Dynamic spectral sparsifiers,
but O(n5/3) space.

[Kapralov, Woodruff ’14]: Dynamic spectral sparsifiers, but
multi-pass.

Our result: 1-Pass dynamic spectral sparsifiers in Õ(n) space.



Prior Work

[Ahn, Guha ’09], [Kelner, Levin ’11]: Cut and spectral
sparsifiers in insertion only streams.

[Ahn, Guha, McGregor ’12a]: Introduced linear sketching
for graphs. This breakthrough work is the first to handle edge
deletions for graph problems. Connectivity, MST, multi-pass
sparsifiers.

[Ahn, Guha, McGregor ’12b], [Goel, Kapralov, Post ’12]:
Extend techniques to get single pass cut sparsifiers.

[Ahn, Guha, McGregor ’13]: Dynamic spectral sparsifiers,
but O(n5/3) space.

[Kapralov, Woodruff ’14]: Dynamic spectral sparsifiers, but
multi-pass.

Our result: 1-Pass dynamic spectral sparsifiers in Õ(n) space.



Overview

1 Graph Sparsification

2 Semi-Streaming Computational Model

3 Prior Work Review

4 Our Algorithm
Recover High Effective Resistance Edges
Sampling by Effective Resistance
Recursive Sparsification [Li, Miller, Peng ’12]



Why is the dynamic case hard?

Graph:

Sketch:



Why is the dynamic case hard?

Graph:

Sketch:



Why is the dynamic case hard?

Graph:

Sketch:



Why is the dynamic case hard?

Graph:

Sketch:



Why is the dynamic case hard?

How do we get around this issue?
Take a cue from standard streaming algorithms:

Linear Sketching!

Does not depend on insertion/deletion order.



Why is the dynamic case hard?

How do we get around this issue?
Take a cue from standard streaming algorithms:

Linear Sketching!

Does not depend on insertion/deletion order.



Why is the dynamic case hard?

How do we get around this issue?
Take a cue from standard streaming algorithms:

Linear Sketching!

Does not depend on insertion/deletion order.



Why is the dynamic case hard?

How do we get around this issue?
Take a cue from standard streaming algorithms:

Linear Sketching!

Does not depend on insertion/deletion order.



Why is the dynamic case hard?

How do we get around this issue?
Take a cue from standard streaming algorithms:

Linear Sketching!

Does not depend on insertion/deletion order.



Why is the dynamic case hard?

How do we get around this issue?
Take a cue from standard streaming algorithms:

Linear Sketching!

Does not depend on insertion/deletion order.



Why is the dynamic case hard?

How do we get around this issue?
Take a cue from standard streaming algorithms:

Linear Sketching!

Does not depend on insertion/deletion order.



Why is the dynamic case hard?

How do we get around this issue?
Take a cue from standard streaming algorithms:

Linear Sketching!

Does not depend on insertion/deletion order.



Why is the dynamic case hard?

How do we get around this issue?
Take a cue from standard streaming algorithms:

Linear Sketching!

Does not depend on insertion/deletion order.



Why is the dynamic case hard?

How do we get around this issue?
Take a cue from standard streaming algorithms:

Linear Sketching!

Does not depend on insertion/deletion order.



Why is the dynamic case hard?

How do we get around this issue?
Take a cue from standard streaming algorithms:

Linear Sketching!

Does not depend on insertion/deletion order.



Why is the dynamic case hard?

How do we get around this issue?
Take a cue from standard streaming algorithms:

Linear Sketching!

Does not depend on insertion/deletion order.



Why is the dynamic case hard?

How do we get around this issue?
Take a cue from standard streaming algorithms:

Linear Sketching!

Does not depend on insertion/deletion order.



Algorithm Overview

High level strategy:

1 Assume we have a coarse sparsifier – i.e. (1± 1
2)

approximation B̃>B̃ = L̃.

2 Show procedure for recovering high effective resistance edges

3 Use black-box to sample edges by effective resistance



Algorithm Overview

High level strategy:

1 Assume we have a coarse sparsifier – i.e. (1± 1
2)

approximation B̃>B̃ = L̃.

2 Show procedure for recovering high effective resistance edges

3 Use black-box to sample edges by effective resistance



Algorithm Overview

High level strategy:

1 Assume we have a coarse sparsifier – i.e. (1± 1
2)

approximation B̃>B̃ = L̃.

2 Show procedure for recovering high effective resistance edges

3 Use black-box to sample edges by effective resistance



Algorithm Overview

High level strategy:

1 Assume we have a coarse sparsifier – i.e. (1± 1
2)

approximation B̃>B̃ = L̃.

2 Show procedure for recovering high effective resistance edges

3 Use black-box to sample edges by effective resistance



Overview

1 Graph Sparsification

2 Semi-Streaming Computational Model

3 Prior Work Review

4 Our Algorithm
Recover High Effective Resistance Edges
Sampling by Effective Resistance
Recursive Sparsification [Li, Miller, Peng ’12]



Linear Sketching

Sketching is an extremely popular tool for compressing vectors.

Used for approximating:

Distinct elements

Vector norms

Entropy estimation

Really any streaming problem...



Linear Sketching

Sketching is an extremely popular tool for compressing vectors.

Used for approximating:

Distinct elements

Vector norms

Entropy estimation

Really any streaming problem...



Linear Sketching

Sketching is an extremely popular tool for compressing vectors.

Used for approximating:

Distinct elements

Vector norms

Entropy estimation

Really any streaming problem...



Linear Sketching

Sketching is an extremely popular tool for compressing vectors.

Used for approximating:

Distinct elements

Vector norms

Entropy estimation

Really any streaming problem...



Linear Sketching

Sketching is an extremely popular tool for compressing vectors.

Used for approximating:

Distinct elements

Vector norms

Entropy estimation

Really any streaming problem...



Graph Sketching

Analyzing Graph Structure via Linear Measurements,
Ahn, Guha, McGregor 2012

Use a sparse recovery sketch.



Graph Sketching

Analyzing Graph Structure via Linear Measurements,
Ahn, Guha, McGregor 2012

Use a sparse recovery sketch.



Graph Sketching

Analyzing Graph Structure via Linear Measurements,
Ahn, Guha, McGregor 2012

Use a sparse recovery sketch.



Graph Sketching

Analyzing Graph Structure via Linear Measurements,
Ahn, Guha, McGregor 2012

Use a sparse recovery sketch.



Graph Sketching

Prior Work:

Apply sparse recovery sketches to the columns of B.

Recover cut information → k-connectivity, cut sparsifiers!

Our Approach:

Apply to right transformed B.



Graph Sketching

Prior Work:

Apply sparse recovery sketches to the columns of B.

Recover cut information → k-connectivity, cut sparsifiers!

Our Approach:

Apply to right transformed B.



Graph Sketching

Prior Work:

Apply sparse recovery sketches to the columns of B.

Recover cut information → k-connectivity, cut sparsifiers!

Our Approach:

Apply to right transformed B.



Graph Sketching

Prior Work:

Apply sparse recovery sketches to the columns of B.

Recover cut information → k-connectivity, cut sparsifiers!

Our Approach:

Apply to right transformed B.



Graph Sketching

Prior Work:

Apply sparse recovery sketches to the columns of B.

Recover cut information → k-connectivity, cut sparsifiers!

Our Approach:

Apply to right transformed B.



Graph Sketching

Prior Work:

Apply sparse recovery sketches to the columns of B.

Recover cut information → k-connectivity, cut sparsifiers!

Our Approach:

Apply to right transformed B.



Graph Sketching

Prior Work:

Apply sparse recovery sketches to the columns of B.

Recover cut information → k-connectivity, cut sparsifiers!

Our Approach:

Apply to right transformed B.



Graph Sketching

Prior Work:

Apply sparse recovery sketches to the columns of B.

Recover cut information → k-connectivity, cut sparsifiers!

Our Approach:

Apply to right transformed B.



Recovering High Resistance Edges

We are still going to sample by effective resistance.

Treat graph as resistor network, each edge has resistance 1.

Flow 1 unit of current from node i to j and measure voltage
drop between the nodes.



Recovering High Resistance Edges

We are still going to sample by effective resistance.

Treat graph as resistor network, each edge has resistance 1.

Flow 1 unit of current from node i to j and measure voltage
drop between the nodes.



Recovering High Resistance Edges

We are still going to sample by effective resistance.

Treat graph as resistor network, each edge has resistance 1.

Flow 1 unit of current from node i to j and measure voltage
drop between the nodes.



Recovering High Resistance Edges

Using standard V = IR equations:

If

xe =


1
0
0
-1
0

, e’s effective resistance is τe = x>e L−1xe .



Recovering High Resistance Edges

Using standard V = IR equations:

If

xe =


1
0
0
-1
0

, e’s effective resistance is τe = x>e L−1xe .



Recovering High Resistance Edges

Using standard V = IR equations:

If

xe =


1
0
0
-1
0

, e’s effective resistance is τe = x>e L−1xe .



Recovering High Resistance Edges



Recovering High Resistance Edges



Recovering High Resistance Edges



Recovering High Resistance Edges



Recovering High Resistance Edges



Recovering High Resistance Edges



Recovering High Resistance Edges



Recovering High Resistance Edges

Effective resistance of edge e is τe = x>e L−1xe .
Alternatively, τe is the eth entry in the vector:

BL−1xe

AND

τe = x>e L−1xe = x>e (L−1)>B>BL−1xe = ‖BL−1xe‖22



Recovering High Resistance Edges

Effective resistance of edge e is τe = x>e L−1xe .
Alternatively, τe is the eth entry in the vector:

BL−1xe

AND

τe = x>e L−1xe = x>e (L−1)>B>BL−1xe = ‖BL−1xe‖22



Recovering High Resistance Edges

Effective resistance of edge e is τe = x>e L−1xe .
Alternatively, τe is the eth entry in the vector:

BL−1xe

AND

τe = x>e L−1xe = x>e (L−1)>B>BL−1xe = ‖BL−1xe‖22



Recovering High Resistance Edges

Effective Resistance: BL−1xe



Recovering High Resistance Edges

Effective Resistance: BL−1xe



Recovering High Resistance Edges

Effective Resistance: BL−1xe



Recovering High Resistance Edges

Effective Resistance: BL−1xe



Recovering High Resistance Edges

Full sketching procedure:



Recovering High Resistance Edges

Full sketching procedure:



Recovering High Resistance Edges

Full sketching procedure:



Recovering High Resistance Edges

Full sketching procedure:



Recovering High Resistance Edges

Full sketching procedure:



Recovering High Resistance Edges

Full sketching procedure:



Recovering High Resistance Edges

Sparse recovery specifics: BL−1xe

`2 Heavy Hitters [GLPS10]:

Sketch poly(n) vector in polylog(n) space.

Extract any element who’s square is a O(1/ log n) fraction of
the vector’s squared norm.



Recovering High Resistance Edges

Sparse recovery specifics: BL−1xe

`2 Heavy Hitters [GLPS10]:

Sketch poly(n) vector in polylog(n) space.

Extract any element who’s square is a O(1/ log n) fraction of
the vector’s squared norm.



Recovering High Resistance Edges

Putting it all together: BL−1xe

1 Sketch (Πheavy hitters)B in n logc n space.

2 Compute (Πheavy hitters)BL̃−1.

3 For every possible edge e, compute (Πheavy hitters)BL̃−1xe

4 Extract heavy hitters from the vector, check if eth entry is one.

BL̃−1xe(e)2

‖BL̃−1xe‖22
≈ τ2e
τe

= τe

So, as long as τe > O(1/ log n), we will recover the edge!



Recovering High Resistance Edges

Putting it all together: BL−1xe

1 Sketch (Πheavy hitters)B in n logc n space.

2 Compute (Πheavy hitters)BL̃−1.

3 For every possible edge e, compute (Πheavy hitters)BL̃−1xe

4 Extract heavy hitters from the vector, check if eth entry is one.

BL̃−1xe(e)2

‖BL̃−1xe‖22
≈ τ2e
τe

= τe

So, as long as τe > O(1/ log n), we will recover the edge!



Recovering High Resistance Edges

Putting it all together: BL−1xe

1 Sketch (Πheavy hitters)B in n logc n space.

2 Compute (Πheavy hitters)BL̃−1.

3 For every possible edge e, compute (Πheavy hitters)BL̃−1xe

4 Extract heavy hitters from the vector, check if eth entry is one.

BL̃−1xe(e)2

‖BL̃−1xe‖22
≈ τ2e
τe

= τe

So, as long as τe > O(1/ log n), we will recover the edge!



Recovering High Resistance Edges

Putting it all together: BL−1xe

1 Sketch (Πheavy hitters)B in n logc n space.

2 Compute (Πheavy hitters)BL̃−1.

3 For every possible edge e, compute (Πheavy hitters)BL̃−1xe

4 Extract heavy hitters from the vector, check if eth entry is one.

BL̃−1xe(e)2

‖BL̃−1xe‖22
≈ τ2e
τe

= τe

So, as long as τe > O(1/ log n), we will recover the edge!



Recovering High Resistance Edges

Putting it all together: BL−1xe

1 Sketch (Πheavy hitters)B in n logc n space.

2 Compute (Πheavy hitters)BL̃−1.

3 For every possible edge e, compute (Πheavy hitters)BL̃−1xe

4 Extract heavy hitters from the vector, check if eth entry is one.

BL̃−1xe(e)2

‖BL̃−1xe‖22
≈ τ2e
τe

= τe

So, as long as τe > O(1/ log n), we will recover the edge!



Overview

1 Graph Sparsification

2 Semi-Streaming Computational Model

3 Prior Work Review

4 Our Algorithm
Recover High Effective Resistance Edges
Sampling by Effective Resistance
Recursive Sparsification [Li, Miller, Peng ’12]



Sampling in the Streaming Model

How about edges with lower effective resistance? Sketch:

BL−1xe



Sampling in the Streaming Model

How about edges with lower effective resistance? Sketch:

BL−1xe



Sampling in the Streaming Model

How about edges with lower effective resistance? Sketch:

BL−1xe



Sampling in the Streaming Model

How about edges with lower effective resistance? Sketch:

BL−1xe



Sampling in the Streaming Model

How about edges with lower effective resistance? Sketch:

BL−1xe



Sampling in the Streaming Model

‖B1/2L̃−1xe‖22 ≈ 1
2 × ‖BL̃−1xe‖22

HOWEVER, if e makes it through the sampling procedure:

B1/2L̃−1xe(e)2 = BL̃−1xe(e)2

So,

Ratio for heavy-hitters =
B1/2L̃−1xe(e)2

‖B1/2L̃−1xe‖22
≈ 2× BL̃−1xe(e)2

‖BL̃−1xe‖22



Sampling in the Streaming Model

‖B1/2L̃−1xe‖22 ≈ 1
2 × ‖BL̃−1xe‖22

HOWEVER, if e makes it through the sampling procedure:

B1/2L̃−1xe(e)2 = BL̃−1xe(e)2

So,

Ratio for heavy-hitters =
B1/2L̃−1xe(e)2

‖B1/2L̃−1xe‖22
≈ 2× BL̃−1xe(e)2

‖BL̃−1xe‖22



Sampling in the Streaming Model

‖B1/2L̃−1xe‖22 ≈ 1
2 × ‖BL̃−1xe‖22

HOWEVER, if e makes it through the sampling procedure:

B1/2L̃−1xe(e)2 = BL̃−1xe(e)2

So,

Ratio for heavy-hitters =
B1/2L̃−1xe(e)2

‖B1/2L̃−1xe‖22
≈ 2× BL̃−1xe(e)2

‖BL̃−1xe‖22



Sampling in the Streaming Model

BL−1xe
How about edges with lower effective resistance?

First level: τe > 1/ log n with probability 1.

Second level: τe > 1/2 log n with probability 1/2.

Third level: τe > 1/4 log n with probability 1/4.

Forth level: τe > 1/8 log n with probability 1/8.

...

So, we can sample every edge by (effective resistance)× O(log n).



Sampling in the Streaming Model

BL−1xe
How about edges with lower effective resistance?

First level: τe > 1/ log n with probability 1.

Second level: τe > 1/2 log n with probability 1/2.

Third level: τe > 1/4 log n with probability 1/4.

Forth level: τe > 1/8 log n with probability 1/8.

...

So, we can sample every edge by (effective resistance)× O(log n).



Sampling in the Streaming Model

BL−1xe
How about edges with lower effective resistance?

First level: τe > 1/ log n with probability 1.

Second level: τe > 1/2 log n with probability 1/2.

Third level: τe > 1/4 log n with probability 1/4.

Forth level: τe > 1/8 log n with probability 1/8.

...

So, we can sample every edge by (effective resistance)× O(log n).



Sampling in the Streaming Model

BL−1xe
How about edges with lower effective resistance?

First level: τe > 1/ log n with probability 1.

Second level: τe > 1/2 log n with probability 1/2.

Third level: τe > 1/4 log n with probability 1/4.

Forth level: τe > 1/8 log n with probability 1/8.

...

So, we can sample every edge by (effective resistance)× O(log n).



Sampling in the Streaming Model

BL−1xe
How about edges with lower effective resistance?

First level: τe > 1/ log n with probability 1.

Second level: τe > 1/2 log n with probability 1/2.

Third level: τe > 1/4 log n with probability 1/4.

Forth level: τe > 1/8 log n with probability 1/8.

...

So, we can sample every edge by (effective resistance)× O(log n).



Sampling in the Streaming Model

BL−1xe
How about edges with lower effective resistance?

First level: τe > 1/ log n with probability 1.

Second level: τe > 1/2 log n with probability 1/2.

Third level: τe > 1/4 log n with probability 1/4.

Forth level: τe > 1/8 log n with probability 1/8.

...

So, we can sample every edge by (effective resistance)× O(log n).



Sampling in the Streaming Model

BL−1xe
How about edges with lower effective resistance?

First level: τe > 1/ log n with probability 1.

Second level: τe > 1/2 log n with probability 1/2.

Third level: τe > 1/4 log n with probability 1/4.

Forth level: τe > 1/8 log n with probability 1/8.

...

So, we can sample every edge by (effective resistance)× O(log n).



Sampling in the Streaming Model

Caveat!

Performing this sampling while processing edges in the stream
requires O(log n) random bits per edge. O(n2 log n) bits in total.

Fixed using a pseudorandom number generator.



Sampling in the Streaming Model

Caveat!

Performing this sampling while processing edges in the stream
requires O(log n) random bits per edge. O(n2 log n) bits in total.

Fixed using a pseudorandom number generator.



Overview

1 Graph Sparsification

2 Semi-Streaming Computational Model

3 Prior Work Review

4 Our Algorithm
Recover High Effective Resistance Edges
Sampling by Effective Resistance
Recursive Sparsification [Li, Miller, Peng ’12]



Sparsifer Chain

Final Piece [Li, Miller, Peng ’12]

We need a constant error sparsifier to get a (1± ε) sparsifier.

First graph can be sparsified by constructing an expander.



Sparsifer Chain

Final Piece [Li, Miller, Peng ’12]

We need a constant error sparsifier to get a (1± ε) sparsifier.

First graph can be sparsified by constructing an expander.



Sparsifer Chain

Final Piece [Li, Miller, Peng ’12]

We need a constant error sparsifier to get a (1± ε) sparsifier.

First graph can be sparsified by constructing an expander.



Sparsifer Chain

Final Piece [Li, Miller, Peng ’12]

We need a constant error sparsifier to get a (1± ε) sparsifier.

First graph can be sparsified by constructing an expander.



Sparsifer Chain

Final Piece [Li, Miller, Peng ’12]

We need a constant error sparsifier to get a (1± ε) sparsifier.

First graph can be sparsified by constructing an expander.



Sparsifer Chain

Actual Implementation:
We add an identity matrix to B instead of complete graph edges.

No need for an expander – the identity is already sparse!



Sparsifer Chain

Actual Implementation:
We add an identity matrix to B instead of complete graph edges.

No need for an expander – the identity is already sparse!



Sparsifer Chain

Actual Implementation:
We add an identity matrix to B instead of complete graph edges.

No need for an expander – the identity is already sparse!



Sparsifer Chain

Full Procedure:



Sparsifier Chain

Number of levels depends on log condition number of B, which is
bounded for an unweighted graph.

Works for any matrix!

To work for a general matrix B and general quadratic form
B>B we need:

A row dictionary to test every possible entry.
A condition number bound.

Generically, storing a compression of B>B takes Ω(n2) space.
Avoid lower bound simply when the row dictionary is poly(n)
size.



Sparsifier Chain

Number of levels depends on log condition number of B, which is
bounded for an unweighted graph.

Works for any matrix!

To work for a general matrix B and general quadratic form
B>B we need:

A row dictionary to test every possible entry.
A condition number bound.

Generically, storing a compression of B>B takes Ω(n2) space.
Avoid lower bound simply when the row dictionary is poly(n)
size.



Sparsifier Chain

Number of levels depends on log condition number of B, which is
bounded for an unweighted graph.

Works for any matrix!

To work for a general matrix B and general quadratic form
B>B we need:

A row dictionary to test every possible entry.
A condition number bound.

Generically, storing a compression of B>B takes Ω(n2) space.
Avoid lower bound simply when the row dictionary is poly(n)
size.



Sparsifier Chain

Number of levels depends on log condition number of B, which is
bounded for an unweighted graph.

Works for any matrix!

To work for a general matrix B and general quadratic form
B>B we need:

A row dictionary to test every possible entry.
A condition number bound.

Generically, storing a compression of B>B takes Ω(n2) space.
Avoid lower bound simply when the row dictionary is poly(n)
size.



Sparsifier Chain

Number of levels depends on log condition number of B, which is
bounded for an unweighted graph.

Works for any matrix!

To work for a general matrix B and general quadratic form
B>B we need:

A row dictionary to test every possible entry.
A condition number bound.

Generically, storing a compression of B>B takes Ω(n2) space.
Avoid lower bound simply when the row dictionary is poly(n)
size.



Using a Pseudorandom Number Generator

Recall

Requires O(n2 log n) bits in total. We need to store these bits
persistently.



Using a Pseudorandom Number Generator

Nisan’s PRG [Nisan ’92]

Theorem

Any algorithm running in S space and using R random bits can be
simulated using a PRG that uses a seed of O(S logR) truly
random bits.

1 The probability of any outcome changes by at most 2−O(S).

2 Each random bit can be generated in S logR time.

We have S = O(n logc n) and R = O(n2 log n), so S logR is just
O(n logc n) truly random bits for our seed.



Using a Pseudorandom Number Generator

Nisan’s PRG [Nisan ’92]

Theorem

Any algorithm running in S space and using R random bits can be
simulated using a PRG that uses a seed of O(S logR) truly
random bits.

1 The probability of any outcome changes by at most 2−O(S).

2 Each random bit can be generated in S logR time.

We have S = O(n logc n) and R = O(n2 log n), so S logR is just
O(n logc n) truly random bits for our seed.



Using a Pseudorandom Number Generator

Nisan’s PRG [Nisan ’92]
But out algorithm doesn’t run in S space as described!

Solution: [Indyk ’00] Our algorithm can run in O(n logc n) if our
edges come in order → we can throw away hash bits as we go.



Using a Pseudorandom Number Generator

Nisan’s PRG [Nisan ’92]
But out algorithm doesn’t run in S space as described!

Solution: [Indyk ’00] Our algorithm can run in O(n logc n) if our
edges come in order → we can throw away hash bits as we go.



Using a Pseudorandom Number Generator

Nisan’s PRG [Nisan ’92]
But out algorithm doesn’t run in S space as described!

Solution: [Indyk ’00] Our algorithm can run in O(n logc n) if our
edges come in order → we can throw away hash bits as we go.



Using a Pseudorandom Number Generator

Nisan’s PRG [Nisan ’92]
So, we can apply the PRG to our algorithm assuming ordered
insertions/deletions.

But, since the algorithm is linear, the order in which edges are
received does not matter. Thus, the algorithm works for any edge
stream.

Unfortunately, every time we need a random has bit, we require
S logR = O(n logc n) computation → slow update time.



Using a Pseudorandom Number Generator

Nisan’s PRG [Nisan ’92]
So, we can apply the PRG to our algorithm assuming ordered
insertions/deletions.

But, since the algorithm is linear, the order in which edges are
received does not matter. Thus, the algorithm works for any edge
stream.

Unfortunately, every time we need a random has bit, we require
S logR = O(n logc n) computation → slow update time.



Using a Pseudorandom Number Generator

Nisan’s PRG [Nisan ’92]
So, we can apply the PRG to our algorithm assuming ordered
insertions/deletions.

But, since the algorithm is linear, the order in which edges are
received does not matter. Thus, the algorithm works for any edge
stream.

Unfortunately, every time we need a random has bit, we require
S logR = O(n logc n) computation → slow update time.



Conclusion

Thank you!


	Graph Sparsification
	Semi-Streaming Computational Model
	Prior Work Review
	Our Algorithm
	Recover High Effective Resistance Edges
	Sampling by Effective Resistance
	Recursive Sparsification [Li, Miller, Peng '12]


