
ridge leverage scores for
low-rank matrix approximation

Michael B. Cohen, Cameron Musco, Christopher Musco

Massachusetts Institute of Technology

0

other resources

“Ridge Leverage Scores for Low-Approximation” =
“Dimensionality Reduction for k-Means Clustering and

Low-Rank Approximation”

+
“Uniform Sampling for Matrix Approximation”

Papers and slides available at chrismusco.com.

1

chrismusco.com

other resources

“Ridge Leverage Scores for Low-Approximation” =
“Dimensionality Reduction for k-Means Clustering and

Low-Rank Approximation”

+
“Uniform Sampling for Matrix Approximation”

Papers and slides available at chrismusco.com.

1

chrismusco.com

how to deal with huge data sets?

n
 d

at
a

po
in

ts
!

d features!

Ã!A!

d’ << d features!

∙ computing power (MapReduce/Hadoop, Apache Spark, etc.)
∙ limited data access (iterative methods, stochastic methods)
∙ dimensionality reduction (“sketch-and-solve”)

2

how to deal with huge data sets?

n
 d

at
a

po
in

ts
!

d features!

Ã!A!

d’ << d features!

∙ computing power (MapReduce/Hadoop, Apache Spark, etc.)

∙ limited data access (iterative methods, stochastic methods)
∙ dimensionality reduction (“sketch-and-solve”)

2

how to deal with huge data sets?

n
 d

at
a

po
in

ts
!

d features!

Ã!A!

d’ << d features!

∙ computing power (MapReduce/Hadoop, Apache Spark, etc.)
∙ limited data access (iterative methods, stochastic methods)

∙ dimensionality reduction (“sketch-and-solve”)

2

how to deal with huge data sets?

n
 d

at
a

po
in

ts
!

d features!

Ã!A!

d’ << d features!

∙ computing power (MapReduce/Hadoop, Apache Spark, etc.)
∙ limited data access (iterative methods, stochastic methods)
∙ dimensionality reduction (“sketch-and-solve”)

2

dimensionality reduction

Replace high dimensional data with low dimensional sketch.
n

 d
at

a
po

in
ts

d features

Ã
A

3

dimensionality reduction

Solution on sketch Ã should approximate original solution.

−0.5
0

0.5
1

1.5
2

−0.5

0

0.5

1

1.5

2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

4

dimensionality reduction

Replace dimensional of data points, not their number.
n

 d
at

a
po

in
ts

d features

Ã
A

d’ << d features

5

dimensionality reduction (the other direction)

Reduce the number of data points, not their dimension.

n
 d

at
a

po
in

ts

d features

Ã

A

n’ << n
datapoints

Ã is often called a coreset.

6

methods overview

There are tons of sketching techniques, each with their own
advantages and disadvantages.

∙ Johnson-Lindenstrauss projections = super fast to apply,
naturally adapts to streaming/distributed environments.

∙ Deterministic methods (SVD, Frequent Directions) = best
data compression.

∙ Data Selection/Sampling = preserves structure and sparsity.

7

methods overview

There are tons of sketching techniques, each with their own
advantages and disadvantages.

∙ Johnson-Lindenstrauss projections = super fast to apply,
naturally adapts to streaming/distributed environments.

∙ Deterministic methods (SVD, Frequent Directions) = best
data compression.

∙ Data Selection/Sampling = preserves structure and sparsity.

7

methods overview

There are tons of sketching techniques, each with their own
advantages and disadvantages.

∙ Johnson-Lindenstrauss projections = super fast to apply,
naturally adapts to streaming/distributed environments.

∙ Deterministic methods (SVD, Frequent Directions) = best
data compression.

∙ Data Selection/Sampling = preserves structure and sparsity.

7

methods overview

There are tons of sketching techniques, each with their own
advantages and disadvantages.

∙ Johnson-Lindenstrauss projections = super fast to apply,
naturally adapts to streaming/distributed environments.

∙ Deterministic methods (SVD, Frequent Directions) = best
data compression.

∙ Data Selection/Sampling = preserves structure and sparsity.

7

sketching by sampling

Original Data

0 5 10

0

5

10

15

20

25

30

35

40

nz = 71

General Sketch

0 5 10

0

5

10

nz = 100

Data Sample

0 5 10

0

5

10

nz = 21

Sampling is also closely tied to understanding heuristic
methods and has produced valuable theory.

8

sketching by sampling

Original Data

0 5 10

0

5

10

15

20

25

30

35

40

nz = 71

General Sketch

0 5 10

0

5

10

nz = 100

Data Sample

0 5 10

0

5

10

nz = 21

Sampling is also closely tied to understanding heuristic
methods and has produced valuable theory.

8

importance sampling

Uniformly sampling data rarely works (imagine adding a bunch
of all-zeros columns to A).

A

Sketching by sampling is all about understanding which
sampling probability to assign to each column in A. 9

importance sampling

Uniformly sampling data rarely works (imagine adding a bunch
of all-zeros columns to A).

A

Sketching by sampling is all about understanding which
sampling probability to assign to each column in A. 9

what’s this paper about?

1. Leverage Scores are used ubiquitously as importance
sampling probabilities for matrix sketching.

2. These scores have been extended to sketches for low-rank
approximation problems, but not in a satisfying way.

3. We give a more natural extension, via Ridge Leverage Scores.
These scores lead to simple proofs and have a bunch of
desirable properties and new applications.

10

what’s this paper about?

1. Leverage Scores are used ubiquitously as importance
sampling probabilities for matrix sketching.

2. These scores have been extended to sketches for low-rank
approximation problems, but not in a satisfying way.

3. We give a more natural extension, via Ridge Leverage Scores.
These scores lead to simple proofs and have a bunch of
desirable properties and new applications.

10

what’s this paper about?

1. Leverage Scores are used ubiquitously as importance
sampling probabilities for matrix sketching.

2. These scores have been extended to sketches for low-rank
approximation problems, but not in a satisfying way.

3. We give a more natural extension, via Ridge Leverage Scores.
These scores lead to simple proofs and have a bunch of
desirable properties and new applications.

10

what’s this paper about?

1. Leverage Scores are used ubiquitously as importance
sampling probabilities for matrix sketching.

2. These scores have been extended to sketches for low-rank
approximation problems, but not in a satisfying way.

3. We give a more natural extension, via Ridge Leverage Scores.
These scores lead to simple proofs and have a bunch of
desirable properties and new applications.

10

subspace embeddings

Definition (Subspace Embedding)

A sketch Ã such that, for all vectors x, ∥xTÃ∥ = (1± ϵ)∥xTA∥.

Ã

2

2

xT

A

2

2

xT

= (1±ε)

Applications:

∙ Approximate (constrained) linear regression.

∙ Constructing preconditioners for iterative system solvers.
∙ Spectral sparsifiers for fast approximate graph algorithms.

11

subspace embeddings

Definition (Subspace Embedding)

A sketch Ã such that, for all vectors x, ∥xTÃ∥ = (1± ϵ)∥xTA∥.

Ã

2

2

xT

A

2

2

xT

= (1±ε)

Applications:

∙ Approximate (constrained) linear regression.

∙ Constructing preconditioners for iterative system solvers.
∙ Spectral sparsifiers for fast approximate graph algorithms.

11

subspace embeddings

Definition (Subspace Embedding)

A sketch Ã such that, for all vectors x, ∥xTÃ∥ = (1± ϵ)∥xTA∥.

Ã

2

2

xT

A

2

2

xT

= (1±ε)

Applications:

∙ Approximate (constrained) linear regression.

∙ Constructing preconditioners for iterative system solvers.
∙ Spectral sparsifiers for fast approximate graph algorithms.

11

subspace embeddings

Definition (Subspace Embedding)

A sketch Ã such that, for all vectors x, ∥xTÃ∥ = (1± ϵ)∥xTA∥.

Ã

2

2

xT

A

2

2

xT

= (1±ε)

Applications:

∙ Approximate (constrained) linear regression.
∙ Constructing preconditioners for iterative system solvers.

∙ Spectral sparsifiers for fast approximate graph algorithms.

11

subspace embeddings

Definition (Subspace Embedding)

A sketch Ã such that, for all vectors x, ∥xTÃ∥ = (1± ϵ)∥xTA∥.

Ã

2

2

xT

A

2

2

xT

= (1±ε)

Applications:

∙ Approximate (constrained) linear regression.
∙ Constructing preconditioners for iterative system solvers.
∙ Spectral sparsifiers for fast approximate graph algorithms.

11

quadratic form sampling

Equivalent formulation of subspace embeddings:

∥xTA∥22 = (1± ϵ)∥xTÃ∥22

(1− ϵ)ÃÃT ⪯ AAT ⪯ (1+ ϵ)ÃÃT

Let’s think about subspace embeddings as approximating the
quadratic form AAT.

12

quadratic form sampling

Equivalent formulation of subspace embeddings:

xTAATx = (1± ϵ)xTÃÃTx

(1− ϵ)ÃÃT ⪯ AAT ⪯ (1+ ϵ)ÃÃT

Let’s think about subspace embeddings as approximating the
quadratic form AAT.

12

quadratic form sampling

Equivalent formulation of subspace embeddings:

xTAATx = (1± ϵ)xTÃÃTx

(1− ϵ)ÃÃT ⪯ AAT ⪯ (1+ ϵ)ÃÃT

Let’s think about subspace embeddings as approximating the
quadratic form AAT.

12

quadratic form sampling

Equivalent formulation of subspace embeddings:

xTAATx = (1± ϵ)xTÃÃTx

(1− ϵ)ÃÃT ⪯ AAT ⪯ (1+ ϵ)ÃÃT

Let’s think about subspace embeddings as approximating the
quadratic form AAT.

12

quadratic form sampling

A
 AT
 =
 AAT

AAT =
d∑
i=1

aiaTi

13

quadratic form sampling

A
 AT
 =
 AAT

a1

a1T

=
a1a1T

AAT =
d∑
i=1

aiaTi

13

quadratic form sampling

A
 AT
 =
 AAT

a1

a1T

=

+

a2

a2T

a2a2T

AAT =
d∑
i=1

aiaTi

13

quadratic form sampling

A
 AT
 =
 AAT

a1

a1T

=

+
+

a2

a2T

ai

aiT
 aiaiT

AAT =
d∑
i=1

aiaTi

13

quadratic form sampling

A
 AT
 =
 AAT

a1

a1T

=

+
+

a2

a2T

ai

aiT
 aiaiT

AAT =
d∑
i=1

aiaTi

13

general importance sampling procedure

Sampling Scheme: For any set of sampling probabilities
p1,p2, . . . ,pd include column ai in Ã with probability pi and
reweight the column by 1

pi .

Then:

E
[
ÃÃT
]
=

d∑
i=1

pi ·
(
1
pi
aiaTi

)

14

general importance sampling procedure

Sampling Scheme: For any set of sampling probabilities
p1,p2, . . . ,pd include column ai in Ã with probability pi and
reweight the column by 1

pi .

Then:

E
[
ÃÃT
]
=

d∑
i=1

pi ·
(
1
pi
aiaTi

)

14

general importance sampling procedure

Sampling Scheme: For any set of sampling probabilities
p1,p2, . . . ,pd include column ai in Ã with probability pi and
reweight the column by 1

pi .

Then:

E
[
ÃÃT
]
=

d∑
i=1

pi ·
(
1
pi
aiaTi

)
=

d∑
i=1

aiaTi = AAT

14

probability choices

How to get good concentration?

Need to select more “unique” columns with higher probability.

If we don’t select ai then xTÃÃTx = 0, while xTAATx is positive.

xTÃÃTx cannot equal (1± ϵ)xTAATx.

15

probability choices

How to get good concentration?

Need to select more “unique” columns with higher probability.
A
 AT

ai

aiT

x

xT

If we don’t select ai then xTÃÃTx = 0, while xTAATx is positive.

xTÃÃTx cannot equal (1± ϵ)xTAATx.

15

probability choices

How to get good concentration?

Need to select more “unique” columns with higher probability.
A
 AT

ai

aiT

x

xT
 1

1

0 0 0 0 0 0 0
0 0 0

0
0
0
0
0
0

0
0
0

If we don’t select ai then xTÃÃTx = 0, while xTAATx is positive.

xTÃÃTx cannot equal (1± ϵ)xTAATx.

15

probability choices

How to get good concentration?

Need to select more “unique” columns with higher probability.
A
 AT

ai

ai

T

1

1

0 0 0 0 0 0 0
0 0 0

0
0
0
0
0
0

0
0
0

1 0 0 0 0 0
 1
0
0
0
0

If we don’t select ai then xTÃÃTx = 0, while xTAATx is positive.

xTÃÃTx cannot equal (1± ϵ)xTAATx.

15

probability choices

How to get good concentration?

Need to select more “unique” columns with higher probability.
A
 AT

ai

ai

T

1

1

0 0 0 0 0 0 0
0 0 0

0
0
0
0
0
0

0
0
0

1 0 0 0 0 0
 1
0
0
0
0

If we don’t select ai then xTÃÃTx = 0, while xTAATx is positive.

xTÃÃTx cannot equal (1± ϵ)xTAATx.

15

probability choices

How to get good concentration?

Need to select more “unique” columns with higher probability.
A
 AT

ai

ai

T

1

1

0 0 0 0 0 0 0
0 0 0

0
0
0
0
0
0

0
0
0

1 0 0 0 0 0
 1
0
0
0
0

If we don’t select ai then xTÃÃTx = 0, while xTAATx is positive.

xTÃÃTx cannot equal (1± ϵ)xTAATx.
15

defining optimization problem

How to measure “unique-ness”:

Definition (Leverage Score, τ)

τ(ai) = min ∥y∥22 such that ai = Ay

ai
 y
 =
 ai
A

τ(ai) ≤ 1 since we can choose y to be the ith basis vector.

16

defining optimization problem

How to measure “unique-ness”:

Definition (Leverage Score, τ)

τ(ai) = min ∥y∥22 such that ai = Ay

ai
 y
 =
 ai
A

τ(ai) ≤ 1 since we can choose y to be the ith basis vector.

16

defining optimization problem

How to measure “unique-ness”:

Definition (Leverage Score, τ)

τ(ai) = min ∥y∥22 such that ai = Ay

1

ai
 =
 ai

τ(ai) ≤ 1 since we can choose y to be the ith basis vector.
16

defining optimization problem

How to measure “unique-ness”:

Definition (Leverage Score, τ)

τ(ai) = min ∥y∥22 such that ai = Ay

ai
 =
 ai
ai
ai
 ai

.25

.25

.25

.25

If more columns align with ai, τ(ai) decreases.
16

computing leverage scores

Problem: Find τ(ai) = min ∥y∥22 such that ai = Ay.

Solution:

y = (ATA)−1ATai
τ(ai) = ∥y∥22 = aTi (ATA)−1ai

∑
i τ(ai) = tr(AT(ATA)−1A)

= rank(A) ≤ n

.

17

computing leverage scores

Problem: Find τ(ai) = min ∥y∥22 such that ai = Ay.

Solution:

y = (ATA)−1ATai

τ(ai) = ∥y∥22 = aTi (ATA)−1ai

∑
i τ(ai) = tr(AT(ATA)−1A)

= rank(A) ≤ n

.

17

computing leverage scores

Problem: Find τ(ai) = min ∥y∥22 such that ai = Ay.

Solution:

y = (ATA)−1ATai
τ(ai) = ∥y∥22 = aTi (ATA)−1ai

∑
i τ(ai) = tr(AT(ATA)−1A)

= rank(A) ≤ n

.

17

computing leverage scores

Problem: Find τ(ai) = min ∥y∥22 such that ai = Ay.

Solution:

y = (ATA)−1ATai
τ(ai) = ∥y∥22 = aTi (ATA)−1ai

∑
i τ(ai) = tr(AT(ATA)−1A)

= rank(A) ≤ n

.

17

computing leverage scores

Problem: Find τ(ai) = min ∥y∥22 such that ai = Ay.

Solution:

y = (ATA)−1ATai
τ(ai) = ∥y∥22 = aTi (ATA)−1ai

∑
i τ(ai) = tr(AT(ATA)−1A) = rank(A) ≤ n.

17

matrix chernoff bound

More specifically, to get a subspace embedding, we sample
each column ai with probability τ(ai) · log nϵ2

.

We’re approximating A with a sum of (binary) random matrices:

Xi =

 1
piaia

T
i with probability pi

0 with probability (1− pi)

ÃÃT =
∑d

i=1 Xi.

τ(ai) log nϵ2
is the lowest pi which ensures 1

piaia
T
i ⪯

ϵ2

log nAAT.

“User-friendly tail bounds for sums of random matrices”,
Joel Tropp

18

matrix chernoff bound

More specifically, to get a subspace embedding, we sample
each column ai with probability τ(ai) · log nϵ2

.

We’re approximating A with a sum of (binary) random matrices:

Xi =

 1
piaia

T
i with probability pi

0 with probability (1− pi)

ÃÃT =
∑d

i=1 Xi.

τ(ai) log nϵ2
is the lowest pi which ensures 1

piaia
T
i ⪯

ϵ2

log nAAT.

“User-friendly tail bounds for sums of random matrices”,
Joel Tropp

18

matrix chernoff bound

More specifically, to get a subspace embedding, we sample
each column ai with probability τ(ai) · log nϵ2

.

We’re approximating A with a sum of (binary) random matrices:

Xi =

 1
piaia

T
i with probability pi

0 with probability (1− pi)

ÃÃT =
∑d

i=1 Xi.

τ(ai) log nϵ2
is the lowest pi which ensures 1

piaia
T
i ⪯

ϵ2

log nAAT.

“User-friendly tail bounds for sums of random matrices”,
Joel Tropp

18

matrix chernoff bound

More specifically, to get a subspace embedding, we sample
each column ai with probability τ(ai) · log nϵ2

.

We’re approximating A with a sum of (binary) random matrices:

Xi =

 1
piaia

T
i with probability pi

0 with probability (1− pi)

ÃÃT =
∑d

i=1 Xi.

τ(ai) log nϵ2
is the lowest pi which ensures 1

piaia
T
i ⪯

ϵ2

log nAAT.

“User-friendly tail bounds for sums of random matrices”,
Joel Tropp

18

final subspace embedding theorem

Ã

2

2

Õ(n)

xT

A

2

2

xT

= (1±ε)
 n
n

Theorem (Subspace Embedding via Sampling)

Sampling O
(
n log n

ϵ2

)
columns from A by leverage score gives an

ϵ factor subspace embedding with high probability.

n logn
ϵ2

=
∑
i
τ(ai)

logn
ϵ2

19

final subspace embedding theorem

Ã

2

2

Õ(n)

xT

A

2

2

xT

= (1±ε)
 n
n

Theorem (Subspace Embedding via Sampling)

Sampling O
(
n log n

ϵ2

)
columns from A by leverage score gives an

ϵ factor subspace embedding with high probability.

n logn
ϵ2

=
∑
i
τ(ai)

logn
ϵ2

19

important note

Naively, computing leverage scores requires computing
(AAT)−1, which would be difficult for a large A.

Fortunately, leverage scores are very robust – they can be
estimated using very weak approximations to A.

Ã

A

sample

approximate
leverage scores

Can even be computed in a single pass over A’s columns!

20

important note

Naively, computing leverage scores requires computing
(AAT)−1, which would be difficult for a large A.

Fortunately, leverage scores are very robust – they can be
estimated using very weak approximations to A.

Ã

A

sample

approximate
leverage scores

Can even be computed in a single pass over A’s columns!

20

important note

Naively, computing leverage scores requires computing
(AAT)−1, which would be difficult for a large A.

Fortunately, leverage scores are very robust – they can be
estimated using very weak approximations to A.

Ã

A

sample

approximate
leverage scores

Can even be computed in a single pass over A’s columns!

20

important note

Naively, computing leverage scores requires computing
(AAT)−1, which would be difficult for a large A.

Fortunately, leverage scores are very robust – they can be
estimated using very weak approximations to A.

Ã

A

sample

approximate
leverage scores

Can even be computed in a single pass over A’s columns!
20

extending leverage scores

Leverage scores have been very influential, even beyond
direct application to subspace embeddings.

linear system solving, low-rank approximation, k-means
clustering, convex optimization, linear programming, matrix

completion, multi-label classification, spectral graph problems

There are many generalizations and modifications of leverage
scores.

21

extending leverage scores

Leverage scores have been very influential, even beyond
direct application to subspace embeddings.

linear system solving, low-rank approximation, k-means
clustering, convex optimization, linear programming, matrix

completion, multi-label classification, spectral graph problems

There are many generalizations and modifications of leverage
scores.

21

extending leverage scores

Leverage scores have been very influential, even beyond
direct application to subspace embeddings.

linear system solving, low-rank approximation, k-means
clustering, convex optimization, linear programming, matrix

completion, multi-label classification, spectral graph problems

There are many generalizations and modifications of leverage
scores.

21

extending leverage scores

Extensions to low-rank problems have been especially popular.

22

low-rank sketching

A
 =
 U
 Σ
 VT

σ1

σ2

σd-1

σd

left singular vectors
 singular values
 right singular vectors

For subspace embeddings we approximate AAT = UΣ2UT.

For xTÃÃTx ≈ xTAATx for all x we need to preserve information
about every singular direction/value. Specifically, it can be
shown that σi(Ã) = (1± ϵ)σi(A)

23

low-rank sketching

A
 =
 U
 Σ
 VT

σ1

σ2

σd-1

σd

left singular vectors
 singular values
 right singular vectors

For subspace embeddings we approximate AAT = UΣ2UT.

For xTÃÃTx ≈ xTAATx for all x we need to preserve information
about every singular direction/value. Specifically, it can be
shown that σi(Ã) = (1± ϵ)σi(A)

23

low-rank sketching

A
 =
 U
 Σ
 VT

σ1

σ2

σd-1

σd

left singular vectors
 singular values
 right singular vectors

For subspace embeddings we approximate AAT = UΣ2UT.

For xTÃÃTx ≈ xTAATx for all x we need to preserve information
about every singular direction/value.

Specifically, it can be
shown that σi(Ã) = (1± ϵ)σi(A)

23

low-rank sketching

A
 =
 U
 Σ
 VT

σ1

σ2

σd-1

σd

left singular vectors
 singular values
 right singular vectors

For subspace embeddings we approximate AAT = UΣ2UT.

For xTÃÃTx ≈ xTAATx for all x we need to preserve information
about every singular direction/value. Specifically, it can be
shown that σi(Ã) = (1± ϵ)σi(A)

23

low-rank sketching

Ak
 =
 Σk

σ1

σ2

σd-1

σd

Uk

Vk

T

Σk

left singular vectors
 singular values
 right singular vectors

For many sketching applications, we only need Ã to capture
information about A’s top singular directions/values.

In these cases, we should be able to obtain smaller sketches –
i.e. O(k) instead of O(n).

23

low-rank sketching

Ak
 =
 Σk

σ1

σ2

σd-1

σd

Uk

Vk

T

Σk

left singular vectors
 singular values
 right singular vectors

For many sketching applications, we only need Ã to capture
information about A’s top singular directions/values.

In these cases, we should be able to obtain smaller sketches –
i.e. O(k) instead of O(n).

23

canonical problem

Find low-rank matrix close to A.

A
 Ak
 −

F

2

rank k

∥A− QQTA∥2F = sum of squared distances to hyperplane
spanned by Q.

24

canonical problem

Find low-rank matrix close in Frobenius norm to A.

A
 Ak
 −

F

2

rank k

∥A− QQTA∥2F = sum of squared distances to hyperplane
spanned by Q.

24

canonical problem

Find low-rank matrix close in Frobenius norm to A.

A
 A
Q
 −

F

2

d

QT

k

orthonormal
basis

∥A− QQTA∥2F = sum of squared distances to hyperplane
spanned by Q.

24

canonical problem

Find low-rank matrix close in Frobenius norm to A.

∥A− QQTA∥2F = sum of squared distances to hyperplane
spanned by Q.

24

low-rank approximation

Without any constraints, finding the optimal rank k Q is
equivalent to singular value decomposition:

Ak
 =
 Σk

σ1

σ2

σd-1

σd

Uk

Vk

T

Σk

left singular vectors
 singular values
 right singular vectors

∥A− Ak∥2F = ∥A− UkUTkA∥2F = min ∥A− QQTA∥2F.

Set Q = Uk, i.e. to the top k singular vectors of A.

25

low-rank approximation

Without any constraints, finding the optimal rank k Q is
equivalent to singular value decomposition:

Ak
 =
 Σk

σ1

σ2

σd-1

σd

Uk

Vk

T

Σk

left singular vectors
 singular values
 right singular vectors

∥A− Ak∥2F = ∥A− UkUTkA∥2F = min ∥A− QQTA∥2F.

Set Q = Uk, i.e. to the top k singular vectors of A.

25

low-rank approximation

Without any constraints, finding the optimal rank k Q is
equivalent to singular value decomposition:

Ak
 =
 Σk

σ1

σ2

σd-1

σd

Uk

Vk

T

Σk

left singular vectors
 singular values
 right singular vectors

∥A− Ak∥2F = ∥A− UkUTkA∥2F = min ∥A− QQTA∥2F.

Set Q = Uk, i.e. to the top k singular vectors of A.

25

low-rank approximation with constraints

With constraints, Frobenius norm low-rank approximation

captures a variety of additional interesting problems:

min
rank(Q)=k,Q∈S

∥A− QQTA∥2F

S is an arbitrary set of rank k orthonormal matrices.

∙ nonnegative PCA

∙ sparse PCA
∙ k-means clustering (see slides on my website)

26

low-rank approximation with constraints

With constraints, Frobenius norm low-rank approximation

captures a variety of additional interesting problems:

min
rank(Q)=k,Q∈S

∥A− QQTA∥2F

S is an arbitrary set of rank k orthonormal matrices.

∙ nonnegative PCA

∙ sparse PCA
∙ k-means clustering (see slides on my website)

26

low-rank approximation with constraints

With constraints, Frobenius norm low-rank approximation

captures a variety of additional interesting problems:

min
rank(Q)=k,Q∈S

∥A− QQTA∥2F

S is an arbitrary set of rank k orthonormal matrices.

∙ nonnegative PCA

∙ sparse PCA
∙ k-means clustering (see slides on my website)

26

low-rank approximation with constraints

With constraints, Frobenius norm low-rank approximation

captures a variety of additional interesting problems:

min
rank(Q)=k,Q∈S

∥A− QQTA∥2F

S is an arbitrary set of rank k orthonormal matrices.

∙ nonnegative PCA

∙ sparse PCA
∙ k-means clustering (see slides on my website)

26

low-rank approximation with constraints

With constraints, Frobenius norm low-rank approximation

captures a variety of additional interesting problems:

min
rank(Q)=k,Q∈S

∥A− QQTA∥2F

S is an arbitrary set of rank k orthonormal matrices.

∙ nonnegative PCA
∙ sparse PCA

∙ k-means clustering (see slides on my website)

26

low-rank approximation with constraints

With constraints, Frobenius norm low-rank approximation

captures a variety of additional interesting problems:

min
rank(Q)=k,Q∈S

∥A− QQTA∥2F

S is an arbitrary set of rank k orthonormal matrices.

∙ nonnegative PCA
∙ sparse PCA
∙ k-means clustering (see slides on my website)

26

low-rank approximation

In either case, we need to capture information about A’s top
singular vectors only.

27

specific sketching guarantees

Two well studied guarantees for low-rank sketching.

Column Subset Selection:

Find an Ã such that ∥A− projÃ(A)∥2F ≤ (1+ ϵ)∥A− Ak∥2F.

Projection Cost Preserving Sample:

Find an Ã such that ∥Ã− QQTÃ∥2F = (1± ϵ)∥A− QQTA∥2F for all
rank k orthonormal matrices Q.

28

specific sketching guarantees

Two well studied guarantees for low-rank sketching.

Column Subset Selection:

Find an Ã such that ∥A− projÃ(A)∥2F ≤ (1+ ϵ)∥A− Ak∥2F.

Projection Cost Preserving Sample:

Find an Ã such that ∥Ã− QQTÃ∥2F = (1± ϵ)∥A− QQTA∥2F for all
rank k orthonormal matrices Q.

28

specific sketching guarantees

Two well studied guarantees for low-rank sketching.

Column Subset Selection:

Find an Ã such that ∥A− projÃ(A)∥2F ≤ (1+ ϵ)∥A− Ak∥2F.

Projection Cost Preserving Sample:

Find an Ã such that ∥Ã− QQTÃ∥2F = (1± ϵ)∥A− QQTA∥2F for all
rank k orthonormal matrices Q.

28

specific sketching guarantees

Two well studied guarantees for low-rank sketching.

Column Subset Selection:

Find an Ã such that ∥A− projÃ(A)∥2F ≤ (1+ ϵ)∥A− Ak∥2F.

Projection Cost Preserving Sample:

Find an Ã such that ∥Ã− QQTÃ∥2F = (1± ϵ)∥A− QQTA∥2F for all
rank k orthonormal matrices Q.

28

projection cost preservation

0

1

2

3

4

5

6

Q

 Cost(Q,A)

 (1±ε)Cost(Q,A)

∥Ã− QQ⊤Ã∥2F = (1± ϵ)∥A− QQ⊤A∥2F
29

specific sketching guarantees

Subspace Embedding implies Column Subset Selection and
Projection Cost Preservation.

But we would get a sketch with too many samples:
Õ(n) columns vs. ideally Õ(k) columns

.

30

specific sketching guarantees

Subspace Embedding implies Column Subset Selection and
Projection Cost Preservation.

But we would get a sketch with too many samples:
Õ(n) columns vs. ideally Õ(k) columns.

30

subspace scores

“Low-rank leverage scores” for column-subset selection:

∙ Equivalent to leverage score sampling from Ak, but we keep
the columns in A.

∙ Gives an approximation to AkATk, but with additional error
depending on the matrix tail ∥A− Ak∥2F.

∙
∑

i τ̃(ai) = rank(Ak) = k

[Drineas, Mahoney, Muthukrishnan ‘08, and Sarlós ‘06]

31

subspace scores

“Low-rank leverage scores” for column-subset selection:

τ(ai) = aTi (ATA)−1ai

∙ Equivalent to leverage score sampling from Ak, but we keep
the columns in A.

∙ Gives an approximation to AkATk, but with additional error
depending on the matrix tail ∥A− Ak∥2F.

∙
∑

i τ̃(ai) = rank(Ak) = k

[Drineas, Mahoney, Muthukrishnan ‘08, and Sarlós ‘06]

31

subspace scores

“Low-rank leverage scores” for column-subset selection:

τ̃(ai) = aTi (ATkAk)−1ai

∙ Equivalent to leverage score sampling from Ak, but we keep
the columns in A.

∙ Gives an approximation to AkATk, but with additional error
depending on the matrix tail ∥A− Ak∥2F.

∙
∑

i τ̃(ai) = rank(Ak) = k

[Drineas, Mahoney, Muthukrishnan ‘08, and Sarlós ‘06]

31

subspace scores

“Low-rank leverage scores” for column-subset selection:

τ̃(ai) = aTi (ATkAk)−1ai

∙ Equivalent to leverage score sampling from Ak, but we keep
the columns in A.

∙ Gives an approximation to AkATk, but with additional error
depending on the matrix tail ∥A− Ak∥2F.

∙
∑

i τ̃(ai) = rank(Ak) = k

[Drineas, Mahoney, Muthukrishnan ‘08, and Sarlós ‘06]

31

subspace scores

“Low-rank leverage scores” for column-subset selection:

τ̃(ai) = aTi (ATkAk)−1ai

∙ Equivalent to leverage score sampling from Ak, but we keep
the columns in A.

∙ Gives an approximation to AkATk, but with additional error
depending on the matrix tail ∥A− Ak∥2F.

∙
∑

i τ̃(ai) = rank(Ak) = k

[Drineas, Mahoney, Muthukrishnan ‘08, and Sarlós ‘06]

31

subspace scores

“Low-rank leverage scores” for column-subset selection:

τ̃(ai) = aTi (ATkAk)−1ai

∙ Equivalent to leverage score sampling from Ak, but we keep
the columns in A.

∙ Gives an approximation to AkATk, but with additional error
depending on the matrix tail ∥A− Ak∥2F.

∙
∑

i τ̃(ai) = rank(Ak) = k

[Drineas, Mahoney, Muthukrishnan ‘08, and Sarlós ‘06]

31

subspace scores

“Low-rank leverage scores” for column-subset selection:

τ̃(ai) = aTi (ATkAk)−1ai

∙ Equivalent to leverage score sampling from Ak, but we keep
the columns in A.

∙ Gives an approximation to AkATk, but with additional error
depending on the matrix tail ∥A− Ak∥2F.

∙
∑

i τ̃(ai) = rank(Ak) = k

[Drineas, Mahoney, Muthukrishnan ‘08, and Sarlós ‘06]

31

projection cost subspace scores

“Low-rank leverage scores” for projection cost preservation:

∙ Similar intuition, but with an extra term to capture some
information about A’s tail singular values.

[Cohen, Elder, Musco, Musco, Persu ‘15]

32

projection cost subspace scores

“Low-rank leverage scores” for projection cost preservation:

τ̃(ai) = aTi (ATkAk)−1ai

∙ Similar intuition, but with an extra term to capture some
information about A’s tail singular values.

[Cohen, Elder, Musco, Musco, Persu ‘15]

32

projection cost subspace scores

“Low-rank leverage scores” for projection cost preservation:

τ̃(ai) = aTi
(
(AT2kAk)−1 +

k
∥A− A2k∥2F

(I− U2kUT2k)
)
ai

∙ Similar intuition, but with an extra term to capture some
information about A’s tail singular values.

[Cohen, Elder, Musco, Musco, Persu ‘15]

32

projection cost subspace scores

“Low-rank leverage scores” for projection cost preservation:

τ̃(ai) = aTi
(
(AT2kAk)−1 +

k
∥A− A2k∥2F

(I− U2kUT2k)
)
ai

∙ Similar intuition, but with an extra term to capture some
information about A’s tail singular values.

[Cohen, Elder, Musco, Musco, Persu ‘15]

32

projection cost subspace scores

“Low-rank leverage scores” for projection cost preservation:

τ̃(ai) = aTi
(
(AT2kAk)−1 +

k
∥A− A2k∥2F

(I− U2kUT2k)
)
ai

∙ Similar intuition, but with an extra term to capture some
information about A’s tail singular values.

[Cohen, Elder, Musco, Musco, Persu ‘15]

32

limitations of prior work

Great, we can solve both low-rank sampling problems.

But...

1. The only efficient algorithms for computing low-rank
leverage scores rely on other sketching techniques, often
defeating the purpose of sampling to begin with.

Ã

A

sample

approximate
leverage scores

2. The scores cannot be computed in a data stream.

33

limitations of prior work

Great, we can solve both low-rank sampling problems. But...

1. The only efficient algorithms for computing low-rank
leverage scores rely on other sketching techniques, often
defeating the purpose of sampling to begin with.

Ã

A

sample

approximate
leverage scores

2. The scores cannot be computed in a data stream.

33

limitations of prior work

Great, we can solve both low-rank sampling problems. But...

1. The only efficient algorithms for computing low-rank
leverage scores rely on other sketching techniques, often
defeating the purpose of sampling to begin with.

Ã

A

sample

approximate
leverage scores

2. The scores cannot be computed in a data stream.

33

limitations of prior work

Great, we can solve both low-rank sampling problems. But...

1. The only efficient algorithms for computing low-rank
leverage scores rely on other sketching techniques, often
defeating the purpose of sampling to begin with.

Ã

A

sample

approximate
leverage scores

2. The scores cannot be computed in a data stream.

33

limitations of prior work

Single Underlying Issue:
Existing low-rank scores are not monotonic.

ai
 y
 =
 ai
A

τ(ai) = min ∥y∥22 such that ai = Ay

34

limitations of prior work

Single Underlying Issue:
Existing low-rank scores are not monotonic.

ai
 y
 =
 ai
A

τ(ai) = min ∥y∥22 such that ai = Ay

34

limitations of prior work

Single Underlying Issue:
Existing low-rank scores are not monotonic.

ai
 y
 =
 ai
A

τ(ai) = min ∥y∥22 such that ai = Ay

34

limitations of prior work

Single Underlying Issue:
Existing low-rank scores are not monotonic.

ai
 y
 =
 ai
A

For standard leverage scores, adding a column to A can only
decrease the importance of existing columns.

34

importance of monotonicity

Streaming setup:

Receive columns of A one-by-one. Reject each with probability
depending on it’s (low-rank) leverage score with respect to the
columns seen so far [Kelner, Levin ‘11].

A

ai

columns observed

Rejection probability only decreases, so we never delete a
column with too high of probability.

35

importance of monotonicity

Streaming setup:

Receive columns of A one-by-one. Reject each with probability
depending on it’s (low-rank) leverage score with respect to the
columns seen so far [Kelner, Levin ‘11].

A

ai

columns observed

Rejection probability only decreases, so we never delete a
column with too high of probability.

35

importance of monotonicity

Streaming setup:

Receive columns of A one-by-one. Reject each with probability
depending on it’s (low-rank) leverage score with respect to the
columns seen so far [Kelner, Levin ‘11].

A

ai

columns observed

τ (ai)

rejection
probability

Rejection probability only decreases, so we never delete a
column with too high of probability.

35

importance of monotonicity

Streaming setup:

Receive columns of A one-by-one. Reject each with probability
depending on it’s (low-rank) leverage score with respect to the
columns seen so far [Kelner, Levin ‘11].

A

ai

columns observed

τ (ai)

rejection
probability

Rejection probability only decreases, so we never delete a
column with too high of probability.

35

importance of monotonicity

Streaming setup:

Receive columns of A one-by-one. Reject each with probability
depending on it’s (low-rank) leverage score with respect to the
columns seen so far [Kelner, Levin ‘11].

A

ai

columns observed

τ (ai)

rejection
probability

Rejection probability only decreases, so we never delete a
column with too high of probability.

35

importance of monotonicity

Streaming setup:

Receive columns of A one-by-one. Reject each with probability
depending on it’s (low-rank) leverage score with respect to the
columns seen so far [Kelner, Levin ‘11].

A

ai

columns observed

τ (ai)

rejection
probability

Rejection probability only decreases, so we never delete a
column with too high of probability.

35

importance of monotonicity

Streaming setup:

Receive columns of A one-by-one. Reject each with probability
depending on it’s (low-rank) leverage score with respect to the
columns seen so far [Kelner, Levin ‘11].

A

ai

columns observed

τ (ai)

rejection
probability

Rejection probability only decreases, so we never delete a
column with too high of probability.

35

importance of monotonicity

Streaming setup:

Receive columns of A one-by-one. Reject each with probability
depending on it’s (low-rank) leverage score with respect to the
columns seen so far [Kelner, Levin ‘11].

A

ai

columns observed

τ (ai)

rejection
probability

Rejection probability only decreases, so we never delete a
column with too high of probability.

35

importance of monotonicity

Streaming setup:

Receive columns of A one-by-one. Reject each with probability
depending on it’s (low-rank) leverage score with respect to the
columns seen so far [Kelner, Levin ‘11].

A

ai

columns observed

τ (ai)

rejection
probability

Rejection probability only decreases, so we never delete a
column with too high of probability.

35

importance of monotonicity

Streaming setup:

Receive columns of A one-by-one. Reject each with probability
depending on it’s (low-rank) leverage score with respect to the
columns seen so far [Kelner, Levin ‘11].

A

ai

columns observed

τ (ai)

rejection
probability

Rejection probability only decreases, so we never delete a
column with too high of probability.

35

importance of monotonicity

Streaming setup:

Receive columns of A one-by-one. Reject each with probability
depending on it’s (low-rank) leverage score with respect to the
columns seen so far [Kelner, Levin ‘11].

A

ai

columns observed

τ (ai)

rejection
probability

Rejection probability only decreases, so we never delete a
column with too high of probability.

35

importance of monotonicity

Iterative Leverage Score Sampling: Monotonicity is essential
because it ensures that a uniform subsample of columns can
at least be used to find upper bounds for leverage scores.
[Cohen, Lee, Musco, Musco, Peng, Sidford ‘15]

A

ai

36

importance of monotonicity

Iterative Leverage Score Sampling: Monotonicity is essential
because it ensures that a uniform subsample of columns can
at least be used to find upper bounds for leverage scores.
[Cohen, Lee, Musco, Musco, Peng, Sidford ‘15]

A

ai

36

score instability

Why aren’t prior low-rank leverage scores monotonic?

They depend on (AkAk)−1, which is inherently unstable

.

0
1
0
0
0
0

0
1
0
0
0
0

0
1
0
0
0
0

0
1
0
0
0
0

0
1
0
0
0
0

0
1
0
0
0
0

1
0
0
0
0
0

1
0
0
0
0
0

A

1
0
0
0
0
0

1
0
0
0
0
0

1
0
0
0
0
0

1
0
0
0
0
0

1
0
0
0
0
0

u1

1
0
0
0
0
0

Adding a column could cause aTi (AkAk)−1ai to drop significantly.
Here aT1(A1A1)−1a1 =⇒ 0.

37

score instability

Why aren’t prior low-rank leverage scores monotonic?

They depend on (AkAk)−1, which is inherently unstable.

0
1
0
0
0
0

0
1
0
0
0
0

0
1
0
0
0
0

0
1
0
0
0
0

0
1
0
0
0
0

0
1
0
0
0
0

1
0
0
0
0
0

1
0
0
0
0
0

A

1
0
0
0
0
0

1
0
0
0
0
0

1
0
0
0
0
0

1
0
0
0
0
0

1
0
0
0
0
0

u1

1
0
0
0
0
0

Adding a column could cause aTi (AkAk)−1ai to drop significantly.
Here aT1(A1A1)−1a1 =⇒ 0.

37

score instability

Why aren’t prior low-rank leverage scores monotonic?

They depend on (AkAk)−1, which is inherently unstable.

0
1
0
0
0
0

0
1
0
0
0
0

0
1
0
0
0
0

0
1
0
0
0
0

0
1
0
0
0
0

0
1
0
0
0
0

1
0
0
0
0
0

1
0
0
0
0
0

A

1
0
0
0
0
0

1
0
0
0
0
0

1
0
0
0
0
0

1
0
0
0
0
0

1
0
0
0
0
0

u1

1
0
0
0
0
0

Adding a column could cause aTi (AkAk)−1ai to drop significantly.
Here aT1(A1A1)−1a1 =⇒ 0.

37

score instability

Why aren’t prior low-rank leverage scores monotonic?

They depend on (AkAk)−1, which is inherently unstable.

0
1
0
0
0
0

0
1
0
0
0
0

0
1
0
0
0
0

0
1
0
0
0
0

0
1
0
0
0
0

0
1
0
0
0
0

1
0
0
0
0
0

1
0
0
0
0
0

A

1
0
0
0
0
0

1
0
0
0
0
0

1
0
0
0
0
0

1
0
0
0
0
0

1
0
0
0
0
0

0
2
0
0
0
0

u1

0
1
0
0
0
0

Adding a column could cause aTi (AkAk)−1ai to drop significantly.
Here aT1(A1A1)−1a1 =⇒ 0.

37

score instability

Why aren’t prior low-rank leverage scores monotonic?

They depend on (AkAk)−1, which is inherently unstable.

0
1
0
0
0
0

0
1
0
0
0
0

0
1
0
0
0
0

0
1
0
0
0
0

0
1
0
0
0
0

0
1
0
0
0
0

1
0
0
0
0
0

1
0
0
0
0
0

A

1
0
0
0
0
0

1
0
0
0
0
0

1
0
0
0
0
0

1
0
0
0
0
0

1
0
0
0
0
0

0
2
0
0
0
0

u1

0
1
0
0
0
0

Adding a column could cause aTi (AkAk)−1ai to drop significantly.
Here aT1(A1A1)−1a1 =⇒ 0.

37

our solution

How to avoid instability?

“Soften” the existing definition of rank k leverage scores.

The λ-Ridge Leverage Scores of [Alaoui, Mahoney ‘15].

σi
(
ATA(ATkAk)−1

)
=

1 for i ≥ k,
0 for i < k.

σi
(
ATA(ATA+ λI)−1

)
=

σ2i
σ2i + λ

38

our solution

How to avoid instability?

“Soften” the existing definition of rank k leverage scores.

The λ-Ridge Leverage Scores of [Alaoui, Mahoney ‘15].

σi
(
ATA(ATkAk)−1

)
=

1 for i ≥ k,
0 for i < k.

σi
(
ATA(ATA+ λI)−1

)
=

σ2i
σ2i + λ

38

our solution

How to avoid instability?

“Soften” the existing definition of rank k leverage scores.

τ̃(ai) = aTi (ATkAk)−1ai

The λ-Ridge Leverage Scores of [Alaoui, Mahoney ‘15].

σi
(
ATA(ATkAk)−1

)
=

1 for i ≥ k,
0 for i < k.

σi
(
ATA(ATA+ λI)−1

)
=

σ2i
σ2i + λ

38

our solution

How to avoid instability?

“Soften” the existing definition of rank k leverage scores.

τ̃(ai) = aTi (ATA+ λI)−1ai

The λ-Ridge Leverage Scores of [Alaoui, Mahoney ‘15].

σi
(
ATA(ATkAk)−1

)
=

1 for i ≥ k,
0 for i < k.

σi
(
ATA(ATA+ λI)−1

)
=

σ2i
σ2i + λ

38

our solution

How to avoid instability?

“Soften” the existing definition of rank k leverage scores.

τ̃(ai) = aTi (ATA+ λI)−1ai

The λ-Ridge Leverage Scores of [Alaoui, Mahoney ‘15].

σi
(
ATA(ATkAk)−1

)
=

1 for i ≥ k,
0 for i < k.

σi
(
ATA(ATA+ λI)−1

)
=

σ2i
σ2i + λ

38

our solution

How to avoid instability?

“Soften” the existing definition of rank k leverage scores.

τ̃(ai) = aTi (ATA+ λI)−1ai

The λ-Ridge Leverage Scores of [Alaoui, Mahoney ‘15].

σi
(
ATA(ATkAk)−1

)
=

1 for i ≥ k,
0 for i < k.

σi
(
ATA(ATA+ λI)−1

)
=

σ2i
σ2i + λ

38

our solution

How to avoid instability?

“Soften” the existing definition of rank k leverage scores.

τ̃(ai) = aTi (ATA+ λI)−1ai

The λ-Ridge Leverage Scores of [Alaoui, Mahoney ‘15].

σi
(
ATA(ATkAk)−1

)
=

1 for i ≥ k,
0 for i < k.

σi
(
ATA(ATA+ λI)−1

)
=

σ2i
σ2i + λ

38

soft step

Relatively “gentle” soft step:

0 5 10 15 20 25 30 35 40 45 50

0

0.2

0.4

0.6

0.8

1

σ
 i

σ i (
A

T
A

(B
T
B

)−
1)

39

another perspective

We can “wash out” the importance of columns by computing
leverage scores over A with an identity appended:

ai
 y
 =
 ai
A

Effect is weaker when ai aligns with large singular vectors of A.

40

another perspective

We can “wash out” the importance of columns by computing
leverage scores over A with an identity appended:

ai
 y
 =
 ai
A

Effect is weaker when ai aligns with large singular vectors of A.

40

another perspective

We can “wash out” the importance of columns by computing
leverage scores over A with an identity appended:

ai
 y
 =
 ai
A

√λ

√λ

√λ

√λ

√λ

√λ

Effect is weaker when ai aligns with large singular vectors of A.

40

another perspective

We can “wash out” the importance of columns by computing
leverage scores over A with an identity appended:

ai
 y
 =
 ai
A

√λ

√λ

√λ

√λ

√λ

√λ

Effect is weaker when ai aligns with large singular vectors of A. 40

main theorem

Theorem (Ridge Leverage Score Sampling)

With λ set to ∥A− Ak∥2F/k, sampling O(k log k/ϵ2) columns by
ridge leverage score produces an ϵ error projection cost
preserving sketch with high probability.

Sampling O(k log k/ϵ)
columns produces an ϵ error column subset.

Furthermore, (∥A− Ak∥2F/k)-ridge leverage scores are
monotonic with respect to column additions.

41

main theorem

Theorem (Ridge Leverage Score Sampling)

With λ set to ∥A− Ak∥2F/k, sampling O(k log k/ϵ2) columns by
ridge leverage score produces an ϵ error projection cost
preserving sketch with high probability. Sampling O(k log k/ϵ)
columns produces an ϵ error column subset.

Furthermore, (∥A− Ak∥2F/k)-ridge leverage scores are
monotonic with respect to column additions.

41

main theorem

Theorem (Ridge Leverage Score Sampling)

With λ set to ∥A− Ak∥2F/k, sampling O(k log k/ϵ2) columns by
ridge leverage score produces an ϵ error projection cost
preserving sketch with high probability. Sampling O(k log k/ϵ)
columns produces an ϵ error column subset.

Furthermore, (∥A− Ak∥2F/k)-ridge leverage scores are
monotonic with respect to column additions.

41

monotonicity of ridge leverage scores

ai
 y
 =
 ai
A

√λ

√λ

√λ

√λ

√λ

√λ

Since λ = ∥A− Ak∥2F can only increase as columns are added to
A, this perspective immediately implies that ridge leverage
score are monotonic.

42

intermediate result

With λ set to ∥A− Ak∥2F/k, sampling by ridge leverage score
produces a sketch Ã such that:

(1− ϵ)ÃÃT − ϵ
∥A− Ak∥2F

k I ⪯ AAT ⪯ (1+ ϵ)ÃÃT + ϵ
∥A− Ak∥2F

k I

Multiplicative error of a subspace embedding.

Additive error of a Frequent Directions sketch [Ghashami,
Liberty, Phillips, Woodruff].

Both are known to give projection cost preserving sketches.
Handling both errors simultaneously is tedious, but not hard.

43

intermediate result

With λ set to ∥A− Ak∥2F/k, sampling by ridge leverage score
produces a sketch Ã such that:

(1− ϵ)ÃÃT − ϵ
∥A− Ak∥2F

k I ⪯ AAT ⪯ (1+ ϵ)ÃÃT + ϵ
∥A− Ak∥2F

k I

Multiplicative error of a subspace embedding.

Additive error of a Frequent Directions sketch [Ghashami,
Liberty, Phillips, Woodruff].

Both are known to give projection cost preserving sketches.
Handling both errors simultaneously is tedious, but not hard.

43

intermediate result

With λ set to ∥A− Ak∥2F/k, sampling by ridge leverage score
produces a sketch Ã such that:

(1− ϵ)ÃÃT − ϵ
∥A− Ak∥2F

k I ⪯ AAT ⪯ (1+ ϵ)ÃÃT + ϵ
∥A− Ak∥2F

k I

Multiplicative error of a subspace embedding.

Additive error of a Frequent Directions sketch [Ghashami,
Liberty, Phillips, Woodruff].

Both are known to give projection cost preserving sketches.
Handling both errors simultaneously is tedious, but not hard.

43

intermediate result

With λ set to ∥A− Ak∥2F/k, sampling by ridge leverage score
produces a sketch Ã such that:

(1− ϵ)ÃÃT − ϵ
∥A− Ak∥2F

k I ⪯ AAT ⪯ (1+ ϵ)ÃÃT + ϵ
∥A− Ak∥2F

k I

Multiplicative error of a subspace embedding.

Additive error of a Frequent Directions sketch [Ghashami,
Liberty, Phillips, Woodruff].

Both are known to give projection cost preserving sketches.
Handling both errors simultaneously is tedious, but not hard.

43

mixed error bound→ projection cost preserving sketch

(1− ϵ)ÃÃT−ϵ
∥A− Ak∥2F

k I ⪯ AAT ⪯ (1+ ϵ)ÃÃT+ϵ
∥A− Ak∥2F

k I

∥Ã− QQTÃ∥2F = (1± ϵ)∥A− QQTA∥2F

Sum of vector products with Ã. Each preserved to within a
(1± ϵ) factor, so the entire sum is as well.

44

mixed error bound→ projection cost preserving sketch

(1− ϵ)ÃÃT−ϵ
∥A− Ak∥2F

k I ⪯ AAT ⪯ (1+ ϵ)ÃÃT+ϵ
∥A− Ak∥2F

k I

∥Ã− QQTÃ∥2F = (1± ϵ)∥A− QQTA∥2F

Sum of vector products with Ã. Each preserved to within a
(1± ϵ) factor, so the entire sum is as well.

44

mixed error bound→ projection cost preserving sketch

(1− ϵ)ÃÃT−ϵ
∥A− Ak∥2F

k I ⪯ AAT ⪯ (1+ ϵ)ÃÃT+ϵ
∥A− Ak∥2F

k I

∥Ã− QQTÃ∥2F = (1± ϵ)∥A− QQTA∥2F

Sum of vector products with Ã. Each preserved to within a
(1± ϵ) factor, so the entire sum is as well.

44

mixed error bound→ projection cost preserving sketch

(1− ϵ)ÃÃT−ϵ
∥A− Ak∥2F

k I ⪯ AAT ⪯ (1+ ϵ)ÃÃT+ϵ
∥A− Ak∥2F

k I

∥(I− QQT)Ã∥2F = (1± ϵ)∥(I− QQT)A∥2F

Sum of vector products with Ã. Each preserved to within a
(1± ϵ) factor, so the entire sum is as well.

44

mixed error bound→ projection cost preserving sketch

(1− ϵ)ÃÃT−ϵ
∥A− Ak∥2F

k I ⪯ AAT ⪯ (1+ ϵ)ÃÃT+ϵ
∥A− Ak∥2F

k I

∥(I− QQT)Ã∥2F = (1± ϵ)∥(I− QQT)A∥2F

Sum of vector products with Ã. Each preserved to within a
(1± ϵ) factor, so the entire sum is as well.

44

mixed error bound→ projection cost preserving sketch

(1− ϵ)ÃÃT−ϵ
∥A− Ak∥2F

k I ⪯ AAT ⪯ (1+ ϵ)ÃÃT + ϵ
∥A− Ak∥2F

k I

Intuition:

Dealing with rank k operators (Q is rank k), so we only pay the
additive error k times.

total additive error = k · ϵ∥A− Ak∥2F
k

= ϵ∥A− Ak∥2F
≤ ϵ∥A− QQTA∥2F

Since Ak is a better low-rank approximation than any QQTA.

45

mixed error bound→ projection cost preserving sketch

(1− ϵ)ÃÃT−ϵ
∥A− Ak∥2F

k I ⪯ AAT ⪯ (1+ ϵ)ÃÃT + ϵ
∥A− Ak∥2F

k I

Intuition:

Dealing with rank k operators (Q is rank k), so we only pay the
additive error k times.

total additive error = k · ϵ∥A− Ak∥2F
k

= ϵ∥A− Ak∥2F
≤ ϵ∥A− QQTA∥2F

Since Ak is a better low-rank approximation than any QQTA.

45

mixed error bound→ projection cost preserving sketch

(1− ϵ)ÃÃT−ϵ
∥A− Ak∥2F

k I ⪯ AAT ⪯ (1+ ϵ)ÃÃT + ϵ
∥A− Ak∥2F

k I

Intuition:

Dealing with rank k operators (Q is rank k), so we only pay the
additive error k times.

total additive error = k · ϵ∥A− Ak∥2F
k

= ϵ∥A− Ak∥2F
≤ ϵ∥A− QQTA∥2F

Since Ak is a better low-rank approximation than any QQTA.

45

mixed error bound→ projection cost preserving sketch

(1− ϵ)ÃÃT−ϵ
∥A− Ak∥2F

k I ⪯ AAT ⪯ (1+ ϵ)ÃÃT + ϵ
∥A− Ak∥2F

k I

Intuition:

Dealing with rank k operators (Q is rank k), so we only pay the
additive error k times.

total additive error = k · ϵ∥A− Ak∥2F
k

= ϵ∥A− Ak∥2F
≤ ϵ∥A− QQTA∥2F

Since Ak is a better low-rank approximation than any QQTA.

45

mixed error bound→ projection cost preserving sketch

(1− ϵ)ÃÃT−ϵ
∥A− Ak∥2F

k I ⪯ AAT ⪯ (1+ ϵ)ÃÃT + ϵ
∥A− Ak∥2F

k I

Intuition:

Dealing with rank k operators (Q is rank k), so we only pay the
additive error k times.

total additive error = k · ϵ∥A− Ak∥2F
k

= ϵ∥A− Ak∥2F

≤ ϵ∥A− QQTA∥2F

Since Ak is a better low-rank approximation than any QQTA.

45

mixed error bound→ projection cost preserving sketch

(1− ϵ)ÃÃT−ϵ
∥A− Ak∥2F

k I ⪯ AAT ⪯ (1+ ϵ)ÃÃT + ϵ
∥A− Ak∥2F

k I

Intuition:

Dealing with rank k operators (Q is rank k), so we only pay the
additive error k times.

total additive error = k · ϵ∥A− Ak∥2F
k

= ϵ∥A− Ak∥2F
≤ ϵ∥A− QQTA∥2F

Since Ak is a better low-rank approximation than any QQTA.
45

mixed error proof

(1− ϵ)ÃÃT − ϵ
∥A− Ak∥2F

k I ⪯ AAT ⪯ (1+ ϵ)ÃÃT + ϵ
∥A− Ak∥2F

k I

Proof follows directly from our “appending an identity” view!

46

mixed error proof

A

√λ

√λ

√λ

√λ

√λ

√λ

Proof:

1. Leverage score sampling clearly works if we set pi > log n
ϵ τi.

2. Take identity columns with probability one, everything else
with leverage score probabilities.

3. Obtain a sketch B = [Ã,
√
λI] satisfying:

(1− ϵ)BBT ⪯ AAT + λI ⪯ (1+ ϵ)BBT

4. (1− ϵ)(ÃÃT + λI) ⪯ AAT + λI ⪯ (1+ ϵ)(ÃÃT + λI)

47

mixed error proof

A

√λ

√λ

√λ

√λ

√λ

√λ

Proof:

1. Leverage score sampling clearly works if we set pi > log n
ϵ τi.

2. Take identity columns with probability one, everything else
with leverage score probabilities.

3. Obtain a sketch B = [Ã,
√
λI] satisfying:

(1− ϵ)BBT ⪯ AAT + λI ⪯ (1+ ϵ)BBT

4. (1− ϵ)(ÃÃT + λI) ⪯ AAT + λI ⪯ (1+ ϵ)(ÃÃT + λI)

47

mixed error proof

A

√λ

√λ

√λ

√λ

√λ

√λ

Proof:

1. Leverage score sampling clearly works if we set pi > log n
ϵ τi.

2. Take identity columns with probability one, everything else
with leverage score probabilities.

3. Obtain a sketch B = [Ã,
√
λI] satisfying:

(1− ϵ)BBT ⪯ AAT + λI ⪯ (1+ ϵ)BBT

4. (1− ϵ)(ÃÃT + λI) ⪯ AAT + λI ⪯ (1+ ϵ)(ÃÃT + λI)

47

mixed error proof

A

√λ

√λ

√λ

√λ

√λ

√λ

Proof:

1. Leverage score sampling clearly works if we set pi > log n
ϵ τi.

2. Take identity columns with probability one, everything else
with leverage score probabilities.

3. Obtain a sketch B = [Ã,
√
λI] satisfying:

(1− ϵ)BBT ⪯ AAT + λI ⪯ (1+ ϵ)BBT

4. (1− ϵ)(ÃÃT + λI) ⪯ AAT + λI ⪯ (1+ ϵ)(ÃÃT + λI)

47

mixed error proof

A

√λ

√λ

√λ

√λ

√λ

√λ

Proof:

1. Leverage score sampling clearly works if we set pi > log n
ϵ τi.

2. Take identity columns with probability one, everything else
with leverage score probabilities.

3. Obtain a sketch B = [Ã,
√
λI] satisfying:

(1− ϵ)BBT ⪯ AAT + λI ⪯ (1+ ϵ)BBT

4. (1− ϵ)(ÃÃT + λI) ⪯ AAT + λI ⪯ (1+ ϵ)(ÃÃT + λI)
47

mixed error proof

A

√λ

√λ

√λ

√λ

√λ

√λ

Proof:

1. Leverage score sampling clearly works if we set pi > log n
ϵ τi.

2. Take identity columns with probability one, everything else
with leverage score probabilities.

3. Obtain a sketch B = [Ã,
√
λI] satisfying:

(1− ϵ)BBT ⪯ AAT + λI ⪯ (1+ ϵ)BBT

4. (1− ϵ)ÃÃT − ϵλI ⪯ AAT ⪯ (1+ ϵ)ÃÃT + ϵλI
47

mixed error proof

A

√λ

√λ

√λ

√λ

√λ

√λ

Number of columns sampled to form Ã depends on sum of
leverage scores, outside of the identity columns.

d∑
i=1

τ̃(ai) = tr
(
AT
(
ATA+

∥A− Ak∥2F
k I

)−1
A
)

=
d∑
i=1

σi

(
AT
(
ATA+

∥A− Ak∥2F
k I

)−1
A
)

≤ k+
d∑

i=k+1

σi(A)
σi(A) +

∥A−Ak∥2F
k

= k+ k = O(k).

48

mixed error proof

A

√λ

√λ

√λ

√λ

√λ

√λ

Number of columns sampled to form Ã depends on sum of
leverage scores, outside of the identity columns.
d∑
i=1

τ̃(ai) = tr
(
AT
(
ATA+

∥A− Ak∥2F
k I

)−1
A
)

=
d∑
i=1

σi

(
AT
(
ATA+

∥A− Ak∥2F
k I

)−1
A
)

≤ k+
d∑

i=k+1

σi(A)
σi(A) +

∥A−Ak∥2F
k

= k+ k = O(k).

48

mixed error proof

A

√λ

√λ

√λ

√λ

√λ

√λ

Number of columns sampled to form Ã depends on sum of
leverage scores, outside of the identity columns.
d∑
i=1

τ̃(ai) = tr
(
AT
(
ATA+

∥A− Ak∥2F
k I

)−1
A
)

=
d∑
i=1

σi

(
AT
(
ATA+

∥A− Ak∥2F
k I

)−1
A
)

≤ k+
d∑

i=k+1

σi(A)
σi(A) +

∥A−Ak∥2F
k

= k+ k = O(k).

48

mixed error proof

A

√λ

√λ

√λ

√λ

√λ

√λ

Number of columns sampled to form Ã depends on sum of
leverage scores, outside of the identity columns.

d∑
i=1

τ̃(ai) = tr
(
AT
(
ATA+

∥A− Ak∥2F
k I

)−1
A
)

=
d∑
i=1

σi(A)
σi(A) +

∥A−Ak∥2F
k

≤ k+
d∑

i=k+1

σi(A)
σi(A) +

∥A−Ak∥2F
k

= k+ k = O(k).

48

mixed error proof

A

√λ

√λ

√λ

√λ

√λ

√λ

Number of columns sampled to form Ã depends on sum of
leverage scores, outside of the identity columns.

d∑
i=1

τ̃(ai) = tr
(
AT
(
ATA+

∥A− Ak∥2F
k I

)−1
A
)

=
d∑
i=1

σi(A)
σi(A) +

∥A−Ak∥2F
k

≤ k+
d∑

i=k+1

σi(A)
σi(A) +

∥A−Ak∥2F
k

= k+ k = O(k).

48

mixed error proof

A

√λ

√λ

√λ

√λ

√λ

√λ

Number of columns sampled to form Ã depends on sum of
leverage scores, outside of the identity columns.

d∑
i=1

τ̃(ai) = tr
(
AT
(
ATA+

∥A− Ak∥2F
k I

)−1
A
)

=
d∑
i=1

σi(A)
σi(A) +

∥A−Ak∥2F
k

≤ k+
d∑

i=k+1

σi(A)
∥A−Ak∥2F

k

= k+ k = O(k).

48

mixed error proof

A

√λ

√λ

√λ

√λ

√λ

√λ

Number of columns sampled to form Ã depends on sum of
leverage scores, outside of the identity columns.

d∑
i=1

τ̃(ai) = tr
(
AT
(
ATA+

∥A− Ak∥2F
k I

)−1
A
)

=
d∑
i=1

σi(A)
σi(A) +

∥A−Ak∥2F
k

≤ k+
d∑

i=k+1

σi(A)
∥A−Ak∥2F

k

= k+ k

= O(k).

48

mixed error proof

A

√λ

√λ

√λ

√λ

√λ

√λ

Number of columns sampled to form Ã depends on sum of
leverage scores, outside of the identity columns.

d∑
i=1

τ̃(ai) = tr
(
AT
(
ATA+

∥A− Ak∥2F
k I

)−1
A
)

=
d∑
i=1

σi(A)
σi(A) +

∥A−Ak∥2F
k

≤ k+
d∑

i=k+1

σi(A)
∥A−Ak∥2F

k

= k+ k = O(k). 48

additional results

Proving the column subset selection result requires a bit of
additional work, but otherwise the rest of our paper focus on
two main applications of monotonicity:

1. The first nnz(A) time low-rank approximation algorithm
based on iterative column sampling.

2. Single pass algorithms for ridge leverage score sampling
whose memory requirements do not increase with d.

Please checkout the arXiv preprint!

49

additional results

Proving the column subset selection result requires a bit of
additional work, but otherwise the rest of our paper focus on
two main applications of monotonicity:

1. The first nnz(A) time low-rank approximation algorithm
based on iterative column sampling.

2. Single pass algorithms for ridge leverage score sampling
whose memory requirements do not increase with d.

Please checkout the arXiv preprint!

49

additional results

Proving the column subset selection result requires a bit of
additional work, but otherwise the rest of our paper focus on
two main applications of monotonicity:

1. The first nnz(A) time low-rank approximation algorithm
based on iterative column sampling.

2. Single pass algorithms for ridge leverage score sampling
whose memory requirements do not increase with d.

Please checkout the arXiv preprint!

49

additional results

Proving the column subset selection result requires a bit of
additional work, but otherwise the rest of our paper focus on
two main applications of monotonicity:

1. The first nnz(A) time low-rank approximation algorithm
based on iterative column sampling.

2. Single pass algorithms for ridge leverage score sampling
whose memory requirements do not increase with d.

Please checkout the arXiv preprint!

49

