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resources

Paper, slides, and template code available at
chrismusco.com
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our work

Simple, robust algorithms for principal component regression.
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principal component regression

Principal Component Regression (PCR) =

Principal Component Analysis (unsupervised)

+
Linear Regression (supervised)
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our approach: skip the dimensionality reduction

PCA Regression
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Regression is cheap (fast iterative or stochastic methods).

PCA is a major computational bottleneck.
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our approach: skip the dimensionality reduction

Single-shot iterative algorithm
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Final algorithm just uses a few applications of any fast,
black-box regression routine.
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formal setup

Standard Regression:

Given: A, b
Solve: x∗ = argminx ∥Ax− b∥2

Principal Component Regression:

Given: A, b, λ
Solve: x∗ = argminx ∥Aλx− b∥2
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formal setup

Singular values of A
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formal setup

Principal Component Regression (PCR):
Goal: x∗ = argminx ∥Aλx− b∥2

Solution: x = (ATλAλ)−1ATλb

What’s the computational cost?
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naive pcr runtime

Cost of computing Aλ (PCA):

≈ O(nnz(A)k+ dk2).

k is the number of principal components with value > λ.

Cost of evaluating x = (ATλAλ)−1ATλb (regression):

≈ O(nnz(A) · √κ).

For PCR, k is large, κ is small (Aλ is well conditioned).
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our goal

Goal: Remove bottleneck dependence on k
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reason for hope?

Optimistic observation: PCA computes too much information.

x∗ = (ATλAλ)−1ATλb =

(ATA)−1 ATλb

Don’t need to compute Aλ (which incurs a k dependence) as
long as we can apply it to a single vector efficiently.
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reason for hope?

It’s very often more efficient to apply a matrix function once
than compute the matrix function explicitly.

∙ (ATA)x, (ATA)2x, or (ATA)3x
∙ A−1x
∙ exp(A) . . . many more

Why not Aλ?
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main result

Theorem (Main Result)

There’s an algorithm that approximately applies ATλ to any
vector b using ≈ log(1/ϵ) well conditioned linear system
solutions.

PCR in ≈ O(nnz(A) · √κ) time.
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decomposing matrix

Goal: Apply ATλ quickly to any vector.
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decomposing matrix
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decomposing matrix

ATλb = SATb
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decomposing matrix

How do we apply S to ATb?

This is actually a common task.

∙ Saad, Bekas, Kokiopoulou, Erhel, Guyomarc’h, Napoli,
Polizzi, others: Applications in eigenvalue counting,
computational materials science, learning problems like
eigenfaces and LSI, etc.

∙ Tremblay, Puy, Gribonval, Vandergheynst: “Compressive
Spectral Clustering” ICML 2016.
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a first approximation

We turn to Ridge Regression, a popular alternative to PCR:

Goal: x∗ = argminx ∥Ax− b∥2 + λ∥x∥2.
Solution: x∗ = (ATA+ λI)−1ATb.

Claim:

R = (ATA+ λI)−1ATA
coarsely approximates S.
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a first approximation

Singular values of S:

σi(S) =

1 if σ2i (A) ≥ λ,
0 if σ2i (A) < λ.

Singular values of R = (ATA+ λI)−1ATA:

σi(R) =
σ2i (A)

σ2i (A) + λ

≈

1 if σ2i (A) >> λ,
0 if σ2i (A) << λ.
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a first approximation
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final step

Easy to sharpen this approximation.

σi(R) =

≥ 1/2 if σ2i (A) ≥ λ,
< 1/2 if σ2i (A) < λ.

Compose R with approximate symmetric step function:
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S ≈ poly(R) = c1R+ c2R2 +

c3R3 + c4R4 + c5R5 + . . .
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final algorithm

1. Compute RATb, R2ATb, . . . RO(log 1/ϵ)ATb.

2. Approximate SATb ≈ (c1R+ c2R2 + . . . cO(log 1/ϵ)RO(log 1/ϵ))ATb.
3. Apply (ATA)−1 to SATb

1. O(log 1/ϵ) calls to a regression algorithm.
2. Low cost linear combination of vectors.
3. One call to a regression algorithm
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note on prior work

In prior work, S is approximated directly using a matrix
polynomial. Why not here?

∙ We match polynomial approximation, but can be faster when
non-standard regression algorithms are used.

∙ We give a full end-to-end runtime and stability analysis.
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final algorithm

I’m leaving out a lot of details...

∙ Analysis of error propagation through approximate
operations.

∙ Recurrence for stable application of symmetric step
polynomial.

∙ More work to make last regression step stable and fast.

But the algorithm itself remains simple!
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sample code
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experimental results

Synthetic data (with small spectral gap)

0 20 40 60 80 100 120 140 160 180 200
0

0.05

0.1

0.15

0.2

0.25

iterations

re
la

tiv
e 

er
ro

r

Standard Algorithm

Krylov Accelerated Algorithm

25



experimental results

Synthetic data (with small spectral gap)

0 20 40 60 80 100 120 140 160 180 200
0

0.05

0.1

0.15

0.2

0.25

iterations

re
la

tiv
e 

er
ro

r

Standard Algorithm Krylov Accelerated Algorithm 25



experimental results

Synthetic data (with small spectral gap)

0 20 40 60 80 100 120 140 160 180 200
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

iterations

re
la

tiv
e 

er
ro

r

Standard Algorithm Krylov Accelerated Algorithm 25



conclusion

Take away: PCR can be computed without explicit PCA.

Ridge regression + matrix polynomial = efficient operator
access to A’s top principal components.

Questions? Joint work with:

Roy Frostig Cameron Musco Aaron Sidford
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