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OUR WORK

Simple, robust algorithms for principal component regression.



PRINCIPAL COMPONENT REGRESSION

Principal Component Regression (PCR) =

Principal Component Analysis (unsupervised)
+

Linear Regression (supervised)
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PCA Regression

Regression is cheap (fast iterative or stochastic methods).

PCA is a major computational bottleneck.
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OUR APPROACH: SKIP THE DIMENSIONALITY REDUCTION

Single-shot iterative algorithm

Final algorithm just uses a few applications of any fast,
black-box regression routine.
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FORMAL SETUP

Principal Component Regression (PCR):

Goal: x* = argmin, ||A.x — b|?
Solution: x = (A[A)7'Alb

What's the computational cost?
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NAIVE PCR RUNTIME

Cost of computing Ay (PCA):
~ O(nnz(A)k + dk7).
is the number of principal components with value > \.

Cost of evaluating x = (AJA,)~'Alb (regression):

~ O(nnz(A) - VkK).

For PCR, R is large, « is small (A, is well conditioned).



OUR GOAL

Goal: Remove bottleneck dependence on
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REASON FOR HOPE?

Optimistic observation: PCA computes

x* = (AIA,)'Alb = (ATA)"' Alb

Don't need to compute Ay (which incurs a k dependence) as
long as we can apply it to a single vector efficiently.
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REASON FOR HOPE?

It's very often more efficient to apply a matrix function once
than compute the matrix function explicitly.

- (ATA)x, (ATA)?x, or (ATA)*x
- AT

- exp(A) ... many more

Why not A,?
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Theorem (Main Result)
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MAIN RESULT

Theorem (Main Result)

There’s an algorithm that approximately applies Al to any

vector b using ~ log(1/¢) well conditioned linear system
solutions.

PCR in ~ O(nnz(A) - /r) time.
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DECOMPOSING MATRIX
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DECOMPOSING MATRIX

How do we apply S to ATb?

This is actually a common task.

- Saad, Bekas, Kokiopoulou, Erhel, Guyomarc’h, Napoli,
Polizzi, others: Applications in eigenvalue counting,
computational materials science, learning problems like
eigenfaces and LS|, etc.

- Tremblay, Puy, Gribonval, Vandergheynst: “Compressive
Spectral Clustering” ICML 2016.
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A FIRST APPROXIMATION

We turn to Ridge Regression, a popular alternative to PCR:

Goal: x* = argmin, ||Ax — b||? + A||x||.
Solution: x* = (ATA + AlI)~'ATb.

Claim:

R=(ATA+ \I)'ATA
coarsely approximates S.
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A FIRST APPROXIMATION

Singular values of S:

) {1 ?fa,z(A) > A
0 ifor(A) <A

Singular values of R = (ATA + AI)~"ATA:

a?(A)+ A

o (R) = O'iZ(A) N {W if rr(A) > A
0 ifof(A) << A



A FIRST APPROXIMATION
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FINAL ALGORITHM

1. Compute RATb, R?ATb, ... RO(0g1/e)ATh.
2. Approximate SA™b & (¢iR + R? + . ... Co(og 1/ RO /))ATD.
3. Apply (ATA)~" to SATb

1. O(log1/e) calls to a regression algorithm.
2. Low cost linear combination of vectors.

3. One call to a regression algorithm

21
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In prior work, S is approximated directly using a matrix
polynomial. Why not here?
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NOTE ON PRIOR WORK

In prior work, S is approximated directly using a matrix
polynomial. Why not here?

- We match polynomial approximation, but can be faster when
non-standard regression algorithms are used.

- We give a full end-to-end runtime and stability analysis.
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operations.
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- More work to make last regression step stable and fast.
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FINAL ALGORITHM

I'm leaving out a lot of details...

- Analysis of error propagation through approximate
operations.

- Recurrence for stable application of symmetric step
polynomial.
- More work to make last regression step stable and fast.

But the algorithm itself remains simple!
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SAMPLE CODE

function [x,patb] = fpcr(A, b, lambda, iter)
z = A'xb;
pz = ridgeReg(A,Axz, lambda);

w = pz - z/2;
for i = 1l:iter
w = 4% (2%i+1)/(2%i)*ridgeReg(A, ...
Ax(w - ridgeReg(A,Axw,lambda)), lambda);
pz = pz + 1/(2%i+1)x*w;
end
patb = pz;

X = robustReg(A,pz, lambda);
end

function x = robustReg(A,pz, lambda)
tol = 1le-5; %default
function y = afun(z,~)
y = A'x(Axz) + tolxlambdaxz;
end
[x,~] = pcg(@afun,pz);
end
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EXPERIMENTAL RESULTS
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CONCLUSION

Take away: PCR can be computed without explicit PCA.

Ridge regression + matrix polynomial = efficient operator
access to A’s top principal components.
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CONCLUSION

Take away: PCR can be computed without explicit PCA.

Ridge regression + matrix polynomial = efficient operator
access to A’s top principal components.

Questions? Joint work with:

Roy Frostig Cameron Musco Aaron Sidford
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