
principal component regression
without principal component analysis

Roy Frostig 1, Cameron Musco 2, Christopher Musco 2, Aaron Sidford 3

1Stanford, 2MIT, 3Microsoft Reseach

0



resources

Paper, slides, and template code available at
chrismusco.com

1

chrismusco.com


our work

Simple, robust algorithms for principal component regression.

2



principal component regression

Principal Component Regression (PCR) =

Principal Component Analysis (unsupervised)

+
Linear Regression (supervised)

3



our approach: skip the dimensionality reduction

PCA Regression

−15
−10

−5
0

5
10

15

−15

−10

−5

0

5

10

15
−15

−10

−5

0

5

10

15

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

Regression is cheap (fast iterative or stochastic methods).

PCA is a major computational bottleneck.

4



our approach: skip the dimensionality reduction

PCA Regression

−15
−10

−5
0

5
10

15

−15

−10

−5

0

5

10

15
−15

−10

−5

0

5

10

15

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

Regression is cheap (fast iterative or stochastic methods).

PCA is a major computational bottleneck.

4



our approach: skip the dimensionality reduction

Single-shot iterative algorithm

−15
−10

−5
0

5
10

15

−15

−10

−5

0

5

10

15
−15

−10

−5

0

5

10

15

−15
−10

−5
0

5
10

15

−15

−10

−5

0

5

10

15
−15

−10

−5

0

5

10

15

Final algorithm just uses a few applications of any fast,
black-box regression routine.

5



our approach: skip the dimensionality reduction

Single-shot iterative algorithm

−15
−10

−5
0

5
10

15

−15

−10

−5

0

5

10

15
−15

−10

−5

0

5

10

15

−15
−10

−5
0

5
10

15

−15

−10

−5

0

5

10

15
−15

−10

−5

0

5

10

15

Final algorithm just uses a few applications of any fast,
black-box regression routine.

5



formal setup

Standard Regression:

Given: A, b
Solve: x∗ = argminx ∥Ax− b∥2

Principal Component Regression:

Given: A, b, λ
Solve: x∗ = argminx ∥Aλx− b∥2

A
 =
 U
 VT


σ1

σ2


σd-1

σd


left singular vectors
 singular values
 right singular vectors


Σ


features


da
ta

 p
oi

nt
s


6



formal setup

Standard Regression:

Given: A, b
Solve: x∗ = argminx ∥Ax− b∥2

Principal Component Regression:

Given: A, b, λ
Solve: x∗ = argminx ∥Aλx− b∥2

A
 =
 U
 VT


σ1

σ2


σd-1

σd


left singular vectors
 singular values
 right singular vectors


Σ


features


da
ta

 p
oi

nt
s


6



formal setup

Standard Regression:

Given: A, b
Solve: x∗ = argminx ∥Ax− b∥2

Principal Component Regression:

Given: A, b, λ
Solve: x∗ = argminx ∥Aλx− b∥2

A
 =
 U
 VT


σ1

σ2


σd-1

σd


left singular vectors
 singular values
 right singular vectors


Σ


features


da
ta

 p
oi

nt
s


6



formal setup

Standard Regression:

Given: A, b
Solve: x∗ = argminx ∥Ax− b∥2

Principal Component Regression:

Given: A, b, λ
Solve: x∗ = argminx ∥Aλx− b∥2

Aλ
 =
 Σk


σ1

σ2


σd-1

σd


Uλ

VλT


Σλ


left singular vectors
 singular values
 right singular vectors
features


da
ta

 p
oi

nt
s


6



formal setup

Singular values of A

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

i

σ
i

 


2

7



formal setup

Singular values of A

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

i

σ
i

“Signal”


“Noise”


λ


2

7



formal setup

Singular values of Aλ

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

i

σ
i

“Signal”


λ

“Noise”


2

7



formal setup

Principal Component Regression (PCR):
Goal: x∗ = argminx ∥Aλx− b∥2

Solution: x = (ATλAλ)−1ATλb

What’s the computational cost?

8



naive pcr runtime

Cost of computing Aλ (PCA):

≈ O(nnz(A)k+ dk2).

k is the number of principal components with value > λ.

Cost of evaluating x = (ATλAλ)−1ATλb (regression):

≈ O(nnz(A) · √κ).

For PCR, k is large, κ is small (Aλ is well conditioned).

9



naive pcr runtime

Cost of computing Aλ (PCA):

≈ O(nnz(A)k+ dk2).

k is the number of principal components with value > λ.

Cost of evaluating x = (ATλAλ)−1ATλb (regression):

≈ O(nnz(A) · √κ).

For PCR, k is large, κ is small (Aλ is well conditioned).

9



naive pcr runtime

Cost of computing Aλ (PCA):

≈ O(nnz(A)k+ dk2).

k is the number of principal components with value > λ.

Cost of evaluating x = (ATλAλ)−1ATλb (regression):

≈ O(nnz(A) · √κ).

For PCR, k is large, κ is small (Aλ is well conditioned).

9



naive pcr runtime

Cost of computing Aλ (PCA):

≈ O(nnz(A)k+ dk2).

k is the number of principal components with value > λ.

Cost of evaluating x = (ATλAλ)−1ATλb (regression):

≈ O(nnz(A) · √κ).

For PCR, k is large, κ is small (Aλ is well conditioned).

9



our goal

Goal: Remove bottleneck dependence on k

10



reason for hope?

Optimistic observation: PCA computes too much information.

x∗ = (ATλAλ)−1ATλb =

(ATA)−1 ATλb

Don’t need to compute Aλ (which incurs a k dependence) as
long as we can apply it to a single vector efficiently.

11



reason for hope?

Optimistic observation: PCA computes too much information.

x∗ = (ATλAλ)−1ATλb =

(ATA)−1 ATλb

Don’t need to compute Aλ (which incurs a k dependence) as
long as we can apply it to a single vector efficiently.

11



reason for hope?

Optimistic observation: PCA computes too much information.

x∗ = (ATλAλ)−1ATλb = (ATA)−1 ATλb

Don’t need to compute Aλ (which incurs a k dependence) as
long as we can apply it to a single vector efficiently.

11



reason for hope?

Optimistic observation: PCA computes too much information.

x∗ = (ATλAλ)−1ATλb = (ATA)−1 ATλb

Don’t need to compute Aλ (which incurs a k dependence) as
long as we can apply it to a single vector efficiently.

11



reason for hope?

It’s very often more efficient to apply a matrix function once
than compute the matrix function explicitly.

∙ (ATA)x, (ATA)2x, or (ATA)3x
∙ A−1x
∙ exp(A) . . . many more

Why not Aλ?

12



reason for hope?

It’s very often more efficient to apply a matrix function once
than compute the matrix function explicitly.

∙ (ATA)x, (ATA)2x, or (ATA)3x

∙ A−1x
∙ exp(A) . . . many more

Why not Aλ?

12



reason for hope?

It’s very often more efficient to apply a matrix function once
than compute the matrix function explicitly.

∙ (ATA)x, (ATA)2x, or (ATA)3x
∙ A−1x

∙ exp(A) . . . many more

Why not Aλ?

12



reason for hope?

It’s very often more efficient to apply a matrix function once
than compute the matrix function explicitly.

∙ (ATA)x, (ATA)2x, or (ATA)3x
∙ A−1x
∙ exp(A) . . . many more

Why not Aλ?

12



reason for hope?

It’s very often more efficient to apply a matrix function once
than compute the matrix function explicitly.

∙ (ATA)x, (ATA)2x, or (ATA)3x
∙ A−1x
∙ exp(A) . . . many more

Why not Aλ?

12



main result

Theorem (Main Result)

There’s an algorithm that approximately applies ATλ to any
vector b using ≈ log(1/ϵ) well conditioned linear system
solutions.

PCR in ≈ O(nnz(A) · √κ) time.

13



main result

Theorem (Main Result)

There’s an algorithm that approximately applies ATλ to any
vector b using ≈ log(1/ϵ) well conditioned linear system
solutions.

PCR in ≈ O(nnz(A) · √κ) time.

13



decomposing matrix

Goal: Apply ATλ quickly to any vector.

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

i

σ
i

λ


Spectrum of Aλ
2

14



decomposing matrix

Goal: Apply ATλ quickly to any vector.

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

i

σ
i

λ


Spectrum of Aλ
2

14



decomposing matrix

0 100 200 300 400 500 600 700 800 900 1000
−0.5

0

0.5

1

1.5

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

35

40

45

50

i

σ
i Spectrum of A


Spectrum of S


AλT = SAT 

2

i(large σi) (small σi)
14



decomposing matrix

ATλb = SATb

0 100 200 300 400 500 600 700 800 900 1000
−0.5

0

0.5

1

1.5

Spectrum of S


i(large σi) (small σi)

How do we apply S to ATb?
15



decomposing matrix

How do we apply S to ATb?

This is actually a common task.

∙ Saad, Bekas, Kokiopoulou, Erhel, Guyomarc’h, Napoli,
Polizzi, others: Applications in eigenvalue counting,
computational materials science, learning problems like
eigenfaces and LSI, etc.

∙ Tremblay, Puy, Gribonval, Vandergheynst: “Compressive
Spectral Clustering” ICML 2016.

16



decomposing matrix

How do we apply S to ATb?

This is actually a common task.

∙ Saad, Bekas, Kokiopoulou, Erhel, Guyomarc’h, Napoli,
Polizzi, others: Applications in eigenvalue counting,
computational materials science, learning problems like
eigenfaces and LSI, etc.

∙ Tremblay, Puy, Gribonval, Vandergheynst: “Compressive
Spectral Clustering” ICML 2016.

16



decomposing matrix

How do we apply S to ATb?

This is actually a common task.

∙ Saad, Bekas, Kokiopoulou, Erhel, Guyomarc’h, Napoli,
Polizzi, others: Applications in eigenvalue counting,
computational materials science, learning problems like
eigenfaces and LSI, etc.

∙ Tremblay, Puy, Gribonval, Vandergheynst: “Compressive
Spectral Clustering” ICML 2016.

16



a first approximation

We turn to Ridge Regression, a popular alternative to PCR:

Goal: x∗ = argminx ∥Ax− b∥2 + λ∥x∥2.
Solution: x∗ = (ATA+ λI)−1ATb.

Claim:

R = (ATA+ λI)−1ATA
coarsely approximates S.

17



a first approximation

We turn to Ridge Regression, a popular alternative to PCR:

Goal: x∗ = argminx ∥Ax− b∥2 + λ∥x∥2.
Solution: x∗ = (ATA+ λI)−1ATb.

Claim:

R = (ATA+ λI)−1ATA
coarsely approximates S.

17



a first approximation

We turn to Ridge Regression, a popular alternative to PCR:

Goal: x∗ = argminx ∥Ax− b∥2 + λ∥x∥2.
Solution: x∗ = (ATA+ λI)−1ATb.

Claim:

R = (ATA+ λI)−1ATA
coarsely approximates S.

17



a first approximation

Singular values of S:

σi(S) =

1 if σ2i (A) ≥ λ,
0 if σ2i (A) < λ.

Singular values of R = (ATA+ λI)−1ATA:

σi(R) =
σ2i (A)

σ2i (A) + λ

≈

1 if σ2i (A) >> λ,
0 if σ2i (A) << λ.

18



a first approximation

Singular values of S:

σi(S) =

1 if σ2i (A) ≥ λ,
0 if σ2i (A) < λ.

Singular values of R = (ATA+ λI)−1ATA:

σi(R) =
σ2i (A)

σ2i (A) + λ

≈

1 if σ2i (A) >> λ,
0 if σ2i (A) << λ.

18



a first approximation

Singular values of S:

σi(S) =

1 if σ2i (A) ≥ λ,
0 if σ2i (A) < λ.

Singular values of R = (ATA+ λI)−1ATA:

σi(R) =
σ2i (A)

σ2i (A) + λ
≈

1 if σ2i (A) >> λ,
0 if σ2i (A) << λ.

18



a first approximation

0 100 200 300 400 500 600 700 800 900 1000
−0.5

0

0.5

1

1.5

Spectrum of S


Spectrum of R




i(large σi) (small σi)

19



final step

Easy to sharpen this approximation.

σi(R) =

≥ 1/2 if σ2i (A) ≥ λ,
< 1/2 if σ2i (A) < λ.

Compose R with approximate symmetric step function:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

S ≈ poly(R) = c1R+ c2R2 +

c3R3 + c4R4 + c5R5 + . . .

20



final step

Easy to sharpen this approximation.

σi(R) =

≥ 1/2 if σ2i (A) ≥ λ,
< 1/2 if σ2i (A) < λ.

Compose R with approximate symmetric step function:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

S ≈ poly(R) = c1R+ c2R2 +

c3R3 + c4R4 + c5R5 + . . .

20



final step

Easy to sharpen this approximation.

σi(R) =

≥ 1/2 if σ2i (A) ≥ λ,
< 1/2 if σ2i (A) < λ.

Compose R with approximate symmetric step function:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

S ≈ poly(R) = c1R+ c2R2 +

c3R3 + c4R4 + c5R5 + . . .

20



final step

Easy to sharpen this approximation.

σi(R) =

≥ 1/2 if σ2i (A) ≥ λ,
< 1/2 if σ2i (A) < λ.

Compose R with approximate symmetric step function:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

S ≈ poly(R) = c1R+ c2R2 + c3R3 +

c4R4 + c5R5 + . . .

20



final step

Easy to sharpen this approximation.

σi(R) =

≥ 1/2 if σ2i (A) ≥ λ,
< 1/2 if σ2i (A) < λ.

Compose R with approximate symmetric step function:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

S ≈ poly(R) = c1R+ c2R2 + c3R3 + c4R4 +

c5R5 + . . .

20



final step

Easy to sharpen this approximation.

σi(R) =

≥ 1/2 if σ2i (A) ≥ λ,
< 1/2 if σ2i (A) < λ.

Compose R with approximate symmetric step function:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

S ≈ poly(R) = c1R+ c2R2 + c3R3 + c4R4 + c5R5 + . . .
20



final algorithm

1. Compute RATb, R2ATb, . . . RO(log 1/ϵ)ATb.

2. Approximate SATb ≈ (c1R+ c2R2 + . . . cO(log 1/ϵ)RO(log 1/ϵ))ATb.
3. Apply (ATA)−1 to SATb

1. O(log 1/ϵ) calls to a regression algorithm.
2. Low cost linear combination of vectors.
3. One call to a regression algorithm

21



final algorithm

1. Compute RATb, R2ATb, . . . RO(log 1/ϵ)ATb.
2. Approximate SATb ≈ (c1R+ c2R2 + . . . cO(log 1/ϵ)RO(log 1/ϵ))ATb.

3. Apply (ATA)−1 to SATb

1. O(log 1/ϵ) calls to a regression algorithm.
2. Low cost linear combination of vectors.
3. One call to a regression algorithm

21



final algorithm

1. Compute RATb, R2ATb, . . . RO(log 1/ϵ)ATb.
2. Approximate SATb ≈ (c1R+ c2R2 + . . . cO(log 1/ϵ)RO(log 1/ϵ))ATb.
3. Apply (ATA)−1 to SATb

1. O(log 1/ϵ) calls to a regression algorithm.
2. Low cost linear combination of vectors.
3. One call to a regression algorithm

21



final algorithm

1. Compute RATb, R2ATb, . . . RO(log 1/ϵ)ATb.
2. Approximate SATb ≈ (c1R+ c2R2 + . . . cO(log 1/ϵ)RO(log 1/ϵ))ATb.
3. Apply (ATA)−1 to SATb

1. O(log 1/ϵ) calls to a regression algorithm.

2. Low cost linear combination of vectors.
3. One call to a regression algorithm

21



final algorithm

1. Compute RATb, R2ATb, . . . RO(log 1/ϵ)ATb.
2. Approximate SATb ≈ (c1R+ c2R2 + . . . cO(log 1/ϵ)RO(log 1/ϵ))ATb.
3. Apply (ATA)−1 to SATb

1. O(log 1/ϵ) calls to a regression algorithm.
2. Low cost linear combination of vectors.

3. One call to a regression algorithm

21



final algorithm

1. Compute RATb, R2ATb, . . . RO(log 1/ϵ)ATb.
2. Approximate SATb ≈ (c1R+ c2R2 + . . . cO(log 1/ϵ)RO(log 1/ϵ))ATb.
3. Apply (ATA)−1 to SATb

1. O(log 1/ϵ) calls to a regression algorithm.
2. Low cost linear combination of vectors.
3. One call to a regression algorithm

21



note on prior work

In prior work, S is approximated directly using a matrix
polynomial. Why not here?

∙ We match polynomial approximation, but can be faster when
non-standard regression algorithms are used.

∙ We give a full end-to-end runtime and stability analysis.

22



note on prior work

In prior work, S is approximated directly using a matrix
polynomial. Why not here?

∙ We match polynomial approximation, but can be faster when
non-standard regression algorithms are used.

∙ We give a full end-to-end runtime and stability analysis.

22



final algorithm

I’m leaving out a lot of details...

∙ Analysis of error propagation through approximate
operations.

∙ Recurrence for stable application of symmetric step
polynomial.

∙ More work to make last regression step stable and fast.

But the algorithm itself remains simple!

23



final algorithm

I’m leaving out a lot of details...

∙ Analysis of error propagation through approximate
operations.

∙ Recurrence for stable application of symmetric step
polynomial.

∙ More work to make last regression step stable and fast.

But the algorithm itself remains simple!

23



final algorithm

I’m leaving out a lot of details...

∙ Analysis of error propagation through approximate
operations.

∙ Recurrence for stable application of symmetric step
polynomial.

∙ More work to make last regression step stable and fast.

But the algorithm itself remains simple!

23



sample code

24



experimental results

Synthetic data (with small spectral gap)

0 20 40 60 80 100 120 140 160 180 200
0

0.05

0.1

0.15

0.2

0.25

iterations

re
la

tiv
e 

er
ro

r

Standard Algorithm

Krylov Accelerated Algorithm

25



experimental results

Synthetic data (with small spectral gap)

0 20 40 60 80 100 120 140 160 180 200
0

0.05

0.1

0.15

0.2

0.25

iterations

re
la

tiv
e 

er
ro

r

Standard Algorithm Krylov Accelerated Algorithm 25



experimental results

Synthetic data (with small spectral gap)

0 20 40 60 80 100 120 140 160 180 200
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

iterations

re
la

tiv
e 

er
ro

r

Standard Algorithm Krylov Accelerated Algorithm 25



conclusion

Take away: PCR can be computed without explicit PCA.

Ridge regression + matrix polynomial = efficient operator
access to A’s top principal components.

Questions? Joint work with:

Roy Frostig Cameron Musco Aaron Sidford

26



conclusion

Take away: PCR can be computed without explicit PCA.

Ridge regression + matrix polynomial = efficient operator
access to A’s top principal components.

Questions? Joint work with:

Roy Frostig Cameron Musco Aaron Sidford
26


