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RECURSIVE SAMPLING FOR THE NYSTRÖM METHOD

The Kernel Method
Adapt any linear data analysis method

(regression, principal component 
analysis, support vector machines, etc.)

to work with nonlinear similarity function (n data vectors,  xi = {xi
1, xi

2, …, xi
d})

Ki,j = ⟨xi, xj⟩
linear inner product

• Ki,j = exp(-ǁxi - xjǁ2)
Gaussian kernel inner product
• Ki,j = (⟨xi, xj⟩ + 1)q

Polynomial kernel inner product
• Ki,j = ...
Custom nonlinear inner product

Pro: Learn nonlinear function classes
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How?
These methods only depend on inner product 

information in the Gram matrix:
Ki,j = ⟨xi, xj⟩

Replace Gram matrix 
and use as usual*

Theoretically sound, effective in practice.

Con: Limited Scalability
Just writing down K takes O(n2) time!

% of NIPS 
titles 

containing 
“kernel”

Kernel methods can handle high dimensional 
data, but not large training sets.

Can we use an approximation to K?
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low-rank 
approximation

n

s
Rank s approximation K can be stored in O(ns) 

space, K-1 can be computed in O(ns2) time, 
eigendecomposition in O(ns2) time, etc.

~
~

s.t. ǁK-Kǁ < ε~

Kernel Approximations
Incomplete Cholesky / explicit 
low-rank approximation

Random Sketching

Random Fourier features

O(n3)

Speed  Accuracy

Standard Nyström method

High
O(n2) High
O(n) Variable
O(n) Variable

Our Recursive Nyström O(n) High

Nyström Method
Low-rank approximation from random sample 

of the “landmark” data points

K K~
(     )-1

The Nyström method is like 
“triangulation with noise”.
For data in s dimensions, 

we need s landmark points 
to determine all distances 
in K. If data nearly lies in s 

dimensions we need O(s) 
“well conditioned” points 

spread throughout data.

sample

Time linear in n. Does not require all of K! 

High accuracy requires better landmarks

*kernel function needs to be PSD

Uniformly 
Random

(standard 
Nyström)

Better 
Landmarks
(importance 

sampled)

Fast “leverage score” sampling
All good importance sampling probabilities 

require a good approximation to K to compute! 
leverage score(xi) = ki

T(K+𝜆I)-1ki

Main technique: Uniform sampling gives good 
approximation with many landmarks – e.g. n/2.

K1/2
Approximate recursively!

log(n) geometrically shrinking levels
O(ms2) time for level with m points

Final runtime = O(ns2) 

Strongest theoretical guarantees for 
approximate kernel learning
# of samples

O(statistical dimension)

O(k/ε)

guarantee
relative error approx. 

kernel ridge regression
(1+ε) error rank k 

kernel PCA

O(k/ε) (1+ε) error kernel 
k-means clustering 

+ general theorems to apply to other kernel problems

State-of-the-art empirical performance

Runtime (sec.)
0 1 2 3 4 5

∥K
−
K̃
∥ 2

10-3

10-2

10-1

100

101

102

Recursive RLS-Nystrom
Uniform Nystrom

Runtime (sec.)
0 1 2 3 4 5

∥K
−
K̃
∥ 2

10-3

10-2

10-1

100

101

102
Recursive RLS-Nystrom
Uniform Nystrom

Samples
0 500 1000 1500 2000

∥K
−
K̃
∥ 2

10-2

100

102

104
Recursive RLS-Nystrom
Uniform Nystrom
Random Fourier Features

Samples
0 1000 2000 3000 4000 5000

∥K
−
K̃
∥ 2

10-4

10-2

100

102

104 Recursive RLS-Nystrom
Uniform Nystrom
Random Fourier Features Forest 

cover 
data, 
n ~ 600k

RNA 
data, 
n ~ 350k

Many more 
experiments 
available in the 
paper. 

Simple MATLAB 
code available at 
chrismusco.com

No tuning 
required! Works 
for any kernel.


