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= The Kernel Method How? Replace Gram matrix '« K = exp(-llx; - x[1?)
8 Adapt any linear data analysis method These methods only depend on inner product and use as usual’ GaUSS'aﬂ(keme- '””e)" product
v | o information in the Gram matrix: * K= (X, X)) + 1)
S (regression, principal component ) = (X, X;) ‘ bolynomial kernel inner product
S analysis, support vector machines, etc.) Ki,j = (X;, X;) “”ear nner pmd“d . K =
] :
é to work with nonlinear similarity function (n data vectors, X: = {xi’, Xi2, ) xid}) *kernel function needs to be PSD ' Custom nonlinear inner product
Pro: Learn nonlinear function classes Con: Limited Scalability Can we use an approximation to K?
Just writing down K takes O(n2) time! low-rank
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f— b726571c 8 1990 1995 2000 2005 2010 2015 Rank s approximation K can be stored in O(ns)
% Z }3;?2 = Kernel methods can handle high dimensional space, K1 can be computed in O(ns?) time,
AT LD>Nn3 == data, but not large training sets. eigendecomposition in O(ns?) time, etc.
Nystrom Method 1H|gh accuracy requires better landmarks
o8l ncomplete Cholesky / explicit o(n®) | Hish Low-rank approximation from random sample -« wewsiren Uniformly  The Nystrom method is like
=3 (ow-rank approximation 4 1S of the “landmark" data pO nts e g Random ‘triangula atio V\.”th nqlse '
2 | i (standard For data in s dimensions,
= Random Sketching -m Sample " Nystrom)  we need s landmark points
a . '0-‘_‘01‘4_ 02 o o0z 04 06 o8 1'. 2 14 L . .
~qll Random Fourier features Variable Je ] % Better tO Ce_;edm__ € al; ld|ls.tan.ces
» : K Landmarks N K. [T data nearly liesin s
=N Standard Nystrom method Variable K J 8 . (importance dimensions we need Q(S)
@ . - . e feede sampled) “well conditioned” points
Our Recursive Nystrom O(n) m Time linear in n. Does not require all of K ) IR spread throughout data.
Fast “leverage score” sampling Strongest theoretical guarantees for State of—the artem plrlcal performance
All good iImportance sampling probabilities approximate kernel learning :% i e | forest - — e syl Many more
require a good approximation to Kto compute! # of samoles guarantee | | cover = gigﬁg&‘e@?ﬁhe
leverage score(x;) = ki"(K+21)k o | | relative error approx. data, =" haper.
Main technique: Uniform sampling gives good O(statistical dimension)|arnel ridge regression n~ 600k * e MATAR
. . ST - T 2oggmpleégbo 4000 5000 0 1' Ruén o séec. 4 5 1M p e
approximation with many La.ndmarks eg n/2. O(k/g) (1+g) error rank k T - ,_Re?ursfvé;LS_N,ystmm code available at
Approximate recursively! kernel PCA o =—==— chrismusco.com

| No tuning
required! Works
for any kernel.
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1) gseometrically shrinking levels Ok /) (1+€) error kernel data, .,
0(ms?) time for level with m points K-means clustering | ' n~350k ..
Final runtime = O(ns?) + general theorems to apply to other kernel problems o 50 o w0 a0

Samples




