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standard svd approximation metrics

∙ Frobenius Norm Low-Rank Approximation:

∥A− ŨkŨTkA∥F ≤ (1+ ϵ)∥A− UkUTkA∥F

∥A∥2F =
∑d

i=1 σ
2
i and ∥A− UkUTkA∥2F = ∥A− Ak∥2F =

∑d
i=k+1 σ

2
i .
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For many datasets literally any Ũk would work!
∙ Spectral Norm Low-Rank Approximation (stronger):

∥A− ŨkŨTkA∥2 ≤ (1+ ϵ)∥A− UkUTkA∥2

∙ Per Vector Principal Component Error (strongest):

ũTi AATũi ≥ (1− ϵ)uTi AATui for all i ≤ k.
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main research question

Classic Full SVD Algorithms (e.g. QR Algorithm):

All of these goals in roughly O(nd2) time (error dependence is
log log 1/ϵ on lower order terms).

Unfortunately, this is much too slow for many data sets.

How fast can we approximately compute just u1, ...,uk?
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frobenius norm error

‘Weak’ Approximation Algorithms:

∙ Strong Rank Revealing QR (Gu, Eisenstat 1996):

∥A− ŨkŨTkA∥F ≤ poly(n, k)∥A− Ak∥F in time O(ndk)

∙ Sparse Subspace Embeddings (Clarkson, Woodruff 2013):

∥A−ŨkŨTkA∥F ≤ (1+ ϵ)∥A−Ak∥F in time O(nnz(A))+ Õ
(
nk2
ϵ4

)
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iterative svd algorithms

Iterative methods are the only game in town for stronger
guarantees. Runtime is approximately:

O(nnz(A)k ·#iterations)

∙ Power method (Müntz 1913, von Mises 1929)
∙ Krylov/Lanczos methods (Lanczos 1950)

∙ Stochastic Methods?
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power method review

Traditional Power Method:

x0 ∈ Rd, xi+1 ←
Axi
∥Axi∥

Block Power Method (Simultaneous/Subspace Iteration):

X0 ∈ Rd×k, Xi+1 ← orthonormalize(AXi)
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power method runtime

Runtime for Block Power method is roughly:

O
(
nnz(A)k · log(d/ϵ)

(σk − σk+1)/σk

)

∙ Linear dependence on the singular value gap:

gap =
σk − σk+1

σk

∙ While this gap is traditionally assumed to be constant, it is
the dominant factor in the iteration count for many datasets.
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typical gap values

Stanford Network Analysis Project – Slashdot Social Network
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gap independent bounds

Recent work shows Block Power method (with randomized
start vectors) gives:

∥A− ŨkŨTkA∥2 ≤ (1+ ϵ)∥A− Ak∥2 in time O
(
nnz(A)k · logd

ϵ

)
Improves on classical bounds when ϵ > (σk − σk+1)/σk.

Long series of refinements and improvements:

∙ Rokhlin, Szlam, Tygert 2009
∙ Halko, Martinsson, Tropp 2011
∙ Boutsidis, Drineas, Magdon-Ismail 2011
∙ Witten, Candès 2014
∙ Woodruff 2014
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randomized block power method

Randomized Block Power Method is widely cited and
implemented – simple algorithm with simple bounds.

redSVD 
ScaleNLP (Breeze) 

libSkylark 

But in the numerical linear algebra community, Krylov/Lanczos
methods have long been prefered over power iteration.
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randomized block power method

Randomized Block Power Method is widely cited and
implemented – simple algorithm with simple bounds.

GNU Octave MLlib 

But in the numerical linear algebra community, Krylov/Lanczos
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lanczos/krylov acceleration

Power Method Krylov Methods

O
(
nnz(A)k · log(d/ϵ)

(σk − σk+1)/σk

)
→ O

(
nnz(A)k · log(d/ϵ)√

(σk − σk+1)/σk

)

O
(
nnz(A)k · logd

ϵ

)
→ ?

No gap independent analysis of Krylov methods!
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No gap independent analysis of Krylov methods!
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our main result

A simple randomized Block Krylov Iteration gives all three of
our target error bounds in time:

O
(
nnz(A)k · logd√

ϵ

)
∥A− UkUTkA∥2 ≤ (1+ ϵ)σk+1 and ũTi AATũi ≥ σ2i − ϵσ2k+1

∙ Gives a runtime bound that is independent of A.
∙ Beats runtime of Block Power Method: .0001→ .01.
∙ Improves classic Lanczos bounds when (σk − σk+1)/σk < ϵ.
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understanding gap dependence

First Step: Where does gap dependence actually comes from?
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understanding gap dependence

To prove guarantees like: ũTi AATũi ≥ (1− ϵ)σ2i , classical analysis
argues about convergence to A’s true singular vectors.

ui


ũi


error


Traditional objective function: ∥ui − ũi∥2.
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understanding gap dependence

Traditional objective function: ∥ui − ũi∥2

∙ Simple potential function, easy to work with.

∙ Can be used to prove strong per-vector error or spectral
norm guarantees for ∥A− ŨkŨTkA∥2.

∙ Inherently requires an iteration count that depends on
singular value gaps.
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Traditional objective function: ∥ui − ũi∥2
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understanding gap dependence

Traditional objective function: ∥ui − ũi∥2
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understanding gap dependence

Traditional objective function: ∥ui − ũi∥2
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understanding gap dependence

Traditional objective function: ∥ui − ũi∥2
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key insight

Convergence becomes less necessary precisely when it is
difficult to achieve!
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Minimizing ∥ui − ũi∥2 is sufficient, but far from necessary.
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modern approach to analysis

Iterative methods viewed as denoising procedures for
Random Sketching methods.

Choose G ∼ N (0, 1)d×k. If A is rank k then:

span (AG) = span(A)

Ũk = span () =⇒ ∥A− ŨkŨTkA∥F = ∥A− A∥F = 0

If A is not rank k then we have error due to A− Ak:

Ũk = span(AG) =⇒ ∥A− ŨkŨTkA∥F ≤ poly(d)∥A− Ak∥F

∙ Gives an error bound for a single power method iteration.
∙ Meaningless unless ∥A− Ak∥F (the ‘tail noise’) is very small.
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modern approach to analysis

How to avoid tail noise? Apply sketching method to Aq instead.

This is exactly what Block Power Method does:

G→ AG→ A2G→ . . .→ AqG, Ũk = span(AqG)

Assuming A is symmetric, if A = UΣUT then Aq = UΣqUT.

∥Aq − Aqk∥2F =
∑d

i=k+1 σ
2q
i is extremely small.
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modern approach to analysis

∙ q = Õ(1/ϵ) ensures that any singular value below σk+1
becomes extremely small in comparison to any singular
value above (1+ ϵ)σk+1.

(1− ϵ)O(1/ϵ) << 1

∙ Ũk = span(AqG) must align well with large (but not the
largest!) singular vectors of Aq to achieve even coarse
Frobenius norm error:

∥Aq − ŨkŨTkAq∥F ≤ poly(d)∥Aq − A
q
k∥F ≈ 0

∙ A and Aq have the same singular vectors so Ũk is good for A.
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modern approach to analysis

We use new tools for converting very small Frobenius norm
low-rank approximation error to spectral norm and per vector
error, without arguing about convergence of ũi and ui.
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krylov acceleration

There are better polynomials than Aq for “denoising” A.
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krylov acceleration

∙ Chebyshev polynomial Tq(A) has a very small tail. So
returning Ũk = span(Tq(A)G) would suffice.

∙ Furthermore, block power iteration computes (at
intermediate steps) all of the components needed for:

Tq(A)G = c0G+ c1AG+ ...+ cqAqG

G→ AG→ A2G→ . . .→ AqG

Block Krylov Iteration:

K =
[
G,AG,A2G, . . . ,AqG

]︸ ︷︷ ︸
Krylov subspace

23



krylov acceleration

∙ Chebyshev polynomial Tq(A) has a very small tail. So
returning Ũk = span(Tq(A)G) would suffice.

∙ Furthermore, block power iteration computes (at
intermediate steps) all of the components needed for:

Tq(A)G = c0G+ c1AG+ ...+ cqAqG

G→ AG→ A2G→ . . .→ AqG

Block Krylov Iteration:

K =
[
G,AG,A2G, . . . ,AqG

]︸ ︷︷ ︸
Krylov subspace

23



krylov acceleration

∙ Chebyshev polynomial Tq(A) has a very small tail. So
returning Ũk = span(Tq(A)G) would suffice.

∙ Furthermore, block power iteration computes (at
intermediate steps) all of the components needed for:

Tq(A)G = c0G+ c1AG+ ...+ cqAqG

G→ AG→ A2G→ . . .→ AqG

Block Krylov Iteration:

K =
[
G,AG,A2G, . . . ,AqG

]︸ ︷︷ ︸
Krylov subspace

23



krylov acceleration

∙ Chebyshev polynomial Tq(A) has a very small tail. So
returning Ũk = span(Tq(A)G) would suffice.

∙ Furthermore, block power iteration computes (at
intermediate steps) all of the components needed for:

Tq(A)G = c0G+ c1AG+ ...+ cqAqG

G→ AG→ A2G→ . . .→ AqG

Block Krylov Iteration:

K =
[
G,AG,A2G, . . . ,AqG

]︸ ︷︷ ︸
Krylov subspace

23



implicit use of acceleration polynomial

But...

we can’t explicitly compute Tq(A), since its parameters
depend on A’s (unknown) singular values.

Solution: Returning the best Ũk in the span of K is only better
then returning span(Tq(A)G).
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implicit use of acceleration polynomial

What is the best Ũk?

Surprisingly difficult question.

∙ For Block Power Method, did not need to consider this –
Ũk = span(AqG) was the only option.

∙ In classical Lanczos/Krylov analysis, convergence to the true
singular vectors also lets us avoid this issue. Use Rayleigh
Ritz procedure.
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rayleigh-ritz post-processing

∙ Project A to K and take the top k singular vectors (using an
accurate classical method):

Ũk = span ((PKA)k)

Block Krylov Iteration:

K =
[
G,AG,A2G, . . . ,AqG

]︸ ︷︷ ︸
Krylov subspace

, Ũk = span ((PKA)k)︸ ︷︷ ︸
‘best’ solution in Krylov subspace

∙ Equivalent to the classic Block Lanczos algorithm in exact
arithmetic.
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rayleigh-ritz post-processing

This post-processing step provably gives an optimal Ũk for
Frobenius norm low-rank approximation error.

∙ Our entire analysis relied on converting very small Frobenius
norm error to strong spectral norm and per vector error!

Take away: Modern denoising analysis gives new insight into
the practical effectiveness of Rayleigh-Ritz projection.
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final implementation

Similar to randomized Block Power Method – extremely simple
(pseudocode in paper).

Block Power Method Block Krylov Iteration
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performance

Block Krylov beats Block Power Method definitively for small ϵ.
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final comments

Main Takeaway: First gap independent bound for Krylov
methods.

O
(
nnz(A)k · logd√

(σk − σk+1/σk

)
→ O

(
nnz(A)k · logd√

ϵ

)

Open Questions

∙ Full stability analysis.
∙ ‘Master’ error metric for gap independent results.
∙ Gap independent bounds for other methods (e.g. online and
stochastic PCA).

∙ Analysis for small space/restarted block Krylov methods?
30



Thank you!
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stability

Stability

∙ Lanczos algorithms are often considered to be unstable.
∙ Largely due to the fact that a recurrence is used to efficiently
compute a basis for the Krylov subspace “on the fly”.

∙ Since our subspace is small, we do not use the recurrence.
Computing the basis explicitly avoids serious stability issues.

∙ There is some loss of orthogonality between blocks.
However it only occurs once the algorithm has converged
and we can show that it is not an issue in practice.
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stability

On poorly conditioned matrices Randomized Block Krylov
Iteration still significantly outperforms Block Power Method.
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