
randomized block krylov methods
for stronger and faster
approximate svd

Cameron Musco and Christopher Musco
December 12, 2015

Massachusetts Institute of Technology, EECS

0

singular value decomposition

A
 =
 U
 Σ
 VT

σ1

σ2

σd-1

σd
n

d
 left singular vectors
 singular values
 right singular vectors

∙ Extremely important primitive for dimensionality reduction,
low-rank approximation, PCA, etc.

ui = argmax
x:∥x∥=1,x⊥u1,...,ui−1

xTAATx

Ak = argmin
B:rank(B)=k

∥A− B∥F

1

singular value decomposition

A
 =
 U
 Σ
 VT

σ1

σ2

σd-1

σd
n

d
 left singular vectors
 singular values
 right singular vectors

∙ Extremely important primitive for dimensionality reduction,
low-rank approximation, PCA, etc.

ui = argmax
x:∥x∥=1,x⊥u1,...,ui−1

xTAATx

Ak = argmin
B:rank(B)=k

∥A− B∥F

1

singular value decomposition

A
 =
 U
 Σ
 VT

σ1

σ2

σd-1

σd
n

d
 left singular vectors
 singular values
 right singular vectors

∙ Extremely important primitive for dimensionality reduction,
low-rank approximation, PCA, etc.

ui = argmax
x:∥x∥=1,x⊥u1,...,ui−1

xTAATx

Ak = argmin
B:rank(B)=k

∥A− B∥F

1

singular value decomposition

Ak
 =

n

d

Σk

σd-1

σd

Uk

VkT

Σk

σk

σ1

left singular vectors
 singular values
 right singular vectors

∙ Extremely important primitive for dimensionality reduction,
low-rank approximation, PCA, etc.

ui = argmax
x:∥x∥=1,x⊥u1,...,ui−1

xTAATx

Ak = argmin
B:rank(B)=k

∥A− B∥F
1

singular value decomposition

Ak
 =

n

d

Σk

σd-1

σd

Uk

VkT

Σk

σk

σ1

left singular vectors
 singular values
 right singular vectors

∙ Extremely important primitive for dimensionality reduction,
low-rank approximation, PCA, etc.

ui = argmax
x:∥x∥=1,x⊥u1,...,ui−1

xTAATx

Ak = argmin
B:rank(B)=k

∥A− B∥2
1

singular value decomposition

Ak
 =

n

d

Σk

σd-1

σd

Uk

VkT

Σk

σk

σ1

left singular vectors
 singular values
 right singular vectors

∙ Extremely important primitive for dimensionality reduction,
low-rank approximation, PCA, etc.

ui = argmax
x:∥x∥=1,x⊥u1,...,ui−1

xTAATx

UkUTkA = argmin
B:rank(B)=k

∥A− B∥2
1

standard svd approximation metrics

∙ Frobenius Norm Low-Rank Approximation:

∥A− ŨkŨTkA∥F ≤ (1+ ϵ)∥A− UkUTkA∥F

∥A∥2F =
∑d

i=1 σ
2
i and ∥A− UkUTkA∥2F = ∥A− Ak∥2F =

∑d
i=k+1 σ

2
i .

0 10 20 30 40 50 60 70
20

30

40

50

60

70

80

90

100

110

120
SNAP/email−Enron

si
n

g
u

la
r

va
lu

e

σ i

index i

For many datasets literally any Ũk would work!
∙ Spectral Norm Low-Rank Approximation (stronger):

∥A− ŨkŨTkA∥2 ≤ (1+ ϵ)∥A− UkUTkA∥2

∙ Per Vector Principal Component Error (strongest):

ũTi AATũi ≥ (1− ϵ)uTi AATui for all i ≤ k.

2

standard svd approximation metrics

∙ Frobenius Norm Low-Rank Approximation (weak):

∥A− ŨkŨTkA∥F ≤ (1+ ϵ)∥A− UkUTkA∥F

∥A∥2F =
∑d

i=1 σ
2
i and ∥A− UkUTkA∥2F = ∥A− Ak∥2F =

∑d
i=k+1 σ

2
i .

0 10 20 30 40 50 60 70
20

30

40

50

60

70

80

90

100

110

120
SNAP/email−Enron

si
n

g
u

la
r

va
lu

e

σ i

index i

For many datasets literally any Ũk would work!
∙ Spectral Norm Low-Rank Approximation (stronger):

∥A− ŨkŨTkA∥2 ≤ (1+ ϵ)∥A− UkUTkA∥2

∙ Per Vector Principal Component Error (strongest):

ũTi AATũi ≥ (1− ϵ)uTi AATui for all i ≤ k.

2

standard svd approximation metrics

∙ Frobenius Norm Low-Rank Approximation (weak):

∥A− ŨkŨTkA∥F ≤ (1+ ϵ)∥A− UkUTkA∥F

∥A∥2F =
∑d

i=1 σ
2
i and ∥A− UkUTkA∥2F = ∥A− Ak∥2F =

∑d
i=k+1 σ

2
i .

0 10 20 30 40 50 60 70
20

30

40

50

60

70

80

90

100

110

120
SNAP/email−Enron

si
n

g
u

la
r

va
lu

e

σ i

index i

For many datasets literally any Ũk would work!

∙ Spectral Norm Low-Rank Approximation (stronger):

∥A− ŨkŨTkA∥2 ≤ (1+ ϵ)∥A− UkUTkA∥2

∙ Per Vector Principal Component Error (strongest):

ũTi AATũi ≥ (1− ϵ)uTi AATui for all i ≤ k.

2

standard svd approximation metrics

∙ Frobenius Norm Low-Rank Approximation (weak):

∥A− ŨkŨTkA∥F ≤ (1+ ϵ)∥A− UkUTkA∥F

∙ Spectral Norm Low-Rank Approximation (stronger):

∥A− ŨkŨTkA∥2 ≤ (1+ ϵ)∥A− UkUTkA∥2

∙ Per Vector Principal Component Error (strongest):

ũTi AATũi ≥ (1− ϵ)uTi AATui for all i ≤ k.

2

standard svd approximation metrics

∙ Frobenius Norm Low-Rank Approximation (weak):

∥A− ŨkŨTkA∥F ≤ (1+ ϵ)∥A− UkUTkA∥F

∙ Spectral Norm Low-Rank Approximation (stronger):

∥A− ŨkŨTkA∥2 ≤ (1+ ϵ)σk+1

∙ Per Vector Principal Component Error (strongest):

ũTi AATũi ≥ (1− ϵ)uTi AATui for all i ≤ k.

2

standard svd approximation metrics

∙ Frobenius Norm Low-Rank Approximation (weak):

∥A− ŨkŨTkA∥F ≤ (1+ ϵ)∥A− UkUTkA∥F

∙ Spectral Norm Low-Rank Approximation (stronger):

∥A− ŨkŨTkA∥2 ≤ (1+ ϵ)σk+1

∙ Per Vector Principal Component Error (strongest):

ũTi AATũi ≥ (1− ϵ)uTi AATui for all i ≤ k.

2

main research question

Classic Full SVD Algorithms (e.g. QR Algorithm):

All of these goals in roughly O(nd2) time (error dependence is
log log 1/ϵ on lower order terms).

Unfortunately, this is much too slow for many data sets.

How fast can we approximately compute just u1, ...,uk?

3

main research question

Classic Full SVD Algorithms (e.g. QR Algorithm):

All of these goals in roughly O(nd2) time (error dependence is
log log 1/ϵ on lower order terms).

Unfortunately, this is much too slow for many data sets.

How fast can we approximately compute just u1, ...,uk?

3

frobenius norm error

‘Weak’ Approximation Algorithms:

∙ Strong Rank Revealing QR (Gu, Eisenstat 1996):

∥A− ŨkŨTkA∥F ≤ poly(n, k)∥A− Ak∥F in time O(ndk)

∙ Sparse Subspace Embeddings (Clarkson, Woodruff 2013):

∥A−ŨkŨTkA∥F ≤ (1+ ϵ)∥A−Ak∥F in time O(nnz(A))+ Õ
(
nk2
ϵ4

)

4

frobenius norm error

‘Weak’ Approximation Algorithms:

∙ Strong Rank Revealing QR (Gu, Eisenstat 1996):

∥A− ŨkŨTkA∥F ≤ poly(n, k)∥A− Ak∥F in time O(ndk)

∙ Sparse Subspace Embeddings (Clarkson, Woodruff 2013):

∥A−ŨkŨTkA∥F ≤ (1+ ϵ)∥A−Ak∥F in time O(nnz(A))+ Õ
(
nk2
ϵ4

)

4

iterative svd algorithms

Iterative methods are the only game in town for stronger
guarantees. Runtime is approximately:

O(nnz(A)k ·#iterations)

∙ Power method (Müntz 1913, von Mises 1929)
∙ Krylov/Lanczos methods (Lanczos 1950)

∙ Stochastic Methods?

5

iterative svd algorithms

Iterative methods are the only game in town for stronger
guarantees. Runtime is approximately:

O(nnz(A)k ·#iterations) ≤ O(ndk ·#iterations) << O(nd2)

∙ Power method (Müntz 1913, von Mises 1929)
∙ Krylov/Lanczos methods (Lanczos 1950)

∙ Stochastic Methods?

5

iterative svd algorithms

Iterative methods are the only game in town for stronger
guarantees. Runtime is approximately:

O(nnz(A)k ·#iterations) ≤ O(ndk ·#iterations) << O(nd2)

∙ Power method (Müntz 1913, von Mises 1929)
∙ Krylov/Lanczos methods (Lanczos 1950)
∙ Stochastic Methods?

5

power method review

Traditional Power Method:

x0 ∈ Rd, xi+1 ←
Axi
∥Axi∥

Block Power Method (Simultaneous/Subspace Iteration):

X0 ∈ Rd×k, Xi+1 ← orthonormalize(AXi)

 .78

 .61
 .60

 .59

X0

3

1

2

A

-.10

 .54
 .82

-.18
 .92

 .37

X1

 .54

-.04
 0

 0
 1

 0

U2

 1

 0

6

power method review

Traditional Power Method:

x0 ∈ Rd, xi+1 ←
Axi
∥Axi∥

Block Power Method (Simultaneous/Subspace Iteration):

X0 ∈ Rd×k, Xi+1 ← orthonormalize(AXi)

 .78

 .61
 .60

 .59

X0

3

1

2

A

-.10

 .54
 .82

-.18
 .92

 .37

X1

 .54

-.04
 0

 0
 1

 0

U2

 1

 0

6

power method review

Traditional Power Method:

x0 ∈ Rd, xi+1 ←
Axi
∥Axi∥

Block Power Method (Simultaneous/Subspace Iteration):

X0 ∈ Rd×k, Xi+1 ← orthonormalize(AXi)

3

1

2

A

 .56

-.15
 .98

X2

 .81

-.05

X1

 .21

 .82

-.18
 .92

 .37
 .54

-.04
 0

 0
 1

 0

U2

 1

 0

6

power method review

Traditional Power Method:

x0 ∈ Rd, xi+1 ←
Axi
∥Axi∥

Block Power Method (Simultaneous/Subspace Iteration):

X0 ∈ Rd×k, Xi+1 ← orthonormalize(AXi)

3

1

2

A

 .31

-.06
 1

X3

 .95

-.04

 .08

X2

 .56

-.15
 .98

 .81

-.05

 .21

 0

 0
 1

 0
 1

 0

U2

6

power method review

Traditional Power Method:

x0 ∈ Rd, xi+1 ←
Axi
∥Axi∥

Block Power Method (Simultaneous/Subspace Iteration):

X0 ∈ Rd×k, Xi+1 ← orthonormalize(AXi)

-.02

 .16

 1

 .99

-.02

 .02

3

1

2

A
 X4
X3

 .31

-.06
 1

-.04

 .08
 .95

 0

 0
 1

 0
 1

 0

U2

6

power method review

Traditional Power Method:

x0 ∈ Rd, xi+1 ←
Axi
∥Axi∥

Block Power Method (Simultaneous/Subspace Iteration):

X0 ∈ Rd×k, Xi+1 ← orthonormalize(AXi)

 0

 .08

 1

 1

-.01

 0

3

1

2

A
 X5
X4

-.02

 .16

 1

 .99

-.02

 .02

 0

 0
 1

 0

U2

 1

 0

6

power method review

Traditional Power Method:

x0 ∈ Rd, xi+1 ←
Axi
∥Axi∥

Block Power Method (Simultaneous/Subspace Iteration):

X0 ∈ Rd×k, Xi+1 ← orthonormalize(AXi)

 0

 .04

 1

 1

 0

 0

3

1

2

A
 X6
X5

 0

 .08

 1

 1

-.01

 0

 0

 0
 1

 0

U2

 1

 0

6

power method review

Traditional Power Method:

x0 ∈ Rd, xi+1 ←
Axi
∥Axi∥

Block Power Method (Simultaneous/Subspace Iteration):

X0 ∈ Rd×k, Xi+1 ← orthonormalize(AXi)

 0

 .02

 1

 1

 0

 0

3

1

2

A
 X7
X6

 0

 .04

 1

 1

 0

 0

 0

 0
 1

 0

U2

 1

 0

6

power method review

Traditional Power Method:

x0 ∈ Rd, xi+1 ←
Axi
∥Axi∥

Block Power Method (Simultaneous/Subspace Iteration):

X0 ∈ Rd×k, Xi+1 ← orthonormalize(AXi)

 0

 .01

 1

 1

 0

 0

3

1

2

A
 X8
X7

 0

 .02

 1

 1

 0

 0

 0

 0
 1

 0

U2

 1

 0

6

power method review

Traditional Power Method:

x0 ∈ Rd, xi+1 ←
Axi
∥Axi∥

Block Power Method (Simultaneous/Subspace Iteration):

X0 ∈ Rd×k, Xi+1 ← orthonormalize(AXi)

 0

 0

 1

 1

 0

 0

3

1

2

A
 X9
X8

 0

 .01

 1

 1

 0

 0

 0

 0
 1

 0

U2

 1

 0

6

power method runtime

Runtime for Block Power method is roughly:

O
(
nnz(A)k · log(d/ϵ)

(σk − σk+1)/σk

)

∙ Linear dependence on the singular value gap:

gap =
σk − σk+1

σk

∙ While this gap is traditionally assumed to be constant, it is
the dominant factor in the iteration count for many datasets.

7

power method runtime

Runtime for Block Power method is roughly:

O
(
nnz(A)k · log(d/ϵ)

(σk − σk+1)/σk

)

∙ Linear dependence on the singular value gap:

gap =
σk − σk+1

σk

∙ While this gap is traditionally assumed to be constant, it is
the dominant factor in the iteration count for many datasets.

7

power method runtime

Runtime for Block Power method is roughly:

O
(
nnz(A)k · log(d/ϵ)

(σk − σk+1)/σk

)

∙ Linear dependence on the singular value gap:

gap =
σk − σk+1

σk

∙ While this gap is traditionally assumed to be constant, it is
the dominant factor in the iteration count for many datasets.

7

power method runtime

Runtime for Block Power method is roughly:

O
(
nnz(A)k · log(d/ϵ)

(σk − σk+1)/σk

)

∙ Linear dependence on the singular value gap:

gap =
σk − σk+1

σk

∙ While this gap is traditionally assumed to be constant, it is
the dominant factor in the iteration count for many datasets.

7

power method runtime

Runtime for Block Power method is roughly:

O
(
nnz(A)k · log(d/ϵ)

(σk − σk+1)/σk

)

∙ Linear dependence on the singular value gap:

gap =
σk − σk+1

σk

∙ While this gap is traditionally assumed to be constant, it is
the dominant factor in the iteration count for many datasets.

7

typical gap values

Stanford Network Analysis Project – Slashdot Social Network

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

index, i

si
ng

ul
ar

 v
al

ue
, σ

i

Median value of gapk =
σk−σk+1

σk
for k ≤ 200:

.0019

8

typical gap values

Stanford Network Analysis Project – Slashdot Social Network

50 55 60 65 70 75 80 85 90 95

15

20

25

30

35

40

index, i

si
ng

ul
ar

 v
al

ue
, σ

i

Median value of gapk =
σk−σk+1

σk
for k ≤ 200:

.0019

8

typical gap values

Stanford Network Analysis Project – Slashdot Social Network

50 55 60 65 70 75 80 85 90 95

15

20

25

30

35

40

index, i

si
ng

ul
ar

 v
al

ue
, σ

i

Median value of gapk =
σk−σk+1

σk
for k ≤ 200:

.0019
8

typical gap values

Stanford Network Analysis Project – Slashdot Social Network

50 55 60 65 70 75 80 85 90 95

15

20

25

30

35

40

index, i

si
ng

ul
ar

 v
al

ue
, σ

i

Minimum value of gapk =
σk−σk+1

σk
for k ≤ 200:

.00004
8

typical gap values

Stanford Network Analysis Project – Slashdot Social Network

50 55 60 65 70 75 80 85 90 95

15

20

25

30

35

40

index, i

si
ng

ul
ar

 v
al

ue
, σ

i

Minimum value of gapk =
σk−σk+1

σk
for k ≤ 200:

Runtime = O(25,000 · nnz(A)k log(d/ϵ))
8

gap independent bounds

Recent work shows Block Power method (with randomized
start vectors) gives:

∥A− ŨkŨTkA∥2 ≤ (1+ ϵ)∥A− Ak∥2 in time O
(
nnz(A)k · logd

ϵ

)
Improves on classical bounds when ϵ > (σk − σk+1)/σk.

Long series of refinements and improvements:

∙ Rokhlin, Szlam, Tygert 2009
∙ Halko, Martinsson, Tropp 2011
∙ Boutsidis, Drineas, Magdon-Ismail 2011
∙ Witten, Candès 2014
∙ Woodruff 2014

9

gap independent bounds

Recent work shows Block Power method (with randomized
start vectors) gives:

∥A− ŨkŨTkA∥2 ≤ (1+ ϵ)∥A− Ak∥2 in time O
(
nnz(A)k · logd

ϵ

)

Improves on classical bounds when ϵ > (σk − σk+1)/σk.

Long series of refinements and improvements:

∙ Rokhlin, Szlam, Tygert 2009
∙ Halko, Martinsson, Tropp 2011
∙ Boutsidis, Drineas, Magdon-Ismail 2011
∙ Witten, Candès 2014
∙ Woodruff 2014

9

gap independent bounds

Recent work shows Block Power method (with randomized
start vectors) gives:

∥A− ŨkŨTkA∥2 ≤ (1+ ϵ)∥A− Ak∥2 in time O
(
nnz(A)k · logd

ϵ

)
Improves on classical bounds when ϵ > (σk − σk+1)/σk.

Long series of refinements and improvements:

∙ Rokhlin, Szlam, Tygert 2009
∙ Halko, Martinsson, Tropp 2011
∙ Boutsidis, Drineas, Magdon-Ismail 2011
∙ Witten, Candès 2014
∙ Woodruff 2014

9

gap independent bounds

Recent work shows Block Power method (with randomized
start vectors) gives:

∥A− ŨkŨTkA∥2 ≤ (1+ ϵ)∥A− Ak∥2 in time O
(
nnz(A)k · logd

ϵ

)
Improves on classical bounds when ϵ > (σk − σk+1)/σk.

Long series of refinements and improvements:

∙ Rokhlin, Szlam, Tygert 2009
∙ Halko, Martinsson, Tropp 2011
∙ Boutsidis, Drineas, Magdon-Ismail 2011
∙ Witten, Candès 2014
∙ Woodruff 2014

9

randomized block power method

Randomized Block Power Method is widely cited and
implemented – simple algorithm with simple bounds.

redSVD
ScaleNLP (Breeze)

libSkylark

But in the numerical linear algebra community, Krylov/Lanczos
methods have long been prefered over power iteration.

10

randomized block power method

Randomized Block Power Method is widely cited and
implemented – simple algorithm with simple bounds.

redSVD
ScaleNLP (Breeze)

libSkylark

But in the numerical linear algebra community, Krylov/Lanczos
methods have long been prefered over power iteration.

10

randomized block power method

Randomized Block Power Method is widely cited and
implemented – simple algorithm with simple bounds.

redSVD
ScaleNLP (Breeze)

libSkylark

But in the numerical linear algebra community, Krylov/Lanczos
methods have long been prefered over power iteration.

10

randomized block power method

Randomized Block Power Method is widely cited and
implemented – simple algorithm with simple bounds.

GNU Octave MLlib

But in the numerical linear algebra community, Krylov/Lanczos
methods have long been prefered over power iteration.

10

lanczos/krylov acceleration

Power Method Krylov Methods

O
(
nnz(A)k · log(d/ϵ)

(σk − σk+1)/σk

)
→ O

(
nnz(A)k · log(d/ϵ)√

(σk − σk+1)/σk

)

O
(
nnz(A)k · logd

ϵ

)
→ ?

No gap independent analysis of Krylov methods!

11

lanczos/krylov acceleration

Power Method Krylov Methods

O
(
nnz(A)k · log(d/ϵ)

(σk − σk+1)/σk

)
→ O

(
nnz(A)k · log(d/ϵ)√

(σk − σk+1)/σk

)

O
(
nnz(A)k · logd

ϵ

)
→ ?

No gap independent analysis of Krylov methods!

11

lanczos/krylov acceleration

Power Method Krylov Methods

O
(
nnz(A)k · log(d/ϵ)

(σk − σk+1)/σk

)
→ O

(
nnz(A)k · log(d/ϵ)√

(σk − σk+1)/σk

)

O
(
nnz(A)k · logd

ϵ

)
→ O

(
nnz(A)k · logd√

ϵ

)
︸ ︷︷ ︸

Our Contribution

No gap independent analysis of Krylov methods!

11

our main result

A simple randomized Block Krylov Iteration gives all three of
our target error bounds in time:

O
(
nnz(A)k · logd√

ϵ

)
∥A− UkUTkA∥2 ≤ (1+ ϵ)σk+1 and ũTi AATũi ≥ σ2i − ϵσ2k+1

∙ Gives a runtime bound that is independent of A.
∙ Beats runtime of Block Power Method: .0001→ .01.
∙ Improves classic Lanczos bounds when (σk − σk+1)/σk < ϵ.

12

our main result

A simple randomized Block Krylov Iteration gives all three of
our target error bounds in time:

O
(
nnz(A)k · logd√

ϵ

)
∥A− UkUTkA∥2 ≤ (1+ ϵ)σk+1 and ũTi AATũi ≥ σ2i − ϵσ2k+1

∙ Gives a runtime bound that is independent of A.

∙ Beats runtime of Block Power Method: .0001→ .01.
∙ Improves classic Lanczos bounds when (σk − σk+1)/σk < ϵ.

12

our main result

A simple randomized Block Krylov Iteration gives all three of
our target error bounds in time:

O
(
nnz(A)k · logd√

ϵ

)
∥A− UkUTkA∥2 ≤ (1+ ϵ)σk+1 and ũTi AATũi ≥ σ2i − ϵσ2k+1

∙ Gives a runtime bound that is independent of A.
∙ Beats runtime of Block Power Method: .0001→ .01.

∙ Improves classic Lanczos bounds when (σk − σk+1)/σk < ϵ.

12

our main result

A simple randomized Block Krylov Iteration gives all three of
our target error bounds in time:

O
(
nnz(A)k · logd√

ϵ

)
∥A− UkUTkA∥2 ≤ (1+ ϵ)σk+1 and ũTi AATũi ≥ σ2i − ϵσ2k+1

∙ Gives a runtime bound that is independent of A.
∙ Beats runtime of Block Power Method: 10,000→ 100.

∙ Improves classic Lanczos bounds when (σk − σk+1)/σk < ϵ.

12

our main result

A simple randomized Block Krylov Iteration gives all three of
our target error bounds in time:

O
(
nnz(A)k · logd√

ϵ

)
∥A− UkUTkA∥2 ≤ (1+ ϵ)σk+1 and ũTi AATũi ≥ σ2i − ϵσ2k+1

∙ Gives a runtime bound that is independent of A.
∙ Beats runtime of Block Power Method: 10,000→ 100.
∙ Improves classic Lanczos bounds when (σk − σk+1)/σk < ϵ.

12

understanding gap dependence

First Step: Where does gap dependence actually comes from?

13

understanding gap dependence

To prove guarantees like: ũTi AATũi ≥ (1− ϵ)σ2i , classical analysis
argues about convergence to A’s true singular vectors.

ui

ũi

error

Traditional objective function: ∥ui − ũi∥2.

14

understanding gap dependence

Traditional objective function: ∥ui − ũi∥2

∙ Simple potential function, easy to work with.

∙ Can be used to prove strong per-vector error or spectral
norm guarantees for ∥A− ŨkŨTkA∥2.

∙ Inherently requires an iteration count that depends on
singular value gaps.

15

understanding gap dependence

Traditional objective function: ∥ui − ũi∥2

∙ Simple potential function, easy to work with.
∙ Can be used to prove strong per-vector error or spectral
norm guarantees for ∥A− ŨkŨTkA∥2.

∙ Inherently requires an iteration count that depends on
singular value gaps.

15

understanding gap dependence

Traditional objective function: ∥ui − ũi∥2

∙ Simple potential function, easy to work with.
∙ Can be used to prove strong per-vector error or spectral
norm guarantees for ∥A− ŨkŨTkA∥2.

∙ Inherently requires an iteration count that depends on
singular value gaps.

15

understanding gap dependence

Traditional objective function: ∥ui − ũi∥2

 .81

 .26
 .93

-.35

X0

3

1

1.1

A

 .51

-.08
 .78

 .01
 1

-.07

X1

 .62

 .04
 0

 0
 1

 0

U2

 1

 0

16

understanding gap dependence

Traditional objective function: ∥ui − ũi∥2

 .78

 .01
 1

-.07

X1

3

1

1.1

A

 .62

 .04
 .75

 0
 1

-.02

X2

 .65

 .02
 0

 0
 1

 0

U2

 1

 0

16

understanding gap dependence

Traditional objective function: ∥ui − ũi∥2

 .75

 0
 1

-.02

X2

3

1

1.1

A

 .65

 .02
 .72

 0
 1

-.01

X3

 .69

 .01
 0

 0
 1

 0

U2

 1

 0

16

understanding gap dependence

Traditional objective function: ∥ui − ũi∥2

 .72

 0
 1

-.01

X3

3

1

1.1

A

 .69

 .01
 .68

 0
 1

 0

X4

 .72

 0
 0

 0
 1

 0

U2

 1

 0

16

understanding gap dependence

Traditional objective function: ∥ui − ũi∥2

 .68

 0
 1

 0

X4

3

1

1.1

A

 .72

 0
 .65

 0
 1

 0

X5

 .76

 0
 0

 0
 1

 0

U2

 1

 0

16

understanding gap dependence

Traditional objective function: ∥ui − ũi∥2

 .65

 0
 1

 0

X5

3

1

1.1

A

 .76

 0
 .62

 0
 1

 0

X6

 .78

 0
 0

 0
 1

 0

U2

 1

 0

16

understanding gap dependence

Traditional objective function: ∥ui − ũi∥2

 .62

 0
 1

 0

X6

3

1

1.1

A

 .78

 0
 .58

 0
 1

 0

X7

 .82

 0
 0

 0
 1

 0
 1

 0

U2

16

understanding gap dependence

Traditional objective function: ∥ui − ũi∥2

 .58

 0
 1

 0

X7

3

1

1.1

A

 .82

 0
 .54

 0
 1

 0

X8

 .84

 0
 0

 0
 1

 0
 1

 0

U2

16

understanding gap dependence

Traditional objective function: ∥ui − ũi∥2

 .54

 0
 1

 0

X8

3

1

1.1

A

 .84

 0
 .51

 0
 1

 0

X9

 .86

 0
 0

 0
 1

 0

U2

 1

 0

16

key insight

Convergence becomes less necessary precisely when it is
difficult to achieve!

3

1

1.01

A

 0

 0
 1

 0

U2

 1

 0

 0

 0
 1

 0

U2’

 1
 0

Minimizing ∥ui − ũi∥2 is sufficient, but far from necessary.

17

key insight

Convergence becomes less necessary precisely when it is
difficult to achieve!

3

1

1.01

A

 0

 0
 1

 0

U2

 1

 0

 0

 0
 1

 0

U2’

 1
 0

Minimizing ∥ui − ũi∥2 is sufficient, but far from necessary.

17

modern approach to analysis

Iterative methods viewed as denoising procedures for
Random Sketching methods.

Choose G ∼ N (0, 1)d×k. If A is rank k then:

span (AG) = span(A)

Ũk = span () =⇒ ∥A− ŨkŨTkA∥F = ∥A− A∥F = 0

If A is not rank k then we have error due to A− Ak:

Ũk = span(AG) =⇒ ∥A− ŨkŨTkA∥F ≤ poly(d)∥A− Ak∥F

∙ Gives an error bound for a single power method iteration.
∙ Meaningless unless ∥A− Ak∥F (the ‘tail noise’) is very small.

18

modern approach to analysis

Iterative methods viewed as denoising procedures for
Random Sketching methods.

Choose G ∼ N (0, 1)d×k. If A is rank k then:

span (AG) = span(A)

Ũk = span () =⇒ ∥A− ŨkŨTkA∥F = ∥A− A∥F = 0

If A is not rank k then we have error due to A− Ak:

Ũk = span(AG) =⇒ ∥A− ŨkŨTkA∥F ≤ poly(d)∥A− Ak∥F

∙ Gives an error bound for a single power method iteration.
∙ Meaningless unless ∥A− Ak∥F (the ‘tail noise’) is very small.

18

modern approach to analysis

Iterative methods viewed as denoising procedures for
Random Sketching methods.

Choose G ∼ N (0, 1)d×k. If A is rank k then:

span (AG) = span(A)

Ũk = span (AG) =⇒ ∥A− ŨkŨTkA∥F = ∥A− A∥F = 0

If A is not rank k then we have error due to A− Ak:

Ũk = span(AG) =⇒ ∥A− ŨkŨTkA∥F ≤ poly(d)∥A− Ak∥F

∙ Gives an error bound for a single power method iteration.
∙ Meaningless unless ∥A− Ak∥F (the ‘tail noise’) is very small.

18

modern approach to analysis

Iterative methods viewed as denoising procedures for
Random Sketching methods.

Choose G ∼ N (0, 1)d×k. If A is rank k then:

span (AG) = span(A)

Ũk = span (A) =⇒ ∥A− ŨkŨTkA∥F = ∥A− A∥F = 0

If A is not rank k then we have error due to A− Ak:

Ũk = span(AG) =⇒ ∥A− ŨkŨTkA∥F ≤ poly(d)∥A− Ak∥F

∙ Gives an error bound for a single power method iteration.
∙ Meaningless unless ∥A− Ak∥F (the ‘tail noise’) is very small.

18

modern approach to analysis

Iterative methods viewed as denoising procedures for
Random Sketching methods.

Choose G ∼ N (0, 1)d×k. If A is rank k then:

span (AG) = span(A)

Ũk = span (A) =⇒ ∥A− ŨkŨTkA∥F = ∥A− A∥F = 0

If A is not rank k then we have error due to A− Ak:

Ũk = span(AG) =⇒ ∥A− ŨkŨTkA∥F ≤ poly(d)∥A− Ak∥F

∙ Gives an error bound for a single power method iteration.
∙ Meaningless unless ∥A− Ak∥F (the ‘tail noise’) is very small.

18

modern approach to analysis

Iterative methods viewed as denoising procedures for
Random Sketching methods.

Choose G ∼ N (0, 1)d×k. If A is rank k then:

span (AG) = span(A)

Ũk = span (A) =⇒ ∥A− ŨkŨTkA∥F = ∥A− A∥F = 0

If A is not rank k then we have error due to A− Ak:

Ũk = span(AG) =⇒ ∥A− ŨkŨTkA∥F ≤ poly(d)∥A− Ak∥F

∙ Gives an error bound for a single power method iteration.

∙ Meaningless unless ∥A− Ak∥F (the ‘tail noise’) is very small.

18

modern approach to analysis

Iterative methods viewed as denoising procedures for
Random Sketching methods.

Choose G ∼ N (0, 1)d×k. If A is rank k then:

span (AG) = span(A)

Ũk = span (A) =⇒ ∥A− ŨkŨTkA∥F = ∥A− A∥F = 0

If A is not rank k then we have error due to A− Ak:

Ũk = span(AG) =⇒ ∥A− ŨkŨTkA∥F ≤ poly(d)∥A− Ak∥F

∙ Gives an error bound for a single power method iteration.
∙ Meaningless unless ∥A− Ak∥F (the ‘tail noise’) is very small.

18

modern approach to analysis

How to avoid tail noise? Apply sketching method to Aq instead.

This is exactly what Block Power Method does:

G→ AG→ A2G→ . . .→ AqG, Ũk = span(AqG)

Assuming A is symmetric, if A = UΣUT then Aq = UΣqUT.

∥Aq − Aqk∥2F =
∑d

i=k+1 σ
2q
i is extremely small.

19

modern approach to analysis

How to avoid tail noise? Apply sketching method to Aq instead.

This is exactly what Block Power Method does:

G→ AG→ A2G→ . . .→ AqG, Ũk = span(AqG)

Assuming A is symmetric, if A = UΣUT then Aq = UΣqUT.

∥Aq − Aqk∥2F =
∑d

i=k+1 σ
2q
i is extremely small.

19

modern approach to analysis

How to avoid tail noise? Apply sketching method to Aq instead.

Assuming A is symmetric, if A = UΣUT then Aq = UΣqUT.

A
 =
 U
 Σ
 UT

σ1

σ2

σd-1

σd

d

d

∥Aq − Aqk∥2F =
∑d

i=k+1 σ
2q
i is extremely small.

19

modern approach to analysis

How to avoid tail noise? Apply sketching method to Aq instead.

Assuming A is symmetric, if A = UΣUT then Aq = UΣqUT.

Aq
 =
 U
 Σq
 UT

σ1q

σ2q

σd-1q

σdq

d

d

∥Aq − Aqk∥2F =
∑d

i=k+1 σ
2q
i is extremely small.

19

modern approach to analysis

How to avoid tail noise? Apply sketching method to Aq instead.

Assuming A is symmetric, if A = UΣUT then Aq = UΣqUT.

0 5 10 15 20
0

5

10

15

Index i

Si
ng

ul
ar

 V
al

ue

σ i

Spectrum of A

Spectrum of Aq

∥Aq − Aqk∥2F =
∑d

i=k+1 σ
2q
i is extremely small.

19

modern approach to analysis

How to avoid tail noise? Apply sketching method to Aq instead.

Assuming A is symmetric, if A = UΣUT then Aq = UΣqUT.

0 5 10 15 20
0

5

10

15

Index i

Si
ng

ul
ar

 V
al

ue

σ i

Spectrum of A

Spectrum of Aq

∥Aq − Aqk∥2F =
∑d

i=k+1 σ
2q
i is extremely small.

19

modern approach to analysis

∙ q = Õ(1/ϵ) ensures that any singular value below σk+1
becomes extremely small in comparison to any singular
value above (1+ ϵ)σk+1.

(1− ϵ)O(1/ϵ) << 1

∙ Ũk = span(AqG) must align well with large (but not the
largest!) singular vectors of Aq to achieve even coarse
Frobenius norm error:

∥Aq − ŨkŨTkAq∥F ≤ poly(d)∥Aq − A
q
k∥F ≈ 0

∙ A and Aq have the same singular vectors so Ũk is good for A.

20

modern approach to analysis

∙ q = Õ(1/ϵ) ensures that any singular value below σk+1
becomes extremely small in comparison to any singular
value above (1+ ϵ)σk+1.

(1− ϵ)O(1/ϵ) << 1

∙ Ũk = span(AqG) must align well with large (but not the
largest!) singular vectors of Aq to achieve even coarse
Frobenius norm error:

∥Aq − ŨkŨTkAq∥F ≤ poly(d)∥Aq − A
q
k∥F ≈ 0

∙ A and Aq have the same singular vectors so Ũk is good for A.

20

modern approach to analysis

∙ q = Õ(1/ϵ) ensures that any singular value below σk+1
becomes extremely small in comparison to any singular
value above (1+ ϵ)σk+1.

(1− ϵ)O(1/ϵ) << 1

∙ Ũk = span(AqG) must align well with large (but not the
largest!) singular vectors of Aq to achieve even coarse
Frobenius norm error:

∥Aq − ŨkŨTkAq∥F ≤ poly(d)∥Aq − A
q
k∥F ≈ 0

∙ A and Aq have the same singular vectors so Ũk is good for A.

20

modern approach to analysis

∙ q = Õ(1/ϵ) ensures that any singular value below σk+1
becomes extremely small in comparison to any singular
value above (1+ ϵ)σk+1.

(1− ϵ)O(1/ϵ) << 1

∙ Ũk = span(AqG) must align well with large (but not the
largest!) singular vectors of Aq to achieve even coarse
Frobenius norm error:

∥Aq − ŨkŨTkAq∥F ≤ poly(d)∥Aq − A
q
k∥F ≈ 0

∙ A and Aq have the same singular vectors so Ũk is good for A.
20

modern approach to analysis

We use new tools for converting very small Frobenius norm
low-rank approximation error to spectral norm and per vector
error, without arguing about convergence of ũi and ui.

21

krylov acceleration

There are better polynomials than Aq for “denoising” A.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

0

10

20

30

x

xO(1/ε)

T
O(1/√ε)

(x)

With Chebyshev polynomials only need degree q = Õ(1/
√
ϵ).

22

krylov acceleration

There are better polynomials than Aq for “denoising” A.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

0

10

20

30

x

xO(1/ε)

T
O(1/√ε)

(x)

With Chebyshev polynomials only need degree q = Õ(1/
√
ϵ).

22

krylov acceleration

There are better polynomials than Aq for “denoising” A.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

0

10

20

30

x

xO(1/ε)

T
O(1/√ε)

(x)

With Chebyshev polynomials only need degree q = Õ(1/
√
ϵ).

22

krylov acceleration

There are better polynomials than Aq for “denoising” A.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

0

10

20

30

x

xO(1/ε)

T
O(1/√ε)

(x)

With Chebyshev polynomials only need degree q = Õ(1/
√
ϵ).

22

krylov acceleration

∙ Chebyshev polynomial Tq(A) has a very small tail. So
returning Ũk = span(Tq(A)G) would suffice.

∙ Furthermore, block power iteration computes (at
intermediate steps) all of the components needed for:

Tq(A)G = c0G+ c1AG+ ...+ cqAqG

G→ AG→ A2G→ . . .→ AqG

Block Krylov Iteration:

K =
[
G,AG,A2G, . . . ,AqG

]︸ ︷︷ ︸
Krylov subspace

23

krylov acceleration

∙ Chebyshev polynomial Tq(A) has a very small tail. So
returning Ũk = span(Tq(A)G) would suffice.

∙ Furthermore, block power iteration computes (at
intermediate steps) all of the components needed for:

Tq(A)G = c0G+ c1AG+ ...+ cqAqG

G→ AG→ A2G→ . . .→ AqG

Block Krylov Iteration:

K =
[
G,AG,A2G, . . . ,AqG

]︸ ︷︷ ︸
Krylov subspace

23

krylov acceleration

∙ Chebyshev polynomial Tq(A) has a very small tail. So
returning Ũk = span(Tq(A)G) would suffice.

∙ Furthermore, block power iteration computes (at
intermediate steps) all of the components needed for:

Tq(A)G = c0G+ c1AG+ ...+ cqAqG

G→ AG→ A2G→ . . .→ AqG

Block Krylov Iteration:

K =
[
G,AG,A2G, . . . ,AqG

]︸ ︷︷ ︸
Krylov subspace

23

krylov acceleration

∙ Chebyshev polynomial Tq(A) has a very small tail. So
returning Ũk = span(Tq(A)G) would suffice.

∙ Furthermore, block power iteration computes (at
intermediate steps) all of the components needed for:

Tq(A)G = c0G+ c1AG+ ...+ cqAqG

G→ AG→ A2G→ . . .→ AqG

Block Krylov Iteration:

K =
[
G,AG,A2G, . . . ,AqG

]︸ ︷︷ ︸
Krylov subspace

23

implicit use of acceleration polynomial

But...

we can’t explicitly compute Tq(A), since its parameters
depend on A’s (unknown) singular values.

Solution: Returning the best Ũk in the span of K is only better
then returning span(Tq(A)G).

24

implicit use of acceleration polynomial

But... we can’t explicitly compute Tq(A), since its parameters
depend on A’s (unknown) singular values.

Solution: Returning the best Ũk in the span of K is only better
then returning span(Tq(A)G).

24

implicit use of acceleration polynomial

But... we can’t explicitly compute Tq(A), since its parameters
depend on A’s (unknown) singular values.

Solution: Returning the best Ũk in the span of K is only better
then returning span(Tq(A)G).

24

implicit use of acceleration polynomial

What is the best Ũk?

Surprisingly difficult question.

∙ For Block Power Method, did not need to consider this –
Ũk = span(AqG) was the only option.

∙ In classical Lanczos/Krylov analysis, convergence to the true
singular vectors also lets us avoid this issue. Use Rayleigh
Ritz procedure.

25

implicit use of acceleration polynomial

What is the best Ũk? Surprisingly difficult question.

∙ For Block Power Method, did not need to consider this –
Ũk = span(AqG) was the only option.

∙ In classical Lanczos/Krylov analysis, convergence to the true
singular vectors also lets us avoid this issue. Use Rayleigh
Ritz procedure.

25

implicit use of acceleration polynomial

What is the best Ũk? Surprisingly difficult question.

∙ For Block Power Method, did not need to consider this –
Ũk = span(AqG) was the only option.

∙ In classical Lanczos/Krylov analysis, convergence to the true
singular vectors also lets us avoid this issue. Use Rayleigh
Ritz procedure.

25

implicit use of acceleration polynomial

What is the best Ũk? Surprisingly difficult question.

∙ For Block Power Method, did not need to consider this –
Ũk = span(AqG) was the only option.

∙ In classical Lanczos/Krylov analysis, convergence to the true
singular vectors also lets us avoid this issue. Use Rayleigh
Ritz procedure.

25

rayleigh-ritz post-processing

∙ Project A to K and take the top k singular vectors (using an
accurate classical method):

Ũk = span ((PKA)k)

Block Krylov Iteration:

K =
[
G,AG,A2G, . . . ,AqG

]︸ ︷︷ ︸
Krylov subspace

, Ũk = span ((PKA)k)︸ ︷︷ ︸
‘best’ solution in Krylov subspace

∙ Equivalent to the classic Block Lanczos algorithm in exact
arithmetic.

26

rayleigh-ritz post-processing

∙ Project A to K and take the top k singular vectors (using an
accurate classical method):

Ũk = span ((PKA)k)

Block Krylov Iteration:

K =
[
G,AG,A2G, . . . ,AqG

]︸ ︷︷ ︸
Krylov subspace

, Ũk = span ((PKA)k)︸ ︷︷ ︸
‘best’ solution in Krylov subspace

∙ Equivalent to the classic Block Lanczos algorithm in exact
arithmetic.

26

rayleigh-ritz post-processing

∙ Project A to K and take the top k singular vectors (using an
accurate classical method):

Ũk = span ((PKA)k)

Block Krylov Iteration:

K =
[
G,AG,A2G, . . . ,AqG

]︸ ︷︷ ︸
Krylov subspace

, Ũk = span ((PKA)k)︸ ︷︷ ︸
‘best’ solution in Krylov subspace

∙ Equivalent to the classic Block Lanczos algorithm in exact
arithmetic.

26

rayleigh-ritz post-processing

This post-processing step provably gives an optimal Ũk for
Frobenius norm low-rank approximation error.

∙ Our entire analysis relied on converting very small Frobenius
norm error to strong spectral norm and per vector error!

Take away: Modern denoising analysis gives new insight into
the practical effectiveness of Rayleigh-Ritz projection.

27

rayleigh-ritz post-processing

This post-processing step provably gives an optimal Ũk for
Frobenius norm low-rank approximation error.

∙ Our entire analysis relied on converting very small Frobenius
norm error to strong spectral norm and per vector error!

Take away: Modern denoising analysis gives new insight into
the practical effectiveness of Rayleigh-Ritz projection.

27

rayleigh-ritz post-processing

This post-processing step provably gives an optimal Ũk for
Frobenius norm low-rank approximation error.

∙ Our entire analysis relied on converting very small Frobenius
norm error to strong spectral norm and per vector error!

Take away: Modern denoising analysis gives new insight into
the practical effectiveness of Rayleigh-Ritz projection.

27

final implementation

Similar to randomized Block Power Method – extremely simple
(pseudocode in paper).

Block Power Method Block Krylov Iteration

28

performance

Block Krylov beats Block Power Method definitively for small ϵ.

5 10 15 20 25

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

E
rr

or
 ε

Iterations q

Block Krylov − Frobenius Error

Block Krylov − Spectral Error

Block Krylov − Per Vector Error

Power Method − Frobenius Error

Power Method − Spectral Error

Power Method − Per Vector Error

20 Newsgroups, k = 20 29

performance

Block Krylov beats Block Power Method definitively for small ϵ.

0 1 2 3 4 5 6 7

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Runtime (seconds)

E
rr

or
 ε

Block Krylov − Frobenius Error

Block Krylov − Spectral Error

Block Krylov − Per Vector Error

Power Method − Frobenius Error

Power Method − Spectral Error

Power Method − Per Vector Error

20 Newsgroups, k = 20 29

final comments

Main Takeaway: First gap independent bound for Krylov
methods.

O
(
nnz(A)k · logd√

(σk − σk+1/σk

)
→ O

(
nnz(A)k · logd√

ϵ

)

Open Questions

∙ Full stability analysis.
∙ ‘Master’ error metric for gap independent results.
∙ Gap independent bounds for other methods (e.g. online and
stochastic PCA).

∙ Analysis for small space/restarted block Krylov methods?
30

Thank you!

31

stability

Stability

∙ Lanczos algorithms are often considered to be unstable.
∙ Largely due to the fact that a recurrence is used to efficiently
compute a basis for the Krylov subspace “on the fly”.

∙ Since our subspace is small, we do not use the recurrence.
Computing the basis explicitly avoids serious stability issues.

∙ There is some loss of orthogonality between blocks.
However it only occurs once the algorithm has converged
and we can show that it is not an issue in practice.

32

stability

On poorly conditioned matrices Randomized Block Krylov
Iteration still significantly outperforms Block Power Method.

0 20 40 60 80 100 120
10

−15

10
−10

10
−5

10
0

iterations q

P
er

 v
ec

to
r

er
ro

r ε

Block Krylov
Block Power

Per Vector Error for k = 10, κ = 100,000
33

