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MODERN PARADIGM FOR SEARCH

Use neural network (BERT, CLIP, etc.) to convert documents,
images, and other media to high dimensional vectors.
Matching results should have similar vector embeddings.
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VECTOR SEARCH

Finding results for a query amounts to finding the closest k
vectors in a vector database X . E.g., for k = 1, return:

argmin
x∈X

∥x− q∥.

Here q is the vector embedding of the query text.
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VECTOR SEARCH IN PRACTICE

While a classic problem, there has been a recent surge of
interest in nearest vector search + vector databases.

Beyond AI-based search, vector databases are a key
technology behind Retrieval-Augmented Generation (RAG)
systems for providing context (user emails, code snippets,
documents, etc.) to language models.
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ALGORITHMS FOR VECTOR SEARCH

What algorithms are these databases using for vector search?

Goal: Let X be a database of n vectors in Rd. Find x ∈ X
minimizing ∥x− q∥ for a query q.

• A naive linear scan takes O(nd) time.
• Ideally, we want to achieve o(n) time.
• Willing to spend time preprocessing X , possibly into a
data structures that takes Ω(nd) space.

Obtaining an exact solutionis notoriously difficult outside of
extremely low dimensions. Approximation algorithms have
been studied since the late 80s and 90s, but their space or
query complexity depends exponentially on the dimension d.
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ALGORITHMS FOR VECTOR SEARCH

The “curse-of-dimensionality” was broken via the introduction
of Locality Sensitive Hashing [Indyk, Motwani, 1998] .
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SPACE PARTITIONING METHODS

Rough idea behind LSH:

1. Pick a bunch of random hyperplanes.
2. Check which side of each hyperplane q lies on.
3. Return closest point that lies in the same region as q.
4. Repeat multiple times to avoid missing anything.
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SPACE PARTITIONING METHODS

Can get better partitions by chosing hyperplanes in a
data-dependent way, e.g. via clustering.

Key component of state-of-the-art near-neighbor search
libraries like Meta’s FAISS and Google’s SCANN.
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WORST-CASE GUARANTEES FOR LSH

Theorem (Andoni, Indyk, FOCS 2006)
For any c ≥ 1, there is a data structure based on locality
sensitive hashing that, for any query q, returns x̃ satisfying:

∥x̃− q∥2 ≤ c ·min
x∈X

∥x− q∥2

and uses:
• Query Time: Õ

(
dn1/c2

)
.

• Data Structure Space Complexity: Õ
(
nd+ n1+1/c2

)
.

As an example, if c = 2, query time scales with n1/4, which is
pretty amazing! (1 billion)1/4 < 200.

LSH and related developments won Indyk, Charikar, and
Broder the 2012 ACM Paris Kanellakis Theory and Practice

Award.
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VECTOR SEARCH IN PRACTICE

Few (none?) of these vector databases are using LSH or
data-dependent space partitioning!

New kid on the block: Graph-based Search.
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NEAREST-NEIGHBOR SEARCH IN PRACTICE

New(ish) kid on the block: Graph-based Search.

• Navigating Spreading-out Graphs (NSG) [Fu, Xiang, Wang,
Cai, 2017]

• Hierarchical Navigable Small World (HNSW) [Malkov,
Yashunin, 2018]

• Microsoft’s DiskANN [Subramanya, Devvrit, Kadekodi,
Krishaswamy, Simhadri 2019]

Very similar methods studied for low-dimensions in the 1990s
by Arya, Mount, Clarkson, Kleinberg, and others.

Connections to Milgram’s famous “small world” experiments
from the 1960s and later work on the small world phenomenon
by Watts, Strogatz, Kleinberg, and others.
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BASIC IDEA BEHIND GRAPH-BASED SEARCH

1. Construct a directed search graph over our dataset.

2. Run some variant of greedy search in the graph.
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GRAPH-BASED SEARCH IN PRACTICE

Graph-based methods are topping benchmarks and
competitions!
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GRAPH-BASED SEARCH IN PRACTICE

Graph-based methods are topping benchmarks and
competitions!

Open theory challenge: Can we explain the empirical
success of graph-based vector search?
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PLAN FOR TODAY

There has been a lot of interesting recent work1, but we are
still far from addressing this challenge in a satisfying way.

Goal for today:

• Discuss connections between the performance of
graph-based search methods and the concept of graph
navigability.

• Introduce recent results on the existence and construction
of sparse navigable graphs (NeurIPS 2024, SODA 2026).

• Discuss open questions and next steps.
1[Laarhoven 2018, Prokhorenkova, Shekhovtsov 2020, Indyk, Xu 2023,
Gollapudi, Krishnaswamy, Shiragur, Wardhan 2025, Har-Peled, Raichel,
Robson 2025, many more]
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NAVIGABLE GRAPHS

c-approximate nearest neighbor search: Return j satisfying
∥xj − q∥2 ≤ c ·mini∈{1,...,n} ∥xi − q∥2 for some c ≥ 1.

Standard guarantee for LSH methods, although people care
about other metrics of success as well.

Observation: Assume no duplicates in X = {x1, . . . , xn}. If
query q = xj for some j, we must return j.

Search graph G should be chosen to at least ensure that we
find q if it is in the dataset.

Ideally, G should also be sparse and require few steps to find q.
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NAVIGABLE GRAPHS

Definition (Navigable Graph)
A directed graph G over a point set x1, . . . , xn is navigable if,
for all i, j ∈ {1, . . . ,n}, greedy search run on G with start node
i and query xj returns j.

Among dozens of papers on search graph construction,
navigability is frequently listed as a desirably property. Lends
its name to methods like “hierarchical navigable small world
(HNSW) graphs” and “navigating spreading-out graphs (NSG)” 16



NAVIGABLE GRAPHS

However, few of these papers actually construct provably
navigable graphs!

Natural Questions: Do sparse navigable graphs even
exist? Can we find them efficiently?

Navigability can be viewed as a minimum necessary condition
for graph-based greedy search to succeed, so answering this
question is critical to understanding graph-based methods.

Also a natural property in its own right. Exactly the property
explored in Milgram’s “small world” experiments: can greedy
routing find paths between people in social networks?
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SPARSE NAVIGABLE GRAPHS

Known results in low-dimensional Euclidean space:

• 2-dimensions: The Delaunay graph can be proven to be
navigable. This graph has average degree ≤ 3.

• Kleinberg studied how to further achieve low-diameter/“small
world” property with a logarithmic number of edges per node.

• d-dimensions: The Sparse Neighborhod Graph of Arya and
Mount [SODA, 1993] is navigable and has average degree O(2d). 18
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SPARSE NAVIGABLE GRAPHS

Claim (Upper Bound)
Any dataset x1, . . . , xn admits a navigable graph with average
degree ≤ 2

√
n, under any distance function.

Today we will prove a slightly weaker O(
√
n log n) bound.

Claim (Nearly Matching Lower Bound, NeurIPS 2024)
Let x1, . . . , xn be random vectors in {−1, 1}m where
m = O(log n). With high probability, any navigable graph for
x1, . . . , xn requires average out-degree Ω(n1/2−ϵ) for any fixed
constant ϵ.

I will give you a proof sketch.
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ALTERNATIVE DEFINITION

Definition (Navigable Graph)
A directed graph G is navigable for a point set 1, . . . ,n and
distance function d(·, ·) if, for all nodes i, for all j ̸= i, there is
some k ∈ N (i) (i’s out neighborhood) satisfying:

d(j, k) < d(j, i).

To avoid corner cases/tiebreaking, we will assume that all
distances in the dataset are unique.
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NAVIGABILE SEARCH GRAPHS

Definition (Navigable Graph)
A directed graph G is navigable for a point set 1, . . . ,n and
distance function d(·, ·) if, for all nodes i, for all j ̸= i, there is
some k ∈ N (i) (i’s out neighborhood) satisfying:

d(j, k) < d(j, i).
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NAVIGABLE GRAPH CONSTRUCTION AS SET COVER

Imagine a Distance-Based Permutation Matrix, where the ith

row lists all points sorted in order of their distance to point i.

Navigability Requirement: Need at least one “left pointing”
edge for every node in every list.
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UPPER BOUND CONSTRUCTION

Construction: Choose m < n.

1. Add an edge from j to i if j is one of i’sm closest neighbors.
2. Add O( nm log n) uniformly random out-edges to every node.
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UPPER BOUND CONSTRUCTION

1. Add an edge from j to i if j is one of i’sm closest neighbors.
2. Add O( nm log n) uniformly random out-edges to every node.

Analysis: Consider any node outside the left region. The
probability a random edge points left is at least m

n . So the
probability that none point left is:

≤
(
1− m

n

)O( n
m log n)

≤ 1
n3 .

By a union bound, satisfy all navigability requirements w.h.p. 24



UPPER BOUND CONSTRUCTION

Construction: Choose m < n.

1. Add an edge from j to i if j is one of i’sm closest neighbors.
2. Add O( nm log n) uniformly random out-edges to every node.

Total number of edges: nm+ n · O( nm log n).

Minimize by setting m = O(
√
n log n).

Average out-degree: O(
√
n log n).

Moreover, the constructed graph has “depth” two: greedy
search will converge in two steps for any query in the dataset.
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LOWER BOUND SKETCH

Claim (Nearly Matching Lower Bound)
Let x1, . . . , xn be random vectors in {−1, 1}m where
m = O(log n). With high probability, any navigable graph for
x1, . . . , xn under Euclidean distance requires average
out-degree Ω(n1/2−ϵ) for any fixed constant ϵ.
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LOWER BOUND SKETCH

Core idea: For random points in O(log n) dimensions, the
√
n

closest points for each xi are “close” to i.i.d. uniform random.
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LOWER BOUND SKETCH

Consequence: For any i, j, k, the probability that both j and k
appear in the hard region for row i is ≲ 1/n.

With high probability, no pair (j, k) appears together in the
hard region for more than O(log n) different rows. An edge
from j → k can thus only cover O(log n) “hard” constraints.

But there are O(n3/2) total to cover. So we need Õ(n3/2) edges. 28



BEYOND THE WORST-CASE

Θ(n3/2) edges are sufficient and necessary to construct a
navigable graph in the worst case. However, some datasets
might admit sparser navigable graphs.

Natural algorithmic question: How quickly can we construct
the sparsest navigable graph for a given dataset?
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INSTANCE-OPTIMAL NAVIGABLE GRAPHS

Theorem (CDFJLMSSW, SODA 2026)
For any dataset and any distance function, we can construct a
navigable graph with at most O(log n) times as many edges
as the sparsest navigable graph in Õ(n2) time.

• O(n2) time is optimal even for points in O(log n)
dimensional Euclidean space assuming Strong
Exponential Time Hypothesis.

• O(log n) approximation factor is optimal assuming P ̸= NP
• Similar results obtained by [Khanna, Padaki, Waingarten,
SODA 2026].
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FIRST OBSERVATION

Navigable graph construction is just n different minimum set
cover problems!

Definition (Navigable Graph)
A graph G is navigable if, for all nodes i, for all j ̸= i, there is some
k ∈ N (i) (i’s out neighborhood) satisfying d(j, k) < d(j, i).

One problem for each node i. One set for all possible out neighbors.
Elements to cover are all j ̸= i.
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NAVIGABILITY AS SET COVER

Baseline: Explicitly write down each set cover problem, which
takes n× O(n2) time.

Standard greedy algorithm (pick the out-neighbor covering the
most uncovered nodes) obtains an O(log n) approximation,
and can be implemented n× O(n2) = O(n3) time.
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NAVIGABILITY AS SET COVER

How can we beat cubic time?

Key Observation: In O(n2 log n) time, we can implement an
oracle to access information about the set cover instances,
without writing them down explicitly.

Simply construct the Distance-based Permutation Matrix:

33



NAVIGABILITY AS SET COVER

How can we beat cubic time?

Key Observation: In O(n2 log n) time, we can implement an
oracle to access information about the set cover instances,
without writing them down explicitly.

Simply construct the Distance-based Permutation Matrix:

33



NAVIGABILITY AS SET COVER

Concretely, after O(n2 log n) time preprocessing, can implement
Membership and SetOf queries in O(1) time.

• Membership: Is j in set k in instance i? I.e., is
d(j, k) < d(j, i)?

• SetOf: What is the kth set containing j in instance i?
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NAVIGABILITY AS SET COVER

Immediately let’s use leverage prior work on “sublinear time”
set cover algorithms! [Indyk, Mahabadi, Rubinfeld, Vakilian,
Yodpinyanee, SODA 2018], [Koufogiannaki, Young 2014].

Let OPT =
∑n

i=1 OPTi be the size of the sparsest navigable
graph. These results immediately give an O(log n)
approximation in time:

Õ(n · OPT) ≤ Õ(n2.5).

To reduce this to Õ(n2) we introduced an alternative approach
to solving set cover problems in sublinear time.

Main idea: Directly simulate the greedy set cover algorithm.
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GREEDY SIMULATION

Sample uncovered nodes. For each set (potential
out-neighbor), maintain a counter for how many sampled
nodes it covers.

Once a node receives O(log n) votes, with high probability it
covers a near maximal number of other nodes. Add to cover.
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GREEDY SIMULATION

It is easy to show that, up to constant factors, greedy
simulation matches the O(log n) approximation guarantees of
standard greedy set cover. Bounding runtime is trickier.

Main contributions to runtime:

1. When we sample node j, need to increase counter for all
sets it is contained in.

2. Every time a node is sampled, need to check that it was
not previously covered in one of our selected sets.

We can reduce the cost of both by adding random edges, just
as we did in the O(

√
n log n) construction!
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RANDOM PREPROCESSING

Claim: After adding O(log n ·OPT/n) random out-edges to every
node, we have two properties:

1. Any element contained in > n/(OPT/n) = n2/OPT sets is
covered with high probability.

2. Only n3/OPT total elements are left uncovered.
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RANDOM PREPROCESSING

Claim: After adding O(log n ·OPT/n) random out-edges to every
node, we have two properties:

1. Any element contained in > n/(OPT/n) = n2/OPT sets is
covered with high probability.

2. Only n3/OPT total elements are left uncovered.

Assume OPTi = OPT/n and we have roughly n2/OPT = n/OPTi
uncovered elements per instance. (Dealing with the “uneven”
case is more technical.)

Total cost to run greedy simulation for node i is:

O(OPTi · log n) ·

 n/OPTi︸ ︷︷ ︸
increment counters

+ n/OPTi︸ ︷︷ ︸
# of elements sampled

 = O(n log n).
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FUTURE DIRECTIONS

Recap:

1. Every dataset admits a navigable graph with average
degree O(

√
n).

2. We can find a near-optimally sparse navigable graph for
any dataset in Õ(n2) time.

Where does this leave us in terms of understanding
graph-based search?

Still don’t have sublinear query time bounds or strong
approximation guarantees! There are two main barriers.
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FAILED APPROXIMATION FOR GENERIC QUERIES

1. Greedy search on a navigable graph fails to provide any
meaningful approximation for general queries, q (that are not
exactly in our dataset).

Recall that, if currently at node i, greedy search moves to
j∗ = argminj∈N (i) d(j,q), or terminates if d(j∗,q) > d(i,q).
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MAXIMUM DEGREE

2. It is easy to construct datasets where any navigable graph
must have n− 1 maximum degree.

In a navigable graph, if j is i’s closest neighbor, then there must
be an edge from j to i.
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FUTURE DIRECTIONS

Some options for addressing these issues:

• Consider “backtracking” variations of greedy search, like
beam search, that could offer better approximation
guarantees.

In an upcoming NeurIPS 2025 paper, we describe an Adaptive
Beam Search method that always returns a c-approximate
nearest neighbor when run on any navigable graph.

• Relax the definition of navigability: only require greedy
search to succeed for a particular chosen starting point.
Avoids high maximum degree issue.
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FUTURE DIRECTIONS

Other questions:

• Is there a Õ
(
n2) time algorithms for constructing optimal

α-shortcut reachable graphs (discussed in Sepideh’s talk).
Best we can currently do is Õ

(
n2.5).

• For real-world datasets, even Õ(n2) is far to slow. Can we
design subquadratic time algorithms for an appropriately
relaxed notion of navigability?
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QUESTIONS?
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