
dimensionality reduction for k-means and
low rank approximation

Michael Cohen, Sam Elder, Cameron Musco,
Christopher Musco, Mădălina Persu

Massachusetts Institute of Technology
(currently at Yahoo Labs, NYC)

0

overview

Simple techniques to accelerate algorithms for:

∙ k-means clustering
∙ principal component analysis (PCA)
∙ constrained low rank approximation

1

dimensionality reduction

Replace large, high dimensional dataset with low dimensional
sketch.

n
 d

at
a

po
in

ts

d features

Ã
A

d’ << d features

2

dimensionality reduction

Solution on sketch Ã should approximate original solution.

−0.5
0

0.5
1

1.5
2

−0.5

0

0.5

1

1.5

2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Dimensionality reduction algorithm is ideally fast, memory
efficient – often randomization is used.

3

dimensionality reduction

Solution on sketch Ã should approximate original solution.

−0.5
0

0.5
1

1.5
2

−0.5

0

0.5

1

1.5

2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Dimensionality reduction algorithm is ideally fast, memory
efficient – often randomization is used.

3

dimensionality reduction

Solution on sketch Ã should approximate original solution.

−0.5
0

0.5
1

1.5
2

−0.5

0

0.5

1

1.5

2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Simultaneously improves runtime, memory requirements,
communication cost, etc.

3

well studied approach

Standard paradigm for “randomized numerical linear algebra”.

∙ Obtaining pre-conditioners for matrix inversion
∙ Constrained regression (i.e. non-negative least squares)
∙ Fast SVMs, kernel approximation, algebraic graph theory, etc.

∙ Low rank approximation, principal component analysis

4

well studied approach

Standard paradigm for “randomized numerical linear algebra”.

∙ Obtaining pre-conditioners for matrix inversion
∙ Constrained regression (i.e. non-negative least squares)
∙ Fast SVMs, kernel approximation, algebraic graph theory, etc.

∙ Low rank approximation, principal component analysis

4

well studied approach

Standard paradigm for “randomized numerical linear algebra”.

∙ Obtaining pre-conditioners for matrix inversion
∙ Constrained regression (i.e. non-negative least squares)
∙ Fast SVMs, kernel approximation, algebraic graph theory, etc.
∙ Low rank approximation, principal component analysis

4

k-means clustering

∙ Extremely common objective function for clustering

∙ Choose k clusters to minimize total intra-cluster variance

min
C
Cost(A, C) =

n∑
i=1

∥ai − µ (C[ai]) ∥22

5

k-means clustering

∙ Extremely common objective function for clustering
∙ Choose k clusters to minimize total intra-cluster variance

min
C
Cost(A, C) =

n∑
i=1

∥ai − µ (C[ai]) ∥22

5

k-means clustering

∙ Extremely common objective function for clustering
∙ Choose k clusters to minimize total intra-cluster variance

min
C
Cost(A, C) =

n∑
i=1

∥ai − µ (C[ai]) ∥22

5

k-means clustering

∙ Extremely common objective function for clustering
∙ Choose k clusters to minimize total intra-cluster variance

min
C
Cost(A, C) =

n∑
i=1

∥ai − µ (C[ai]) ∥22

5

k-means clustering

∙ Extremely common objective function for clustering
∙ Choose k clusters to minimize total intra-cluster variance

min
C
Cost(A, C) =

n∑
i=1

∥ai − µ (C[ai]) ∥22

5

k-means clustering

ai

µ

min
C
Cost(A, C) =

n∑
i=1

∥ai − µ (C[ai]) ∥22
5

optimizing k-means

min
C
Cost(A, C) =

n∑
i=1

∥ai − µ (C[ai]) ∥22

∙ NP-hard, even for fixed dimension d or fixed k.

∙ Several (1+ ϵ) and constant factor approximation algorithms.
∙ In practice: Lloyd’s heuristic (i.e. “the k-means algorithm”)
with k-means++ initialization is used. O(log k) approximation
guaranteed, typically performs much better.

Dimensionality reduction can speed up any of these
algorithms.

6

optimizing k-means

min
C
Cost(A, C) =

n∑
i=1

∥ai − µ (C[ai]) ∥22

∙ NP-hard, even for fixed dimension d or fixed k.

∙ Several (1+ ϵ) and constant factor approximation algorithms.
∙ In practice: Lloyd’s heuristic (i.e. “the k-means algorithm”)
with k-means++ initialization is used. O(log k) approximation
guaranteed, typically performs much better.

Dimensionality reduction can speed up any of these
algorithms.

6

optimizing k-means

min
C
Cost(A, C) =

n∑
i=1

∥ai − µ (C[ai]) ∥22

∙ NP-hard, even for fixed dimension d or fixed k.
∙ Several (1+ ϵ) and constant factor approximation algorithms.

∙ In practice: Lloyd’s heuristic (i.e. “the k-means algorithm”)
with k-means++ initialization is used. O(log k) approximation
guaranteed, typically performs much better.

Dimensionality reduction can speed up any of these
algorithms.

6

optimizing k-means

min
C
Cost(A, C) =

n∑
i=1

∥ai − µ (C[ai]) ∥22

∙ NP-hard, even for fixed dimension d or fixed k.
∙ Several (1+ ϵ) and constant factor approximation algorithms.
∙ In practice: Lloyd’s heuristic (i.e. “the k-means algorithm”)
with k-means++ initialization is used. O(log k) approximation
guaranteed, typically performs much better.

Dimensionality reduction can speed up any of these
algorithms.

6

optimizing k-means

min
C
Cost(A, C) =

n∑
i=1

∥ai − µ (C[ai]) ∥22

∙ NP-hard, even for fixed dimension d or fixed k.
∙ Several (1+ ϵ) and constant factor approximation algorithms.
∙ In practice: Lloyd’s heuristic (i.e. “the k-means algorithm”)
with k-means++ initialization is used. O(log k) approximation
guaranteed, typically performs much better.

Dimensionality reduction can speed up any of these
algorithms.

6

optimizing k-means

min
C
Cost(A, C) =

n∑
i=1

∥ai − µ (C[ai]) ∥22

∙ NP-hard, even for fixed dimension d or fixed k.
∙ Several (1+ ϵ) and constant factor approximation algorithms.
∙ In practice: Lloyd’s heuristic (i.e. “the k-means algorithm”)
with k-means++ initialization is used. O(log k) approximation
guaranteed, typically performs much better.

Expecially powerful for Lloyd’s algorithm – most of your time
is spent computing distances between points!

6

warmup: well known result

Let me convince you something is possible.

7

cost preserving sketch

−0.5

0

0.5

1

1.5

2

−0.5

0

0.5

1

1.5

2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Ã

A

If Cost(Ã, C) ≈ Cost(A, C) for all C,
minC Cost(Ã, C) ≈ minC Cost(A, C).

8

cost preserving sketch

−0.5

0

0.5

1

1.5

2

−0.5

0

0.5

1

1.5

2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Ã

A

Objective: Cost(Ã, C) ≈ Cost(A, C)

minC Cost(Ã, C) ≈ minC Cost(A, C).

8

objective function in terms of distances

Can rewrite cost function:

∑n
i=1 ∥ai−µ (C[ai]) ∥22 =

∑k
l=1

1
2|Cj|

∑
i,j∈Cj ∥ai− aj∥22

9

objective function in terms of distances

Can rewrite cost function:

∑n
i=1 ∥ai−µ (C[ai]) ∥22 =

∑k
l=1

1
2|Cj|

∑
i,j∈Cj ∥ai− aj∥22

9

objective function in terms of distances

Can rewrite cost function:

∑n
i=1 ∥ai−µ (C[ai]) ∥22 =

∑k
l=1

1
2|Cj|

∑
i,j∈Cj ∥ai− aj∥22

9

goal: preserve pairwise distances

One option: preserve ∥ai − aj∥22 for all i, j:

∥ãi − ãj∥22 = (1± ϵ)∥ai − aj∥22 →

Cost(Ã, C) = (1± ϵ)Cost(A, C)

10

goal: preserve pairwise distances

One option: preserve ∥ai − aj∥22 for all i, j:

∥ãi − ãj∥22 = (1± ϵ)∥ai − aj∥22 →

Cost(Ã, C) = (1± ϵ)Cost(A, C)

10

goal: preserve pairwise distances

One option: preserve ∥ai − aj∥22 for all i, j:

∥ãi − ãj∥22 = (1± ϵ)∥ai − aj∥22 →

Cost(Ã, C) = (1± ϵ)Cost(A, C)

10

johnson-lindenstrauss lemma

If we have n points:

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

Π

ai

O(log n/ε2)

ãi

∥ãi − ãj∥22 = (1± ϵ)∥ai − aj∥22
Roughly equivalent to projecting points to a random

O(logn/ϵ2) dimensional subspace.

11

johnson-lindenstrauss lemma

If we have n points:

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

Π

ai

O(log n/ε2)

ãi

∥ãi − ãj∥22 = (1± ϵ)∥ai − aj∥22

Roughly equivalent to projecting points to a random
O(logn/ϵ2) dimensional subspace.

11

johnson-lindenstrauss lemma

If we have n points:

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

Π

ai

O(log n/ε2)

ãi

∥ãi − ãj∥22 = (1± ϵ)∥ai − aj∥22
Roughly equivalent to projecting points to a random

O(logn/ϵ2) dimensional subspace.
11

direct application of jl lemma

minC Cost(Ã, C) ≤ (1+ ϵ)minC Cost(A, C)

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

Π Ã
A

O(log n/ε2)

12

direct application of jl lemma

Pros:

∙ Simple and fast implementation

∙ Easily adaptable to parallel, distributed, and streaming
environments

Cons:

∙ O(logn/ϵ2) dimension scales with problem size (number of
points)

∙ ϵ2 dependence and constant factor on O() can be costly
∙ Problem specific analysis – doesn’t generalize

13

direct application of jl lemma

Pros:

∙ Simple and fast implementation

∙ Easily adaptable to parallel, distributed, and streaming
environments

Cons:

∙ O(logn/ϵ2) dimension scales with problem size (number of
points)

∙ ϵ2 dependence and constant factor on O() can be costly
∙ Problem specific analysis – doesn’t generalize

13

direct application of jl lemma

Pros:

∙ Simple and fast implementation
∙ Easily adaptable to parallel, distributed, and streaming
environments

Cons:

∙ O(logn/ϵ2) dimension scales with problem size (number of
points)

∙ ϵ2 dependence and constant factor on O() can be costly
∙ Problem specific analysis – doesn’t generalize

13

direct application of jl lemma

Pros:

∙ Simple and fast implementation
∙ Easily adaptable to parallel, distributed, and streaming
environments

Cons:

∙ O(logn/ϵ2) dimension scales with problem size (number of
points)

∙ ϵ2 dependence and constant factor on O() can be costly
∙ Problem specific analysis – doesn’t generalize

13

direct application of jl lemma

Pros:

∙ Simple and fast implementation
∙ Easily adaptable to parallel, distributed, and streaming
environments

Cons:

∙ O(logn/ϵ2) dimension scales with problem size (number of
points)

∙ ϵ2 dependence and constant factor on O() can be costly
∙ Problem specific analysis – doesn’t generalize

13

direct application of jl lemma

Pros:

∙ Simple and fast implementation
∙ Easily adaptable to parallel, distributed, and streaming
environments

Cons:

∙ O(logn/ϵ2) dimension scales with problem size (number of
points)

∙ ϵ2 dependence and constant factor on O() can be costly

∙ Problem specific analysis – doesn’t generalize

13

direct application of jl lemma

Pros:

∙ Simple and fast implementation
∙ Easily adaptable to parallel, distributed, and streaming
environments

Cons:

∙ O(logn/ϵ2) dimension scales with problem size (number of
points)

∙ ϵ2 dependence and constant factor on O() can be costly
∙ Problem specific analysis – doesn’t generalize

13

alternative approach

Reframe as a linear algebra problem. Results:

∙ Wider variety of algorithms. Several beat Johnson-
Lindenstrauss random projection (in theory and practice)

∙ Analysis extends to many additional problems

14

alternative approach

Reframe as a linear algebra problem. Results:

∙ Wider variety of algorithms. Several beat Johnson-
Lindenstrauss random projection (in theory and practice)

∙ Analysis extends to many additional problems

14

alternative approach

Reframe as a linear algebra problem. Results:

∙ Wider variety of algorithms. Several beat Johnson-
Lindenstrauss random projection (in theory and practice)

∙ Analysis extends to many additional problems

14

prior work

This approach has led to lots of papers:

∙ Drineas, Frieze, Kannan, Vempala, Vinay ’04
∙ Boutsidis, Magdon-Ismail ’13
∙ Feldman, Schmidt, Sohler ’13
∙ Boutsidis, Zouzias, Mahoney, Drineas ’09 ’10 ’15

15

low rank approximation

Review:

n

d

A

=

ai

d

n

d
ai

1

1

1

1

1

1

d

16

low rank approximation

Review:

n

d

A

=

ai

d

n

d
ai

1

1

1

1

1

1

d

16

low rank approximation

Review:

n

d

=

ai

k

n

k

d

xi

Ã

16

low rank approximation

Review:

n

d

=

ai

k

n

k

d

xi

Ã

Want ∥A− Ã∥ to be small.
16

low rank approximation

Review:

n

d

=

ai

k

n

k

d

xi

Ã

Want ∥A− Ã∥2F to be small.
16

low rank approximation

Review:

n

d

=

ai

k

n

k

d

xi

Ã

Want ∥A− Ã∥2F to be small.
16

low rank approximation

Review:

n

d

=

ai

k

n

k

d

xi

Ã

Want ∥A− Ã∥2F to be small.
16

low rank approximation

Review:

n

d

=

ai

k

n

k

d

xi

Ã

Given set of columns C, best approximation is Ã = projC(A).
16

key observation

k-means clustering == low rank approximation

min
∑n

i=1 ∥ai − µ(ai)∥22
…
µ1

µ2

µk

A

a1

a2

a3

an-1

an

C(A)

a1

a2

a3

an-1

an

17

key observation

k-means clustering == low rank approximation

min
∑n

i=1 ∥ai − µ(ai)∥22
…
µ1

µ2

µk

A

a1

a2

a3

an-1

an

C(A)

a1

a2

a3

an-1

an

 17

key observation

k-means clustering == low rank approximation

min
∑n

i=1 ∥ai − µ(ai)∥22

µ1

…
µ1

µ2

µk

A

a1

a2

a3

an-1

an

C(A)

a2

a3

an

µ1

17

key observation

k-means clustering == low rank approximation

min
∑n

i=1 ∥ai − µ(ai)∥22

µ2

µ1

…
µ1

µ2

µk

A

a1

a2

a3

an-1

an

C(A)

a2

an

µ1

17

key observation

k-means clustering == low rank approximation

min
∑n

i=1 ∥ai − µ(ai)∥22

µ1

µ1

µk

µk

µ2

…
µ1

µ2

µk

A

a1

a2

a3

an-1

an

C(A)

17

key observation

k-means clustering == low rank approximation

min
∑n

i=1 ∥ai − µ(ai)∥22 = ∥A− C(A)∥2F

µ1

µ1

µk

µk

µ2

…
µ1

µ2

µk

A

a1

a2

a3

an-1

an

C(A)

17

clustering is column projection

C(A) is actually a projection of A’s columns onto a rank k
subspace [Boutsidis, Drineas, Mahoney, Zouzias ‘11]

18

clustering is column projection

C(A) is actually a projection of A’s columns onto a rank k
subspace [Boutsidis, Drineas, Mahoney, Zouzias ‘11]

µ2

µ1

µ1

µk

µk

µ2

C(A)

=

 1

 1

 1

 1

 1

µ1

µk

18

clustering is column projection

C(A) is actually a projection of A’s columns onto a rank k
subspace [Boutsidis, Drineas, Mahoney, Zouzias ‘11]

µ1

µ1

µk

µk

µ2

A

a1

a2

a3

an-1

an

C(A)
=

1/|C1|

1/|C1|

1/|Ck|

1/|Ck|

1/|C2|

 1

 1

 1

 1

 1

18

clustering is column projection

C(A) is actually a projection of A’s columns onto a rank k
subspace [Boutsidis, Drineas, Mahoney, Zouzias ‘11]

µ1

µ1

µk

µk

µ2

A

a1

a2

a3

an-1

an

C(A)
=

1/√|C1|

1/√|C1|

1/√|Ck|

1/√|Ck|

1/√|C2|

 1

√|C1|

 1

√|C1|

 1

√|Ck|

 1

√|Ck|

 1

√|C2|

18

clustering is column projection

C(A) is actually a projection of A’s columns onto a rank k
subspace [Boutsidis, Drineas, Mahoney, Zouzias ‘11]

µ1

µ1

µk

µk

µ2

A

a1

a2

a3

an-1

an

C(A)
=

1/√|C1|

1/√|C1|

1/√|Ck|

1/√|Ck|

1/√|C2|

 1

√|C1|

 1

√|C1|

 1

√|Ck|

 1

√|Ck|

 1

√|C2|

XC

XC
T

18

constrained low rank approx

min
C

n∑
i=1

∥ai − µ (C[ai]) ∥22 =⇒ min
rank(X)=k,X∈S

∥A− XX⊤A∥2F

Where X is a rank k orthonormal matrix and for k-means S is
the set of all clustering indicator matrices.

∙ General form for constrained low rank approximation.

∙ Set S = {All rank k orthonormal matrices} for principal
component analysis (unconstrained low rank approx.)

19

constrained low rank approx

min
C

n∑
i=1

∥ai − µ (C[ai]) ∥22 =⇒ min
rank(X)=k,X∈S

∥A− XX⊤A∥2F

Where X is a rank k orthonormal matrix and for k-means S is
the set of all clustering indicator matrices.

∙ General form for constrained low rank approximation.

∙ Set S = {All rank k orthonormal matrices} for principal
component analysis (unconstrained low rank approx.)

19

constrained low rank approx

min
C

n∑
i=1

∥ai − µ (C[ai]) ∥22 =⇒ min
rank(X)=k,X∈S

∥A− XX⊤A∥2F

Where X is a rank k orthonormal matrix and for k-means S is
the set of all clustering indicator matrices.

∙ General form for constrained low rank approximation.
∙ Set S = {All rank k orthonormal matrices} for principal
component analysis (unconstrained low rank approx.)

19

so what?

Want to solve any problem like minrank(X)=k,X∈S ∥A− XX⊤A∥2F.

For all rank k X, ∥Ã− XX⊤Ã∥2F ≈ ∥A− XX⊤A∥2F

A
 Ã
A
XXT
 −

F

2

XXT
 −

F

2

Ã
≈

d
 O(k)

Projection-Cost Preserving Sketch

20

so what?

Want to solve any problem like minrank(X)=k,X∈S ∥A− XX⊤A∥2F.

For all rank k X, ∥Ã− XX⊤Ã∥2F ≈ ∥A− XX⊤A∥2F

A
 Ã
A
XXT
 −

F

2

XXT
 −

F

2

Ã
≈

d
 O(k)

Projection-Cost Preserving Sketch

20

so what?

Want to solve any problem like minrank(X)=k,X∈S ∥A− XX⊤A∥2F.

For all rank k X, ∥Ã− XX⊤Ã∥2F ≈ ∥A− XX⊤A∥2F

A
 Ã
A
XXT
 −

F

2

XXT
 −

F

2

Ã
≈

d
 O(k)

Projection-Cost Preserving Sketch

20

so what?

Want to solve any problem like minrank(X)=k,X∈S ∥A− XX⊤A∥2F.

For all rank k X, ∥Ã− XX⊤Ã∥2F ≈ ∥A− XX⊤A∥2F

A
 Ã
A
XXT
 −

F

2

XXT
 −

F

2

Ã
≈

d
 O(k)

Projection-Cost Preserving Sketch

20

projection-cost preservation

Specifically, we want:

for all X, ∥Ã− XX⊤Ã∥2F ≈ ∥A− XX⊤A∥2F

If we find an X that gives γ approximate solution for Ã:

∥Ã− XX⊤Ã∥2F ≤ γ∥Ã− X̃X
⊤
optÃ∥2F

then:

∥A− XX⊤A∥2F ≤ γ · (1+ ϵ)∥A− XX⊤optA∥2F

See coresets of Feldman, Schmidt, Sohler ‘13.

21

projection-cost preservation

Specifically, we want:

for all X, ∥Ã− XX⊤Ã∥2F = (1± ϵ)∥A− XX⊤A∥2F

If we find an X that gives γ approximate solution for Ã:

∥Ã− XX⊤Ã∥2F ≤ γ∥Ã− X̃X
⊤
optÃ∥2F

then:

∥A− XX⊤A∥2F ≤ γ · (1+ ϵ)∥A− XX⊤optA∥2F

See coresets of Feldman, Schmidt, Sohler ‘13.

21

projection-cost preservation

Specifically, we want:

for all X, ∥Ã− XX⊤Ã∥2F + c = (1± ϵ)∥A− XX⊤A∥2F

If we find an X that gives γ approximate solution for Ã:

∥Ã− XX⊤Ã∥2F ≤ γ∥Ã− X̃X
⊤
optÃ∥2F

then:

∥A− XX⊤A∥2F ≤ γ · (1+ ϵ)∥A− XX⊤optA∥2F

See coresets of Feldman, Schmidt, Sohler ‘13.

21

projection-cost preservation

Specifically, we want:

for all X, ∥Ã− XX⊤Ã∥2F + c = (1± ϵ)∥A− XX⊤A∥2F

If we find an X that gives γ approximate solution for Ã:

∥Ã− XX⊤Ã∥2F ≤ γ∥Ã− X̃X
⊤
optÃ∥2F

then:

∥A− XX⊤A∥2F ≤ γ · (1+ ϵ)∥A− XX⊤optA∥2F

See coresets of Feldman, Schmidt, Sohler ‘13.

21

projection-cost preservation

Specifically, we want:

for all X, ∥Ã− XX⊤Ã∥2F + c = (1± ϵ)∥A− XX⊤A∥2F

If we find an X that gives γ approximate solution for Ã:

∥Ã− XX⊤Ã∥2F ≤ γ∥Ã− X̃X
⊤
optÃ∥2F

then:

∥A− XX⊤A∥2F ≤ γ · (1+ ϵ)∥A− XX⊤optA∥2F

See coresets of Feldman, Schmidt, Sohler ‘13.

21

projection-cost preservation

Specifically, we want:

for all X, ∥Ã− XX⊤Ã∥2F + c = (1± ϵ)∥A− XX⊤A∥2F

If we find an X that gives γ approximate solution for Ã:

∥Ã− XX⊤Ã∥2F ≤ γ∥Ã− X̃X
⊤
optÃ∥2F

then:

∥A− XX⊤A∥2F ≤ γ · (1+ ϵ)∥A− XX⊤optA∥2F

See coresets of Feldman, Schmidt, Sohler ‘13.

21

recap

What we have seen so far:

∙ k-means clustering is just constrained k rank approximation.

∙ Sufficient to construct a projection-cost preserving sketch Ã
that approximates distance from A to any rank k subspace.

∙ Stronger guarantee than has been sought in prior work on
approximate PCA via sketching

22

recap

What we have seen so far:

∙ k-means clustering is just constrained k rank approximation.

∙ Sufficient to construct a projection-cost preserving sketch Ã
that approximates distance from A to any rank k subspace.

∙ Stronger guarantee than has been sought in prior work on
approximate PCA via sketching

22

recap

What we have seen so far:

∙ k-means clustering is just constrained k rank approximation.
∙ Sufficient to construct a projection-cost preserving sketch Ã
that approximates distance from A to any rank k subspace.

∙ Stronger guarantee than has been sought in prior work on
approximate PCA via sketching

22

recap

What we have seen so far:

∙ k-means clustering is just constrained k rank approximation.
∙ Sufficient to construct a projection-cost preserving sketch Ã
that approximates distance from A to any rank k subspace.

∙ Stronger guarantee than has been sought in prior work on
approximate PCA via sketching

22

our paper

Toolbox of dimensionality reduction algorithms for obtaining
projection-cost preserving matrix sketches.

- deterministic & randomized - unified analysis - many
applications beyond k-means

23

our paper

Toolbox of dimensionality reduction algorithms for obtaining
projection-cost preserving matrix sketches.

- deterministic & randomized - unified analysis - many
applications beyond k-means

23

results

What techniques give (1+ ϵ) projection-cost preservation?

Previous Work Our Results
Technique Reference Dimensions Error Dimensions Error

SVD
Feldman,
Schmidt,
Sohler ‘13

O(k/ϵ2) 1+ ϵ ⌈k/ϵ⌉ 1+ ϵ

Approximate SVD

Boutsidis,
Drineas,
Mahoney,
Zouzias ‘11

k 2+ ϵ ⌈k/ϵ⌉ 1+ ϵ

Random
Projection ” O(k/ϵ2) 2+ ϵ

O(k/ϵ2)
O(log k/ϵ2)

1+ ϵ

9+ ϵ

Column Sampling ” O(k log k/ϵ2) 3+ ϵ O(k log k/ϵ2) 1+ ϵ

Deterministic
Column Selection

Boutsidis,
Magdon-
Ismail ‘13

r > k O(n/r) O(k/ϵ2) 1+ ϵ

Non-oblivious
Projection NA NA NA O(k/ϵ) 1+ ϵ

24

singular value decomposition

Previous Work Our Results
Technique Reference Dimensions Error Dimensions Error

SVD
Feldman,
Schmidt,
Sohler ‘13

O(k/ϵ2) 1+ ϵ ⌈k/ϵ⌉ 1+ ϵ

Vk/ε
 Ã
A

k/ε

25

singular value decomposition

Previous Work Our Results
Technique Reference Dimensions Error Dimensions Error

Approximate
SVD

Boutsidis,
Drineas,
Mahoney,
Zouzias ‘11

k 2+ ϵ ⌈k/ϵ⌉ 1+ ϵ

Vk/ε
 Ã
A

k/ε

~

25

singular value decomposition

Previous Work Our Results
Technique Reference Dimensions Error Dimensions Error

Approximate
SVD

Boutsidis,
Drineas,
Mahoney,
Zouzias ‘11

k 2+ ϵ ⌈k/ϵ⌉ 1+ ϵ

∙ Practically very useful for k-means
∙ No constant factors on k/ϵ, and typically many fewer
dimensions are required (Kappmeier, Schmidt, Schmidt ‘15)

25

johnson-lindenstrauss random projection

Previous Work Our Results
Technique Reference Dimensions Error Dimensions Error

Random
Projection

Boutsidis,
Drineas,
Mahoney,
Zouzias ‘11

O(k/ϵ2)

O(log n/ϵ2)

2+ ϵ

1+ ϵ

O(k/ϵ2)

O(log k/ϵ2)

1+ ϵ

9+ ϵ

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

Π Ã
A

O(k/ε2)

26

johnson-lindenstrauss random projection

Previous Work Our Results
Technique Reference Dimensions Error Dimensions Error

Random
Projection

Boutsidis,
Drineas,
Mahoney,
Zouzias ‘11

O(k/ϵ2)

O(log n/ϵ2)

2+ ϵ

1+ ϵ

O(k/ϵ2)

O(log k/ϵ2)

1+ ϵ

9+ ϵ

 ±1

±1 ±1

±1 ±1

 ±1

±1 ±1

 ±1

 ±1 ±1

±1 ±1

 ±1

 ±1

 ±1

Π Ã
A

O(k/ε2)

26

johnson-lindenstrauss random projection

Previous Work Our Results
Technique Reference Dimensions Error Dimensions Error

Random
Projection

Boutsidis,
Drineas,
Mahoney,
Zouzias ‘11

O(k/ϵ2)

O(log n/ϵ2)

2+ ϵ

1+ ϵ

O(k/ϵ2)

O(log k/ϵ2)

1+ ϵ

9+ ϵ

 ±1

±1 ±1

±1 ±1

 ±1

±1 ±1

 ±1

 ±1 ±1

±1 ±1

 ±1

 ±1

 ±1

Π Ã
A

O(k/ε2)

26

johnson-lindenstrauss random projection

Previous Work Our Results
Technique Reference Dimensions Error Dimensions Error

Random
Projection

Boutsidis,
Drineas,
Mahoney,
Zouzias ‘11

O(k/ϵ2)

O(log n/ϵ2)

2+ ϵ

1+ ϵ

O(k/ϵ2)

O(log k/ϵ2)

1+ ϵ

9+ ϵ

∙ First sketch with dimension sublinear in k. Can (9+ ϵ) be
improved?

∙ Sketch is data oblivious
∙ Lowest communication distributed k-means (improves on
Balcan, Kanchanapally, Liang, Woodruff ‘14)

∙ Streaming principal component analysis in a single pass

26

johnson-lindenstrauss random projection

Previous Work Our Results
Technique Reference Dimensions Error Dimensions Error

Random
Projection

Boutsidis,
Drineas,
Mahoney,
Zouzias ‘11

O(k/ϵ2)

O(log n/ϵ2)

2+ ϵ

1+ ϵ

O(k/ϵ2)

O(log k/ϵ2)

1+ ϵ

9+ ϵ

∙ First sketch with dimension sublinear in k. Can (9+ ϵ) be
improved?

∙ Sketch is data oblivious
∙ Lowest communication distributed k-means (improves on
Balcan, Kanchanapally, Liang, Woodruff ‘14)

∙ Streaming principal component analysis in a single pass

26

oblivious project-cost preserving sketches

Standard sketches for low rank approximation (Sarlós ‘06,
Clarkson, Woodruff ‘13, etc):

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

Π Ã
A

O(k/ε)

∥A− (PÃA)k∥2F ≤ (1+ ϵ)∥A− Ak∥2F.

span(Ã) contains a good low rank approximation for A, but we
must return to A to find it.

27

oblivious project-cost preserving sketches

Standard sketches for low rank approximation (Sarlós ‘06,
Clarkson, Woodruff ‘13, etc):

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

Π Ã
A

O(k/ε)

∥A− (PÃA)k∥2F ≤ (1+ ϵ)∥A− Ak∥2F.

span(Ã) contains a good low rank approximation for A, but we
must return to A to find it.

27

oblivious project-cost preserving sketches

Projection-cost preserving sketch for low rank approximation:

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

Π Ã
A

O(k/ε2)

∥A− VkV⊤k A∥2F ≤ (1+ ϵ)∥A− Ak∥2F.

Additional ϵ dependence for stronger sketch.

Is it required for
oblivious approximate PCA? (See Ghashami, Liberty, Phillips,
Woodruff ‘14/15)

27

oblivious project-cost preserving sketches

Projection-cost preserving sketch for low rank approximation:

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

Π Ã
A

O(k/ε2)

∥A− VkV⊤k A∥2F ≤ (1+ ϵ)∥A− Ak∥2F.

Additional ϵ dependence for stronger sketch.

Is it required for
oblivious approximate PCA? (See Ghashami, Liberty, Phillips,
Woodruff ‘14/15)

27

oblivious project-cost preserving sketches

Projection-cost preserving sketch for low rank approximation:

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

±1 ±1 ±1 ±1

Π Ã
A

O(k/ε2)

∥A− VkV⊤k A∥2F ≤ (1+ ϵ)∥A− Ak∥2F.

Additional ϵ dependence for stronger sketch. Is it required for
oblivious approximate PCA? (See Ghashami, Liberty, Phillips,
Woodruff ‘14/15)

27

two shot projection

Previous Work Our Results
Technique Reference Dimensions Error Dimensions Error

Non-oblivious
Randomized
Projection

Sarlós ‘06 NA NA O(k/ϵ) 1+ ϵ

Ã
A

O(k/ε)

sp
an
(A
Π)

28

feature selection

Previous Work Our Results
Technique Reference Dimensions Error Dimensions Error

Column
Sampling

Boutsidis,
Drineas,
Mahoney,
Zouzias ‘11

O(k log k/ϵ2) 3+ ϵ O(k log k/ϵ2) 1+ ϵ

Deterministic
Column
Selection

Boutsidis,
Magdon-
Ismail ‘13

r > k O(n/r) O(k/ϵ2) 1+ ϵ

Ã
A

Õ(k/ε2)
 29

feature selection

Previous Work Our Results
Technique Reference Dimensions Error Dimensions Error

Column
Sampling

Boutsidis,
Drineas,
Mahoney,
Zouzias ‘11

O(k log k/ϵ2) 3+ ϵ O(k log k/ϵ2) 1+ ϵ

∙ A not only contains a small set of columns that span a good
low rank approximation, but a small (reweighted) set whose
top principal components approximate those of A.

∙ First single shot sampling based dimensionality reduction
for (1+ ϵ) error low rank approximation.
∙ Work in progress: single-pass streaming column subset
selection and iterative sampling algorithms for the SVD.

29

feature selection

Previous Work Our Results
Technique Reference Dimensions Error Dimensions Error

Column
Sampling

Boutsidis,
Drineas,
Mahoney,
Zouzias ‘11

O(k log k/ϵ2) 3+ ϵ O(k log k/ϵ2) 1+ ϵ

∙ A not only contains a small set of columns that span a good
low rank approximation, but a small (reweighted) set whose
top principal components approximate those of A.

∙ First single shot sampling based dimensionality reduction
for (1+ ϵ) error low rank approximation.

∙ Work in progress: single-pass streaming column subset
selection and iterative sampling algorithms for the SVD.

29

feature selection

Previous Work Our Results
Technique Reference Dimensions Error Dimensions Error

Column
Sampling

Boutsidis,
Drineas,
Mahoney,
Zouzias ‘11

O(k log k/ϵ2) 3+ ϵ O(k log k/ϵ2) 1+ ϵ

∙ A not only contains a small set of columns that span a good
low rank approximation, but a small (reweighted) set whose
top principal components approximate those of A.

∙ First single shot sampling based dimensionality reduction
for (1+ ϵ) error low rank approximation.
∙ Work in progress: single-pass streaming column subset
selection and iterative sampling algorithms for the SVD.

29

heuristic applications?

Natural (unsupervised) feature selection metric:

combination of leverage score with respect to top k subspace
and residuals of columns after projection to this subspace.

30

analysis for svd

Singular Value Decomposition (SVD):

A
 =
 U
 Σ
 VT

σ1

σ2

σd-1

σd

U,V have orthonormal columns. σ1 ≥ σ2 ≥ . . . ≥ σd.

Same as Principal Component Analysis (PCA) if we
mean-center A’s columns/rows.

31

analysis for svd

Singular Value Decomposition (SVD):

A
 =
 U
 Σ
 VT

σ1

σ2

σd-1

σd

U,V have orthonormal columns. σ1 ≥ σ2 ≥ . . . ≥ σd.

Same as Principal Component Analysis (PCA) if we
mean-center A’s columns/rows.

31

analysis for svd

Singular Value Decomposition (SVD):

A
 =
 U
 Σ
 VT

σ1

σ2

σd-1

σd

U,V have orthonormal columns. σ1 ≥ σ2 ≥ . . . ≥ σd.

Same as Principal Component Analysis (PCA) if we
mean-center A’s columns/rows.

31

analysis for svd

Partial Singular Value Decomposition (SVD):

Am
 =
 Σk

σ1

σ2

σd-1

σd

Um

VmT

Σm

∥A− Am∥2F = minrank(X)=m ∥A− XX⊤A∥2F

Claim: ∥Ak/ϵ − XX⊤Ak/ϵ∥2F + c = (1± ϵ)∥A− XX⊤A∥2F

We work with Ak/ϵ for simplicity. Denote (A− Ak/ϵ) as A\k/ϵ

32

analysis for svd

Partial Singular Value Decomposition (SVD):

Am
 =
 Σk

σ1

σ2

σd-1

σd

Um

VmT

Σm

∥A− Am∥2F = minrank(X)=m ∥A− XX⊤A∥2F

Claim: ∥Ak/ϵ − XX⊤Ak/ϵ∥2F + c = (1± ϵ)∥A− XX⊤A∥2F

We work with Ak/ϵ for simplicity. Denote (A− Ak/ϵ) as A\k/ϵ

32

analysis for svd

Partial Singular Value Decomposition (SVD):

Am
 =
 Σk

σ1

σ2

σd-1

σd

Um

VmT

Σm

∥A− Am∥2F = minrank(X)=m ∥A− XX⊤A∥2F

Claim: ∥Uk/ϵΣk/ϵ − XX⊤Uk/ϵΣk/ϵ∥2F + c = (1± ϵ)∥A− XX⊤A∥2F

We work with Ak/ϵ for simplicity. Denote (A− Ak/ϵ) as A\k/ϵ

32

analysis for svd

Partial Singular Value Decomposition (SVD):

Am
 =
 Σk

σ1

σ2

σd-1

σd

Um

VmT

Σm

∥A− Am∥2F = minrank(X)=m ∥A− XX⊤A∥2F

Claim: ∥Ak/ϵ − XX⊤Ak/ϵ∥2F + c = (1± ϵ)∥A− XX⊤A∥2F
We work with Ak/ϵ for simplicity. Denote (A− Ak/ϵ) as A\k/ϵ

32

analysis for svd

Claim: ∥Ak/ϵ − XX⊤Ak/ϵ∥2F = (1± ϵ)∥A− XX⊤A∥2F

Split into (row) orthogonal pairs:

A
 Ak/ε
 A\k/ε

=
 +

head
 tail

∥A− XX⊤A∥2F
= ∥(I− XX⊤)Ak/ϵ∥2F + − ∥XX⊤A\k/ϵ∥2F = ∥(I− XX⊤)A∥2F

33

analysis for svd

Claim: ∥Ak/ϵ − XX⊤Ak/ϵ∥2F = (1± ϵ)∥A− XX⊤A∥2F
Split into (row) orthogonal pairs:

A
 Ak/ε
 A\k/ε

=
 +

head
 tail

∥A− XX⊤A∥2F
= ∥(I− XX⊤)Ak/ϵ∥2F + − ∥XX⊤A\k/ϵ∥2F = ∥(I− XX⊤)A∥2F

33

analysis for svd

Claim: ∥Ak/ϵ − XX⊤Ak/ϵ∥2F = (1± ϵ)∥A− XX⊤A∥2F
Split into (row) orthogonal pairs:

A
 Ak/ε
 A\k/ε

=
 +

head
 tail

∥A− XX⊤A∥2F

= ∥(I− XX⊤)Ak/ϵ∥2F + − ∥XX⊤A\k/ϵ∥2F = ∥(I− XX⊤)A∥2F

33

analysis for svd

Claim: ∥(I− XX⊤)Ak/ϵ∥2F + c = (1± ϵ)∥(I− XX⊤)A∥2F
Split into (row) orthogonal pairs:

A
 Ak/ε
 A\k/ε

=
 +

head
 tail

∥(I− XX⊤)A∥2F

= ∥(I− XX⊤)Ak/ϵ∥2F + − ∥XX⊤A\k/ϵ∥2F = ∥(I− XX⊤)A∥2F

33

analysis for svd

Claim: ∥(I− XX⊤)Ak/ϵ∥2F + c = (1± ϵ)∥(I− XX⊤)A∥2F
Split into (row) orthogonal pairs:

A
 Ak/ε
 A\k/ε

=
 +

head
 tail

= ∥(I− XX⊤)Ak/ϵ∥2F + ∥(I− XX⊤)A\k/ϵ∥2F = ∥(I− XX⊤)A∥2F

= ∥(I− XX⊤)Ak/ϵ∥2F + − ∥XX⊤A\k/ϵ∥2F = ∥(I− XX⊤)A∥2F

33

analysis for svd

Claim: ∥(I− XX⊤)Ak/ϵ∥2F + c = (1± ϵ)∥(I− XX⊤)A∥2F
Split into (row) orthogonal pairs:

A
 Ak/ε
 A\k/ε

=
 +

head
 tail

= ∥(I− XX⊤)Ak/ϵ∥2F + ∥(I− XX⊤)A\k/ϵ∥2F = ∥(I− XX⊤)A∥2F
= ∥(I− XX⊤)Ak/ϵ∥2F + ∥A\k/ϵ∥2F − ∥XX⊤A\k/ϵ∥2F = ∥(I− XX⊤)A∥2F

33

analysis for svd

Claim: ∥(I− XX⊤)Ak/ϵ∥2F + c = (1± ϵ)∥(I− XX⊤)A∥2F
Split into (row) orthogonal pairs:

A
 Ak/ε
 A\k/ε

=
 +

head
 tail

= ∥(I− XX⊤)Ak/ϵ∥2F + ∥(I− XX⊤)A\k/ϵ∥2F = ∥(I− XX⊤)A∥2F
= ∥(I− XX⊤)Ak/ϵ∥2F + c− ∥XX⊤A\k/ϵ∥2F = ∥(I− XX⊤)A∥2F

33

analysis for svd

Claim: ∥(I− XX⊤)Ak/ϵ∥2F + c = (1± ϵ)∥(I− XX⊤)A∥2F
Split into (row) orthogonal pairs:

A
 Ak/ε
 A\k/ε

=
 +

head
 tail

= ∥(I− XX⊤)Ak/ϵ∥2F + ∥(I− XX⊤)A\k/ϵ∥2F = ∥(I− XX⊤)A∥2F
= ∥(I− XX⊤)Ak/ϵ∥2F + c− ∥XX⊤A\k/ϵ∥2F = ∥(I− XX⊤)A∥2F

33

analysis for svd

In words, the projection cost for A is explained by the cost over
Ak/ϵ plus the cost over A\k/ϵ. We want to argue that ignoring
the tail term is fine.

Need to show that:

∥XX⊤A\k/ϵ∥2F ≤ ϵ∥(I− XX⊤)A∥2F

σ12

σ22

σk2

σk/ε+12

σk/ε+k2

σd2

ΣA

Recall that ∥B∥2F =

∑
i σ

2
i (B)

34

analysis for svd

In words, the projection cost for A is explained by the cost over
Ak/ϵ plus the cost over A\k/ϵ. We want to argue that ignoring
the tail term is fine.

Need to show that:

∥XX⊤A\k/ϵ∥2F ≤ ϵ∥(I− XX⊤)A∥2F

σ12

σ22

σk2

σk/ε+12

σk/ε+k2

σd2

ΣA

Recall that ∥B∥2F =

∑
i σ

2
i (B)

34

analysis for svd

In words, the projection cost for A is explained by the cost over
Ak/ϵ plus the cost over A\k/ϵ. We want to argue that ignoring
the tail term is fine.

Need to show that:

∥XX⊤A\k/ϵ∥2F ≤ ϵ∥A− Ak∥2F

σ12

σ22

σk2

σk/ε+12

σk/ε+k2

σd2

ΣA

Recall that ∥B∥2F =

∑
i σ

2
i (B)

34

analysis for svd

∥XX⊤A\k/ϵ∥2F ≤ ϵ∥A− Ak∥2F

σ12

σ22

σk2

σk/ε+12

σk/ε+k2

σd2

ΣA

Recall that ∥B∥2F =

∑
i σ

2
i (B) 34

analysis for svd

∥XX⊤A\k/ϵ∥2F ≤ ϵ∥A− Ak∥2F

σ1
2

σ2

2

σk
2

σk/ε+1
2

σk/ε+k
2

σd
2

ΣA

||A\k/ε ||2

Recall that ∥B∥2F =
∑

i σ
2
i (B) 34

analysis for svd

∥XX⊤A\k/ϵ∥2F ≤ ϵ∥A− Ak∥2F

σ1
2

σ2

2

σk
2

σk/ε+1
2

σk/ε+k
2

σd
2

ΣA

||XXTA\k/ε ||2

Recall that ∥B∥2F =
∑

i σ
2
i (B) 34

analysis for svd

∥XX⊤A\k/ϵ∥2F ≤ ϵ∥A− Ak∥2F

σ1
2

σ2

2

σk
2

σk/ε+1
2

σk/ε+k
2

σd
2

ΣA

||A\k ||2

Recall that ∥B∥2F =
∑

i σ
2
i (B) 34

analysis for svd

∥XX⊤A\k/ϵ∥2F ≤ ϵ∥A− Ak∥2F

σ1
2

σ2

2

σk
2

σk/ε+1
2

σk/ε+k
2

σd
2

ΣA

||XXTA\k/ε ||2

||A\k ||2

Recall that ∥B∥2F =
∑

i σ
2
i (B) 34

analysis for svd

∥XX⊤A\k/ϵ∥2F ≤ ϵ∥A− Ak∥2F

σ1
2

σ2

2

σk
2

σk/ε+1
2

σk/ε+k
2

σd
2

ΣA

||XXTA\k/ε ||2

||A\k ||2

k

Recall that ∥B∥2F =
∑

i σ
2
i (B) 34

analysis for svd

∥XX⊤A\k/ϵ∥2F ≤ ϵ∥A− Ak∥2F

σ1
2

σ2

2

σk
2

σk/ε+1
2

σk/ε+k
2

σd
2

ΣA

||XXTA\k/ε ||2

||A\k ||2

k

k/ε

Recall that ∥B∥2F =
∑

i σ
2
i (B) 34

analysis for svd

∙ Analysis is very worst case since we assume σk/ϵ+k is just as
big as σk+1.

∙ In practice, spectrum decay allows for a much smaller
sketching dimension (Kappmeier, Schmidt, Schmidt ‘15).

35

analysis for svd

∙ Analysis is very worst case since we assume σk/ϵ+k is just as
big as σk+1.

∙ In practice, spectrum decay allows for a much smaller
sketching dimension (Kappmeier, Schmidt, Schmidt ‘15).

5 10 15 20 25 30 35
0

0.5

1

1.5

2

x 10
5

Index

S
qu

ar
ed

 S
in

gu
la

r
V

al
ue

35

analysis for svd

∙ Analysis is very worst case since we assume σk/ϵ+k is just as
big as σk+1.

∙ In practice, spectrum decay allows for a much smaller
sketching dimension (Kappmeier, Schmidt, Schmidt ‘15).

10 20 30 40 50 60 70 80 90 100
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Dimensions

A
pp

ro
xi

m
at

io
n

R
at

io

SVD
ApproxSVD
Worst Case Error Bound
Tightened Worst Case Bound

35

proof sketch for random projection

All proofs have similar flavor:

∥Ak − XX⊤Ak∥2F + ∥A\k − XX⊤A\k∥2F
vs.

∥Ak − XX⊤AkΠ∥2F + ∥A\k − XX⊤A\kΠ∥2F

Except that:

∙ We have to worry about cross terms
∥AΠ− XX⊤AΠ∥2F ̸= ∥AkΠ− XX⊤AkΠ∥2F + ∥A\kΠ− XX⊤A\kΠ∥2F

∙ We have some hope of approximating ∥A\k − XX⊤A\k∥2F

36

proof sketch for random projection

All proofs have similar flavor:

∥Ak − XX⊤Ak∥2F + ∥A\k − XX⊤A\k∥2F
vs.

∥Ak − XX⊤AkΠ∥2F + ∥A\k − XX⊤A\kΠ∥2F

Except that:

∙ We have to worry about cross terms
∥AΠ− XX⊤AΠ∥2F ̸= ∥AkΠ− XX⊤AkΠ∥2F + ∥A\kΠ− XX⊤A\kΠ∥2F

∙ We have some hope of approximating ∥A\k − XX⊤A\k∥2F

36

proof sketch for random projection

All proofs have similar flavor:

∥Ak − XX⊤Ak∥2F + ∥A\k − XX⊤A\k∥2F
vs.

∥Ak − XX⊤AkΠ∥2F + ∥A\k − XX⊤A\kΠ∥2F

Except that:

∙ We have to worry about cross terms
∥AΠ− XX⊤AΠ∥2F ̸= ∥AkΠ− XX⊤AkΠ∥2F + ∥A\kΠ− XX⊤A\kΠ∥2F

∙ We have some hope of approximating ∥A\k − XX⊤A\k∥2F

36

proof sketch for random projection

Rely on standard sketching tools:

∙ Approximate Matrix Multiplication: ∥AΠΠ⊤B∥2F ≤ ϵ∥A∥F∥B∥F
∙ Subspace Embedding: ∥YAΠ∥2F = (1± ϵ)∥YA∥2F for all Y if A
has rank k

∙ Frobenius Norm Preservation: ∥AΠ∥2F = (1± ϵ)∥A∥2F

37

proof sketch for random projection

See paper for the details!

38

theoretical takeaway

∙ Projection-cost preserving sketches guarantee
∥Ã− XX⊤Ã∥2F ≈ ∥A− XX⊤A∥2F for all rank k X.

∙ Standard proof approach: Split A into orthogonal pairs. Top
of spectrum can be preserved multiplicatively, only top
singular values of bottom of spectrum matter.

∙ Dimensionality reduction for any constrained low rank
approximation can be unified.

39

theoretical takeaway

∙ Projection-cost preserving sketches guarantee
∥Ã− XX⊤Ã∥2F ≈ ∥A− XX⊤A∥2F for all rank k X.

∙ Standard proof approach: Split A into orthogonal pairs. Top
of spectrum can be preserved multiplicatively, only top
singular values of bottom of spectrum matter.

∙ Dimensionality reduction for any constrained low rank
approximation can be unified.

39

theoretical takeaway

∙ Projection-cost preserving sketches guarantee
∥Ã− XX⊤Ã∥2F ≈ ∥A− XX⊤A∥2F for all rank k X.

∙ Standard proof approach: Split A into orthogonal pairs. Top
of spectrum can be preserved multiplicatively, only top
singular values of bottom of spectrum matter.

∙ Dimensionality reduction for any constrained low rank
approximation can be unified.

39

proof sketch for sublinear result

Split using optimal clustering:

µ1

µ1

µk

µk

µ2

A

a1

a2

a3

an-1

an

C*(A)
=

e1

e1

ek

ek

e2

A-C*(A)
+

∙ C∗(A) can be approximated with O(log k/ϵ2) dimensions.
∙ Not row orthogonal – have to use triangle inquality which
leads to the (9+ ϵ) factor.

40

proof sketch for sublinear result

Split using optimal clustering:

µ1

µ1

µk

µk

µ2

A

a1

a2

a3

an-1

an

C*(A)
=

e1

e1

ek

ek

e2

A-C*(A)
+

∙ C∗(A) can be approximated with O(log k/ϵ2) dimensions.
∙ Not row orthogonal – have to use triangle inquality which
leads to the (9+ ϵ) factor. 40

practical considerations

Experiments & implements in [(Cameron) Musco ‘15]

Full Dataset SVD Approx. SVD Sampling Approx. Sampling Rand. Proj. NORP

500

1000

1500

2000

2500

3000

3500

T
im

e
(S

ec
on

ds
)

Dimensionality Reduction Time
Clustering Time

Time for ϵ = .01 compared to baseline Lloyd’s w/ k-means++.
41

practical considerations

Experiments & implements in [(Cameron) Musco ‘15]

Full Dataset SVD Approx. SVD Sampling Approx. Sampling Rand. Proj. NORP

10

20

30

40

50

60

70

T
im

e
(S

ec
on

ds
)

Dimensionality Reduction Time
Clustering Time

Time for ϵ = .01 compared to baseline Lloyd’s w/ k-means++.
41

practical considerations

Experiments & implements in [(Cameron) Musco ‘15]

10 20 30 40 50 60 70

1

1.5

2

2.5

3

Dimensions

A
pp

ro
xi

m
at

io
n

R
at

io

Full Dataset
SVD
Approx. SVD
2 Pass Rand. Projection
Sampling
Approx. Sampling
Rand. Projection

Time for ϵ = .01 compared to baseline Lloyd’s w/ k-means++.

41

Thank you!

Open Questions:

∙ Improve our O(log k/ϵ2) random projection analysis from
(9+ ϵ) to (1+ ϵ)?

∙ Single pass PCA algorithm for turnstile streams with 1/ϵ
(instead of 1/ϵ2) dependence?

∙ Coresets for k-means (reducing number of points instead of
dimension) are difficult and messy. Can we get similarly
“clean” analysis?

42

