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overview

Simple techniques to accelerate algorithms for:

∙ k-means clustering
∙ principal component analysis (PCA)
∙ constrained low rank approximation
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dimensionality reduction

Replace large, high dimensional dataset with low dimensional
sketch.
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dimensionality reduction

Solution on sketch Ã should approximate original solution.
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Dimensionality reduction algorithm is ideally fast, memory
efficient – often randomization is used.
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dimensionality reduction

Solution on sketch Ã should approximate original solution.
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Simultaneously improves runtime, memory requirements,
communication cost, etc.

3



well studied approach

Standard paradigm for “randomized numerical linear algebra”.

∙ Obtaining pre-conditioners for matrix inversion
∙ Constrained regression (i.e. non-negative least squares)
∙ Fast SVMs, kernel approximation, algebraic graph theory, etc.

∙ Low rank approximation, principal component analysis
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k-means clustering

∙ Extremely common objective function for clustering

∙ Choose k clusters to minimize total intra-cluster variance

min
C
Cost(A, C) =

n∑
i=1

∥ai − µ (C[ai]) ∥22
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k-means clustering
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optimizing k-means

min
C
Cost(A, C) =

n∑
i=1

∥ai − µ (C[ai]) ∥22

∙ NP-hard, even for fixed dimension d or fixed k.

∙ Several (1+ ϵ) and constant factor approximation algorithms.
∙ In practice: Lloyd’s heuristic (i.e. “the k-means algorithm”)
with k-means++ initialization is used. O(log k) approximation
guaranteed, typically performs much better.

Dimensionality reduction can speed up any of these
algorithms.
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optimizing k-means

min
C
Cost(A, C) =

n∑
i=1

∥ai − µ (C[ai]) ∥22

∙ NP-hard, even for fixed dimension d or fixed k.
∙ Several (1+ ϵ) and constant factor approximation algorithms.
∙ In practice: Lloyd’s heuristic (i.e. “the k-means algorithm”)
with k-means++ initialization is used. O(log k) approximation
guaranteed, typically performs much better.

Expecially powerful for Lloyd’s algorithm – most of your time
is spent computing distances between points!
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warmup: well known result

Let me convince you something is possible.
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cost preserving sketch
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If Cost(Ã, C) ≈ Cost(A, C) for all C,
minC Cost(Ã, C) ≈ minC Cost(A, C).
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cost preserving sketch
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Objective: Cost(Ã, C) ≈ Cost(A, C)

minC Cost(Ã, C) ≈ minC Cost(A, C).
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objective function in terms of distances

Can rewrite cost function:

∑n
i=1 ∥ai−µ (C[ai]) ∥22 =

∑k
l=1

1
2|Cj|

∑
i,j∈Cj ∥ai− aj∥22
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goal: preserve pairwise distances

One option: preserve ∥ai − aj∥22 for all i, j:

∥ãi − ãj∥22 = (1± ϵ)∥ai − aj∥22 →

Cost(Ã, C) = (1± ϵ)Cost(A, C)
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johnson-lindenstrauss lemma

If we have n points:
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∥ãi − ãj∥22 = (1± ϵ)∥ai − aj∥22
Roughly equivalent to projecting points to a random

O(logn/ϵ2) dimensional subspace.
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direct application of jl lemma

minC Cost(Ã, C) ≤ (1+ ϵ)minC Cost(A, C)
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direct application of jl lemma

Pros:

∙ Simple and fast implementation

∙ Easily adaptable to parallel, distributed, and streaming
environments

Cons:

∙ O(logn/ϵ2) dimension scales with problem size (number of
points)

∙ ϵ2 dependence and constant factor on O() can be costly
∙ Problem specific analysis – doesn’t generalize
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alternative approach

Reframe as a linear algebra problem. Results:

∙ Wider variety of algorithms. Several beat Johnson-
Lindenstrauss random projection (in theory and practice)

∙ Analysis extends to many additional problems
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prior work

This approach has led to lots of papers:

∙ Drineas, Frieze, Kannan, Vempala, Vinay ’04
∙ Boutsidis, Magdon-Ismail ’13
∙ Feldman, Schmidt, Sohler ’13
∙ Boutsidis, Zouzias, Mahoney, Drineas ’09 ’10 ’15

15



low rank approximation

Review:
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low rank approximation

Review:
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Given set of columns C, best approximation is Ã = projC(A).
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key observation

k-means clustering == low rank approximation

min
∑n

i=1 ∥ai − µ(ai)∥22
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key observation

k-means clustering == low rank approximation
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key observation

k-means clustering == low rank approximation

min
∑n

i=1 ∥ai − µ(ai)∥22 = ∥A− C(A)∥2F

µ1




µ1




µk




µk


µ2




…
µ1




µ2




µk




A

a1


a2


a3




an-1


an




C(A)


17



clustering is column projection

C(A) is actually a projection of A’s columns onto a rank k
subspace [Boutsidis, Drineas, Mahoney, Zouzias ‘11]
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constrained low rank approx

min
C

n∑
i=1

∥ai − µ (C[ai]) ∥22 =⇒ min
rank(X)=k,X∈S

∥A− XX⊤A∥2F

Where X is a rank k orthonormal matrix and for k-means S is
the set of all clustering indicator matrices.

∙ General form for constrained low rank approximation.

∙ Set S = {All rank k orthonormal matrices} for principal
component analysis (unconstrained low rank approx.)
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so what?

Want to solve any problem like minrank(X)=k,X∈S ∥A− XX⊤A∥2F.

For all rank k X, ∥Ã− XX⊤Ã∥2F ≈ ∥A− XX⊤A∥2F
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Projection-Cost Preserving Sketch
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projection-cost preservation

Specifically, we want:

for all X, ∥Ã− XX⊤Ã∥2F ≈ ∥A− XX⊤A∥2F

If we find an X that gives γ approximate solution for Ã:

∥Ã− XX⊤Ã∥2F ≤ γ∥Ã− X̃X
⊤
optÃ∥2F

then:

∥A− XX⊤A∥2F ≤ γ · (1+ ϵ)∥A− XX⊤optA∥2F

See coresets of Feldman, Schmidt, Sohler ‘13.
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recap

What we have seen so far:

∙ k-means clustering is just constrained k rank approximation.

∙ Sufficient to construct a projection-cost preserving sketch Ã
that approximates distance from A to any rank k subspace.

∙ Stronger guarantee than has been sought in prior work on
approximate PCA via sketching
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our paper

Toolbox of dimensionality reduction algorithms for obtaining
projection-cost preserving matrix sketches.

- deterministic & randomized - unified analysis - many
applications beyond k-means
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results

What techniques give (1+ ϵ) projection-cost preservation?

Previous Work Our Results
Technique Reference Dimensions Error Dimensions Error

SVD
Feldman,
Schmidt,
Sohler ‘13

O(k/ϵ2) 1+ ϵ ⌈k/ϵ⌉ 1+ ϵ

Approximate SVD

Boutsidis,
Drineas,
Mahoney,
Zouzias ‘11

k 2+ ϵ ⌈k/ϵ⌉ 1+ ϵ

Random
Projection ” O(k/ϵ2) 2+ ϵ

O(k/ϵ2)
O(log k/ϵ2)

1+ ϵ

9+ ϵ

Column Sampling ” O(k log k/ϵ2) 3+ ϵ O(k log k/ϵ2) 1+ ϵ

Deterministic
Column Selection

Boutsidis,
Magdon-
Ismail ‘13

r > k O(n/r) O(k/ϵ2) 1+ ϵ

Non-oblivious
Projection NA NA NA O(k/ϵ) 1+ ϵ
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singular value decomposition

Previous Work Our Results
Technique Reference Dimensions Error Dimensions Error

SVD
Feldman,
Schmidt,
Sohler ‘13

O(k/ϵ2) 1+ ϵ ⌈k/ϵ⌉ 1+ ϵ

Vk/ε
 Ã
A


k/ε
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singular value decomposition

Previous Work Our Results
Technique Reference Dimensions Error Dimensions Error
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SVD
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singular value decomposition

Previous Work Our Results
Technique Reference Dimensions Error Dimensions Error

Approximate
SVD

Boutsidis,
Drineas,
Mahoney,
Zouzias ‘11

k 2+ ϵ ⌈k/ϵ⌉ 1+ ϵ

∙ Practically very useful for k-means
∙ No constant factors on k/ϵ, and typically many fewer
dimensions are required (Kappmeier, Schmidt, Schmidt ‘15)
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johnson-lindenstrauss random projection

Previous Work Our Results
Technique Reference Dimensions Error Dimensions Error

Random
Projection

Boutsidis,
Drineas,
Mahoney,
Zouzias ‘11

O(k/ϵ2)

O(log n/ϵ2)

2+ ϵ

1+ ϵ

O(k/ϵ2)

O(log k/ϵ2)

1+ ϵ

9+ ϵ

±1 ±1 ±1 ±1


±1 ±1 ±1 ±1


±1 ±1 ±1 ±1


±1 ±1 ±1 ±1


±1 ±1 ±1 ±1




±1 ±1 ±1 ±1


±1 ±1 ±1 ±1


±1 ±1 ±1 ±1


±1 ±1 ±1 ±1


±1 ±1 ±1 ±1


±1 ±1 ±1 ±1




Π Ã
A


O(k/ε2)
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∙ First sketch with dimension sublinear in k. Can (9+ ϵ) be
improved?

∙ Sketch is data oblivious
∙ Lowest communication distributed k-means (improves on
Balcan, Kanchanapally, Liang, Woodruff ‘14)

∙ Streaming principal component analysis in a single pass
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oblivious project-cost preserving sketches

Standard sketches for low rank approximation (Sarlós ‘06,
Clarkson, Woodruff ‘13, etc):

±1 ±1 ±1 ±1


±1 ±1 ±1 ±1


±1 ±1 ±1 ±1


±1 ±1 ±1 ±1


±1 ±1 ±1 ±1




±1 ±1 ±1 ±1


±1 ±1 ±1 ±1


±1 ±1 ±1 ±1


±1 ±1 ±1 ±1


±1 ±1 ±1 ±1


±1 ±1 ±1 ±1




Π Ã
A


O(k/ε)


∥A− (PÃA)k∥2F ≤ (1+ ϵ)∥A− Ak∥2F.

span(Ã) contains a good low rank approximation for A, but we
must return to A to find it.
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oblivious project-cost preserving sketches

Projection-cost preserving sketch for low rank approximation:

±1 ±1 ±1 ±1


±1 ±1 ±1 ±1


±1 ±1 ±1 ±1
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±1 ±1 ±1 ±1




±1 ±1 ±1 ±1


±1 ±1 ±1 ±1


±1 ±1 ±1 ±1


±1 ±1 ±1 ±1


±1 ±1 ±1 ±1


±1 ±1 ±1 ±1




Π Ã
A


O(k/ε2)


∥A− VkV⊤k A∥2F ≤ (1+ ϵ)∥A− Ak∥2F.

Additional ϵ dependence for stronger sketch.

Is it required for
oblivious approximate PCA? (See Ghashami, Liberty, Phillips,
Woodruff ‘14/15)
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two shot projection

Previous Work Our Results
Technique Reference Dimensions Error Dimensions Error

Non-oblivious
Randomized
Projection

Sarlós ‘06 NA NA O(k/ϵ) 1+ ϵ

Ã
A


O(k/ε)


sp
an
(A
Π)
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feature selection

Previous Work Our Results
Technique Reference Dimensions Error Dimensions Error

Column
Sampling

Boutsidis,
Drineas,
Mahoney,
Zouzias ‘11

O(k log k/ϵ2) 3+ ϵ O(k log k/ϵ2) 1+ ϵ

Deterministic
Column
Selection

Boutsidis,
Magdon-
Ismail ‘13

r > k O(n/r) O(k/ϵ2) 1+ ϵ

Ã
A


Õ(k/ε2)
 29



feature selection

Previous Work Our Results
Technique Reference Dimensions Error Dimensions Error

Column
Sampling

Boutsidis,
Drineas,
Mahoney,
Zouzias ‘11

O(k log k/ϵ2) 3+ ϵ O(k log k/ϵ2) 1+ ϵ

∙ A not only contains a small set of columns that span a good
low rank approximation, but a small (reweighted) set whose
top principal components approximate those of A.

∙ First single shot sampling based dimensionality reduction
for (1+ ϵ) error low rank approximation.
∙ Work in progress: single-pass streaming column subset
selection and iterative sampling algorithms for the SVD.
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heuristic applications?

Natural (unsupervised) feature selection metric:

combination of leverage score with respect to top k subspace
and residuals of columns after projection to this subspace.
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analysis for svd

Singular Value Decomposition (SVD):

A
 =
 U
 Σ
 VT


σ1

σ2


σd-1

σd


U,V have orthonormal columns. σ1 ≥ σ2 ≥ . . . ≥ σd.

Same as Principal Component Analysis (PCA) if we
mean-center A’s columns/rows.
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analysis for svd

Partial Singular Value Decomposition (SVD):

Am
 =
 Σk


σ1

σ2


σd-1

σd


Um

VmT


Σm


∥A− Am∥2F = minrank(X)=m ∥A− XX⊤A∥2F

Claim: ∥Ak/ϵ − XX⊤Ak/ϵ∥2F + c = (1± ϵ)∥A− XX⊤A∥2F

We work with Ak/ϵ for simplicity. Denote (A− Ak/ϵ) as A\k/ϵ
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analysis for svd

Claim: ∥Ak/ϵ − XX⊤Ak/ϵ∥2F = (1± ϵ)∥A− XX⊤A∥2F

Split into (row) orthogonal pairs:

A
 Ak/ε
 A\k/ε




=
 +

head
 tail


∥A− XX⊤A∥2F
= ∥(I− XX⊤)Ak/ϵ∥2F + − ∥XX⊤A\k/ϵ∥2F = ∥(I− XX⊤)A∥2F
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analysis for svd

In words, the projection cost for A is explained by the cost over
Ak/ϵ plus the cost over A\k/ϵ. We want to argue that ignoring
the tail term is fine.

Need to show that:

∥XX⊤A\k/ϵ∥2F ≤ ϵ∥(I− XX⊤)A∥2F

σ12

σ22


σk2


σk/ε+12


σk/ε+k2


σd2

ΣA

Recall that ∥B∥2F =

∑
i σ

2
i (B)
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analysis for svd

∙ Analysis is very worst case since we assume σk/ϵ+k is just as
big as σk+1.

∙ In practice, spectrum decay allows for a much smaller
sketching dimension (Kappmeier, Schmidt, Schmidt ‘15).
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analysis for svd

∙ Analysis is very worst case since we assume σk/ϵ+k is just as
big as σk+1.

∙ In practice, spectrum decay allows for a much smaller
sketching dimension (Kappmeier, Schmidt, Schmidt ‘15).
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proof sketch for random projection

All proofs have similar flavor:

∥Ak − XX⊤Ak∥2F + ∥A\k − XX⊤A\k∥2F
vs.

∥Ak − XX⊤AkΠ∥2F + ∥A\k − XX⊤A\kΠ∥2F

Except that:

∙ We have to worry about cross terms
∥AΠ− XX⊤AΠ∥2F ̸= ∥AkΠ− XX⊤AkΠ∥2F + ∥A\kΠ− XX⊤A\kΠ∥2F

∙ We have some hope of approximating ∥A\k − XX⊤A\k∥2F
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proof sketch for random projection

Rely on standard sketching tools:

∙ Approximate Matrix Multiplication: ∥AΠΠ⊤B∥2F ≤ ϵ∥A∥F∥B∥F
∙ Subspace Embedding: ∥YAΠ∥2F = (1± ϵ)∥YA∥2F for all Y if A
has rank k

∙ Frobenius Norm Preservation: ∥AΠ∥2F = (1± ϵ)∥A∥2F
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proof sketch for random projection

See paper for the details!
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theoretical takeaway

∙ Projection-cost preserving sketches guarantee
∥Ã− XX⊤Ã∥2F ≈ ∥A− XX⊤A∥2F for all rank k X.

∙ Standard proof approach: Split A into orthogonal pairs. Top
of spectrum can be preserved multiplicatively, only top
singular values of bottom of spectrum matter.

∙ Dimensionality reduction for any constrained low rank
approximation can be unified.
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proof sketch for sublinear result

Split using optimal clustering:
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∙ C∗(A) can be approximated with O(log k/ϵ2) dimensions.
∙ Not row orthogonal – have to use triangle inquality which
leads to the (9+ ϵ) factor.
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practical considerations

Experiments & implements in [(Cameron) Musco ‘15]

Full Dataset SVD Approx. SVD Sampling Approx. Sampling Rand. Proj. NORP
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Time for ϵ = .01 compared to baseline Lloyd’s w/ k-means++.
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Thank you!

Open Questions:

∙ Improve our O(log k/ϵ2) random projection analysis from
(9+ ϵ) to (1+ ϵ)?

∙ Single pass PCA algorithm for turnstile streams with 1/ϵ
(instead of 1/ϵ2) dependence?

∙ Coresets for k-means (reducing number of points instead of
dimension) are difficult and messy. Can we get similarly
“clean” analysis?
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