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MODERN PARADIGM FOR SEARCH

Use neural network (BERT, CLIP, etc.) to convert documents,
images, and other media to high dimensional vectors.
Matching results should have similar vector embeddings.
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VECTOR SEARCH

Finding results for a query amounts to finding the closest k
vectors in a vector database X . E.g., for k = 1, return:

argmin
x∈X

∥x− q∥.

3



WHAT CAN BE DONE?

Goal: Let X be a database of n vectors in Rd. Find x ∈ X
minimizing ∥x− q∥ for a query q.

• Naive linear scan: O(nd) time.
• Multidimensional Search Trees: Roughly O(2d log n) time.
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HIGH-DIMENSIONAL NEAR NEIGHBOR SEARCH

When d is large, we now have lots of other options available:

• Locality-sensitive hashing [Indyk, Motwani, 1998]
• Spectral hashing [Weiss, Torralba, and Fergus, 2008]
• Vector quantization/IVF data structures [Jégou, Douze,
Schmid, 2009]

• Graph-based vector search [Malkov, Yashunin, 2016,
Subramanya et al., 2019]

Key ideas behind all of these methods:

1. Do not guarantee exact nearest neighbors.
2. Trade worse space-complexity + preprocessing time for

better time-complexity. I.e., preprocess database into data
structure that uses Ω(n) space.
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EXAMPLE WORST-CASE GUARANTEE

Theorem (Andoni, Indyk, FOCS 2006)
For any approximation factor c ≥ 1, there is a data structure
based on locality sensitive hashing that, for any query q,
returns x̃ satisfying:

∥x̃− q∥2 ≤ c ·min
x∈X

∥x− q∥2

and uses:

• Query Time: Õ
(
dn1/c2

)
.

• Data Structure Space Complexity: Õ
(
nd+ n1+1/c2

)
.

For exampe, if c = 2, query time scales with n1/4, which is pretty
amazing, at least in theory.
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SPACE PARTITIONING METHODS

Rough idea behind LSH:

1. Pick a bunch of random hyperplanes.
2. Check which side of each hyperplane q lies on.
3. Return closest point that lies in the same region as q.
4. Repeat multiple times to avoid missing anything.
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NEAREST-NEIGHBOR SEARCH IN PRACTICE

New(ish) kid on the block: Graph-based Search.

• Navigating Spreading-out Graphs (NSG) [Fu, Xiang, Wang,
Cai, 2017]

• Hierarchical Navigable Small World (HNSW) [Malkov,
Yashunin, 2018]

• Microsoft’s DiskANN [Subramanya, Devvrit, Kadekodi,
Krishaswamy, Simhadri 2019]

Similar methods proposed for low-dimensions suggested in
the 1990s by Arya, Mount, Kleinberg and others.

Connections to Milgram’s famous “small world” experiments
from the 1960s and later work on the small world phenomenon
by Watts, Strogatz, Kleinberg, and others.
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BASIC IDEA BEHIND GRAPH-BASED SEARCH

1. Construct a directed search graph over our dataset.

2. Run some variant of greedy search in the graph.
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GRAPH-BASED SEARCH IN PRACTICE

Winning all of the competitions! Competitive with or better
than the best space-partitioning methods.
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GRAPH-BASED SEARCH IN PRACTICE

Winning all of the competitions! Competitive with or better
than the best space-partitioning methods.

Open theory challenge: Can we mathematically explain
the empirical success of graph-based nearest-neighbor

search methods?
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CONCRETE QUESTIONS

1. Are there natural combinations of graph construction +
search algorithm that lead to provably accurate
approximate nearest neighbors?

2. Can we show these good approximations are returned
quickly?

Computational Cost ≈ (graph degree)× (# of search steps).

A major reason to study theoretical guarantees is to provide a
foundation for improving on existing methods.
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SEARCH GRAPH PROPERTIES

Dozens of papers on constructing good search graphs.

First Task: Come up with abstraction for what it means for a
search graph, G, to be “good”.
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NAVIGABILE SEARCH GRAPHS

Navigability is one of the most commonly listed desirable
properties. Lends its name to methods like Navigable
Spreading-out and Hierarchical Navigable Small World Graphs.

Definition (Navigable Graph)
A directed graph G is navigable for a point set 1, . . . ,n and
distance function d(·, ·) if, for all nodes i, for all j ̸= i, there is
some k ∈ N (i) (i’s out neighborhood) satisfying:

d(j, k) < d(j, i).

13



NAVIGABILE SEARCH GRAPHS

Definition (Navigable Graph)
A directed graph G is navigable for a point set 1, . . . ,n and
distance function d(·, ·) if, for all nodes i, for all j ̸= i, there is
some k ∈ N (i) (i’s out neighborhood) satisfying:

d(j, k) < d(j, i).

14



NAVIGABILE SEARCH GRAPHS

Claim (Perfect Recall for Queries in Dataset)
For any starting node i and query q in our dataset, standard
greedy search run on a navigable graph G returns q itself.
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SPARSE NAVIGABLE GRAPHS

Moreover, sparse navigable graphs exist!

• 2-dimensional Euclidean space: The Delaunay graph is
navigable. This graph has average degree O(1).

• d-dimensional Euclidean space: The Sparse Neighborhod
Graph of Arya and Mount [SODA, 1993] is navigable and
has average degree O(2d).

• Arbitary metric: Can always construct a navigable graph
with average degree O(

√
n) [Diwan, Gou, Musco, Musco,

Suel, NeurIPS 2024].

We recently showed that a navigable graph with near-optimal
sparsity can be computed in Õ(n2) time for any metric and
dataset [Conway, Dhulipala, Farach-Colton, Johnson, Landrum,
Musco, Shechter, Suel, Wen, 2025].
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FAILED APPROXIMATION FOR GENERIC QUERIES

Unfortunately, greedy search on a navigable graph fails to
provide any meaningful approximation for general queries, q
(that are not exactly in our dataset).

Recall that, if currently at node i, greedy search moves to
j∗ = argminj∈N (i) d(j,q), or terminates if d(j∗,q) > d(i,q).
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TOWARDS APPROXIMATION GUARANTEES

If we want stronger theoretical guarantees, we seemingly have
two options:

1. Consider stronger graph properties.
2. Consider a stronger search algorithm.
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TOWARDS APPROXIMATION GUARANTEES

Inspired by Microsoft’s DiskANN method, Indyk and Xu recently
studied α-shortcut reachability:
Definition (α-shortcut Reachable Graph)
For α ≥ 1, G is α-shortcut reachable for for a point set 1, . . . ,n
and distance function d if, for all nodes i, for all j ̸= i, there is
some k ∈ N (i) satisfying:

d(j, k) < 1
α
d(j, i).
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TOWARDS APPROXIMATION GUARANTEES

Theorem (Indyk-Xu, NeurIPS 2023)
For any query q, greedy search run on an α-shortcut
reachable graph is guaranteed to return x′ satisfying

d(x′,q) ≤ 1+ α

1− α
· min
x∈{1,...,n}

d(x,q).

Recently improved to α
α−1 for Eucliean metrics and extended to

k-nearest neighbor search for k > 1 by [Gollapudi,
Krishnaswamy, Shiragur, Wardhan, ICML 2025].

As expected from our counter example earlier, both bounds
are vacuous when α = 1, which corresponds to navigability.
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TOWARDS APPROXIMATION GUARANTEES

If we want stronger theoretical guarantees, we seemingly have
two options:

1. Consider stronger graph properties.
2. Consider a stronger search algorithm (our work).

• The sparsest α-shortcut reachable graph is always denser than
the sparsest navigable graph. A random point set in O(log n)
dimensions requires Ω(n) degree to be α-shortcut reachable,
but O(

√
n) degree to be navigable.1

• Since they hold even for standard greedy search, these results
do not explain the empirical success of widely used improved
greedy search strategies like beam search.

1Indyk-Xu show that there is always an α-shortcut reachable graph with
degree αO(q), where q is the “double dimension” of our dataset.
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GENERALIZED BEAM SEARCH ORDER

Our work considers a class of improved greedy search
algorithms that we call generalized beam search methods.

All methods in this class search nodes in the same order but
use a different termination rule to decide when to stop.
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GENERALIZED BEAM SEARCH ORDER

Every time we “explore” a node, we compute the distance
between q and all of the node’s neighbors.

Once the search terminates, return the k best results in the
Discovered Nodes list.

Importantly, beam search allows backtracking!
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GREEDY SEARCH STOPPING CONDITION

Denote the next node to explore by x.

Greedy stopping condition: Terminate if there are k Discovered
Nodes, j1, . . . , jk, with d(ji,q) < d(x,q).
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STANDARD BEAM SEARCH STOPPING CONDITION

We will obtain a strictly better result if we allow the search to
continue. It is thus natural to relax the greedy stopping rule.

Beam search stopping condition: Terminate if there are b > k
Discovered Nodes, j1, . . . , jb, with d(ji,q) < d(x,q).
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STANDARD BEAM SEARCH STOPPING CONDITION

Unfortunately, even if we set b = O(n), beam search does not
yield provably accurate nearest neighbors when run on a
navigable graph.

Can have a large cluster of “local minimums” that beam search
will never escape.
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PROPOSED ADAPTIVE BEAM SEARCH RULE

Our idea: Relax by distance instead of number of closer nodes.

Adaptive Beam Search stopping condition: For γ > 0,
terminate if there are k Discovered Nodes, j1, . . . , jk, with

(1+ γ) · d(ji,q) < d(x,q).

Adaptive Beam Search seems to more naturally “adapt” to
query difficulty. Spends more time when there are many
similar local minima, less time when there are not. 27



PROPOSED ADAPTIVE BEAM SEARCH RULE

For “easy” queries, Adaptive Beam Search can terminate faster
than standard beam search.

Adaptive Beam Search stopping condition: For γ > 0,
terminate if there are k Discovered Nodes, j1, . . . , jk, with

(1+ γ) · d(ji,q) < d(x,q).

In fact, the rule has been previously used as an “early termination
condition” for beam search [ParlayANN, Dobson Manohar et al., 2024]! 28
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MAIN THEORETICAL RESULT

Theorem (Al-Jazzazi, Diwan, Gou, Musco, Musco, Suel, 2025)
Let k = 1. For any metric d and for any γ ≤ 2, Adaptive Beam
Search run on a navigable graph returns x′ satisfying:

d(x′,q) ≤ 2
γ
· min
x∈{1,...,n}

d(x,q).

• When γ = 2, we obtain the exact nearest neighbor. Smaller
values of γ yield worse approximations.

• The same bound holds for k > 1: no point that is not
returned by the method can be more than γ

2× closer than
any of the k points returned.

29



PROOF BY CONTRADICTION

Need to show that any undiscovered z has d(z,q) ≥ γ
2 · d(x

′,q).
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Need to show that any undiscovered z has d(z,q) ≥ γ
2 · d(x

′,q).

Existence of monotonically improving path from x′ to z follows
from navigability.
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PROOF BY CONTRADICTION

Suppose by way of contradiction that d(z,q) < γ
2 · d(x′,q).

Since w is unexplored, it must be that d(w,q) ≥ (1+ γ)d(x′,q).

At the same time we have via triangle inequality:

d(w,q) ≤ d(w, z) + d(z,q) ≤ d(x′, z) + d(z,q)
≤ d(x′,q) + d(z,q) + d(z,q)
< (1+ γ) · d(x′,q).
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We have thus reach a contridiction! So d(z,q) ≥ γ
2 · d(x′,q). 30



EXPERIMENTAL RESULTS

Theorem (Al-Jazzazi, Diwan, Gou, Musco, Musco, Suel, 2025)
Let k = 1. For any metric d and for any γ ≤ 2, Adaptive Beam
Search run on a navigable graph returns x′ satisfying:

d(x′,q) ≤ 2
γ
· min
x∈{x,...,n}

d(i,q).

The theoretical benefit of Adaptive Beam Search seems to
translate to practice.

• Experimented on 6 datasets, 5 graph constructions, and a
variety of k values.

• Ran Standard Beam Search and Adaptive Beam Search,
varying b and γ to obtain curves trading off between recall
and # of distance computations. 31



EXPERIMENTAL RESULTS

Adaptive Beam Search never performs worse than Standard
Beam Search. Typically, 10%− 50% better.
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EXPERIMENTAL RESULTS

As expected, improvement seems to come from better
“adapting” to query hardness.

For Adaptive Beam Search, we see greater variance in the
number of distance computations used per query.
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IMPORTANT NOTE ABOUT EXPERIMENTS

Despite their names, many of the graphs we run on (NSG,
HNSW, etc.) are not actually navigable!

Microsoft’s DiskANN can be configured to return a navigable
graph, but this is not how it is typically used.

Still reasonable to expect theoretical results to be meaningful.
But we wanted to also test on actually navigable graphs.

For the paper we use a fast heuristic for constructing sparse
navigable graphs: basically start with the O(

√
n) degree

construction of Diwan at al. then “prune” edges as in DiskANN.

Result is provably navigable graphs with degree ≈ 50 for
datasets we tested.
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NATURAL ALGORITHMIC QUESTION

How quickly can we construct the sparsest navigable graph
for a given dataset?

Theorem (Conway, Dhulipala, Farach-Colton, Johnson, Landrum,
Musco, Shechter, Suel, Wen, 2025)
For any dataset and any distance function, we can construct a
navigable graph with at most O(log n) times as many edges
as the sparsest navigable graph in Õ(n2) time.

• Also give results for α-shortcut reachable graphs. Similar
results obtained by [Khanna, Padaki, Waingarten, 2025].

• O(n2) time is optimal even for points in O(log n) dimensional
Euclidean space assuming Strong Exponential Time Hypothesis.

• O(log n) approximation factor is optimal assuming P ̸= NP
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FIRST OBSERVATION

Navigable graph construction is n different minimum set
cover problems!

Definition (Navigable Graph)
A graph G is navigable for a point set 1, . . . ,n and distance function
d(·, ·) if, for all nodes i, for all j ̸= i, there is some k ∈ N (i) (i’s out
neighborhood) satisfying d(j, k) < d(j, i).

One problem for each node i. One set for all possible out neighbors.
Elements to cover are all j ̸= i. 36



NAVIGABILITY AS SET COVER

Baseline: Explicitly write down each set cover problem, which
takes n× O(n2) time. Standard greedy algorithm obtains a
O(log n) approximation in n× O(n2) = O(n3) time.

Key Observation: In O(n2 log n) time, we can implement and
oracle to access information about the set cover instances,
without every writing them down explicitly.
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NAVIGABILITY AS SET COVER

Concretely, after O(n2 log n) time preprocessing, can implement
Membership and SetOf queries in O(1) time.

• Membership: Is j in set k in instance i? I.e., is
d(j, k) < d(j, i)?

• SetOf: What is the kth set containing j in instance i?
38



NAVIGABILITY AS SET COVER

Applying off-the-shelf “sublinear time” set cover algorithms, we can
obtain runtime Õ(n · OPT) ≤ Õ(n2.5).

[Indyk, Mahabadi, Rubinfeld, Vakilian, Yodpinyanee, SODA 2018].

Obtaining Õ(n2) time requires a few more tricks. Basically, we reduce
the size of our set cover instances via additional preprocessing.

These techniques do not apply to general set cover problems. They
reduce the size of the average instance in our n instances, not the
maximum size. See paper for more details! 39
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QUESTIONS?
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