The Lanczos Method in Data Science

Christopher Musco

Massachusetts Institute of Technology.

Used for solving linear systems, eigendecomposition, matrix exponentials, and approximating <u>any matrix function</u>.

Used for solving linear systems, eigendecomposition, matrix exponentials, and approximating <u>any matrix function</u>.

• Introduced in 1950, developed through the 70s, ubiquitous in well-developed scientific computing libraries.

L	A	Р	A	с	к
L,	-A	Р	-A	с	-K
L	Α	Ρ	Α	-C	-K
L	-A	Ρ	-A	-C	ĸ
L	Α	-P	-A	С	ĸ
L.	-A	-P	Α	С	-K

Used for solving linear systems, eigendecomposition, matrix exponentials, and approximating <u>any matrix function</u>.

- Introduced in 1950, developed through the 70s, ubiquitous in well-developed scientific computing libraries.
- Resurgence of interest due to new applications in data science and machine learning.

New applications combine Lanczos with super-scalable stochastic iterative and randomized sketching methods.

New applications combine Lanczos with super-scalable stochastic iterative and randomized sketching methods.

Require understanding of performance with noisy inputs.

New applications combine Lanczos with super-scalable stochastic iterative and randomized sketching methods. Require understanding of performance with noisy inputs.

Today's results:

1. Lanczos is <u>very noise stable</u>, performing essentially optimally amongst other polynomial methods.

New applications combine Lanczos with super-scalable stochastic iterative and randomized sketching methods. Require understanding of performance with noisy inputs.

Today's results:

- 1. Lanczos is <u>very noise stable</u>, performing essentially optimally amongst other polynomial methods.
- 2. <u>Except when solving linear systems!</u> We provide strong low-bounds that noise can significantly impair Lanczos and the closely related conjugate gradient method.

RELEVANT PAPER

Stability of the Lanczos Method for Matrix Function Approximation [SODA 2018]

Aaron Sidford (Stanford)

Cameron Musco (MIT)

RELEVANT PAPER

Stability of the Lanczos Method for Matrix Function Approximation [SODA 2018]

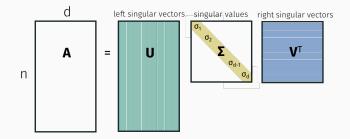
Cameron Musco (MIT)

Roy Frostig (Google)

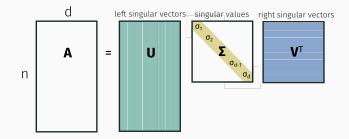
Principal Component Projection Without Principal Component Analysis [ICML 2016]

WHAT IS A MATRIX FUNCTION?

Every matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$ has a singular value decomposition:

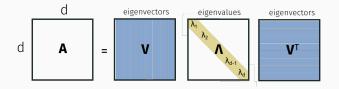


Every matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$ has a singular value decomposition:

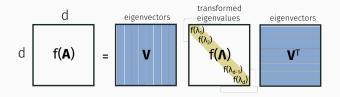


U, **V** are orthogonal, $\boldsymbol{\Sigma}$ is diagonal, $\sigma_1 \geq \ldots \geq \sigma_d \in \mathbb{R}^+$.

Every symmetric matrix $\mathbf{A} \in \mathbb{R}^{d \times d}$ has an orthogonal eigendecomposition:

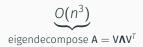


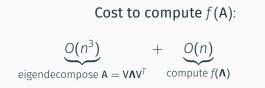
For any <u>scalar</u> function $f : \mathbb{R} \to \mathbb{R}$ define f(A):

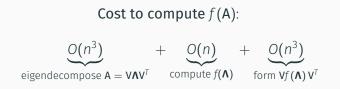


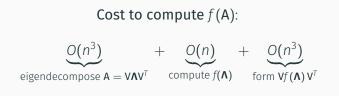
Cost to compute f(A):

Cost to compute f(A):

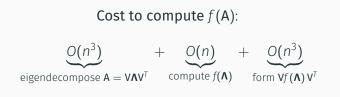








 $= O(n^3)$ in practice



 $= O(n^3)$ in practice

In theory can be improved to $O(n^{\omega}) \approx O(n^{2.3728639})$. (but this is still slow)

Typically only interested in computing f(A)x for some $x \in \mathbb{R}^n$.

$$f\left(\left[\begin{array}{cc} & \mathbf{A} \\ & \end{array}\right]\right) \cdot \left[\mathbf{X}\right]$$

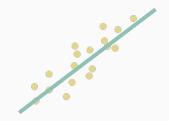
Typically only interested in computing f(A)x for some $x \in \mathbb{R}^n$.

$$f\left(\left[\begin{array}{c} & \mathbf{A} \\ & \end{array} \right] \right) \cdot \left[\mathbf{X} \right]$$

Often much cheaper than computing *f*(A) explicitly! (this is what Lanczos and other algorithms target) APPLICATIONS IN DATA PROBLEMS

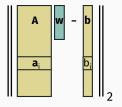
MATRIX FUNCTIONS IN DATA ANALYSIS

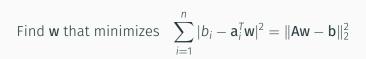
Least squares regression



MATRIX FUNCTIONS IN DATA ANALYSIS

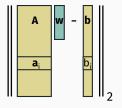
Least squares regression





MATRIX FUNCTIONS IN DATA ANALYSIS

Least squares regression



Find **w** that minimizes
$$\sum_{i=1}^{n} |b_i - \mathbf{a}_i^T \mathbf{w}|^2 = \|\mathbf{A}\mathbf{w} - \mathbf{b}\|_2^2$$

Solution: $\mathbf{w} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{b}$

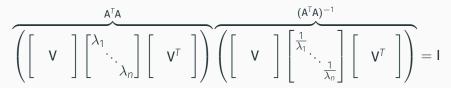
$$f\left(\left[\begin{array}{c} \mathbf{A}^{\mathsf{T}}\mathbf{A} \end{array}\right]\right)\cdot \begin{bmatrix} \mathbf{X} \end{bmatrix}$$

Where $f(\lambda) = 1/\lambda$ and $\mathbf{x} = \mathbf{A}^T \mathbf{b}$.

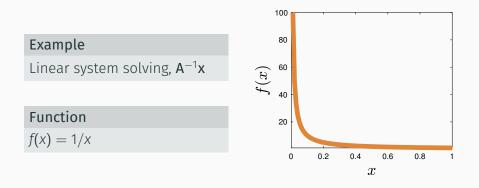
$$f\left(\left[\begin{array}{c} \mathbf{A}^{\mathsf{T}}\mathbf{A} \end{array}\right]\right)\cdot \begin{bmatrix} \mathbf{X} \end{bmatrix}$$

Where $f(\lambda) = 1/\lambda$ and $\mathbf{x} = \mathbf{A}^T \mathbf{b}$.

Since $V^T V = VV^T = I$:

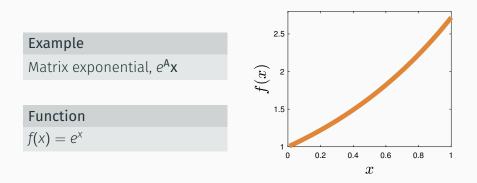


MATRIX INVERSE



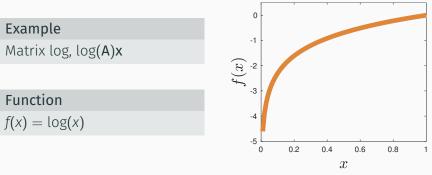
Countless applications...

MATRIX EXPONENTIAL



Applications in semidefinite programming, graph algorithms (balanced separator), differential equations.

[Arora, Hazan, Kale, '05], [lyengar, Phillips, and Stein '11], [Orecchia, Sachdeva, Vishnoi, '12], [Higham '08] (very complete survey)

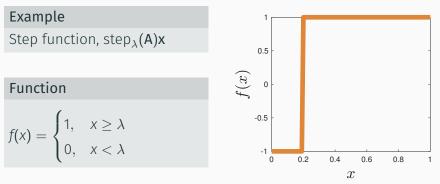


Used to estimate log(det(A)) = tr(log(A)).

Appears in log-likelihood equation for multivariate Gaussian. Applications in Gaussian process regression, learning distance kernels, Markov random fields.

[Dhillon, et al '06, '07,'08], [Han, Malioutov, Shin '15], [Saibaba, Alexanderian, Ipsen '17]

MATRIX STEP FUNCTION



Projection to top eigenvectors, eigenvalue counting, computing matrix norms, spectral filtering, many more...

[Frostig, Musco, Musco, Sidford '16], [Saad, Ubaru '16], [Allen-Zhu, Li '17], [Tremblay, Puy, Gribonval, Vandergheynst '16], [Musco, Netrapalli, Sidford, Ubaru and Woodruff '18]

Standard Regression:

Given: A, b Solve: $\mathbf{x}^* = \arg \min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2$

Standard Regression:

Given: **A**, **b** Solve: $\mathbf{x}^* = \arg \min_{\mathbf{x}} ||\mathbf{A}\mathbf{x} - \mathbf{b}||^2$

Principal Component Regression:

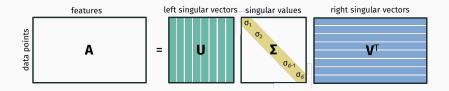
Given: A, b, λ Solve: $\mathbf{x}^* = \arg \min_{\mathbf{x}} ||\mathbf{A}_{\lambda}\mathbf{x} - \mathbf{b}||^2$

Standard Regression:

Given: **A**, **b** Solve: $\mathbf{x}^* = \arg \min_{\mathbf{x}} ||\mathbf{A}\mathbf{x} - \mathbf{b}||^2$

Principal Component Regression:

Given: **A**, **b**, λ Solve: $\mathbf{x}^* = \arg \min_{\mathbf{x}} ||\mathbf{A}_{\lambda}\mathbf{x} - \mathbf{b}||^2$

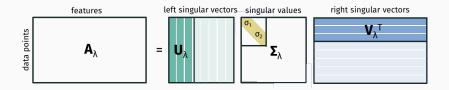


Standard Regression:

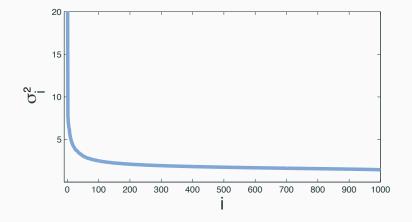
Given: **A**, **b** Solve: $\mathbf{x}^* = \arg \min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2$

Principal Component Regression:

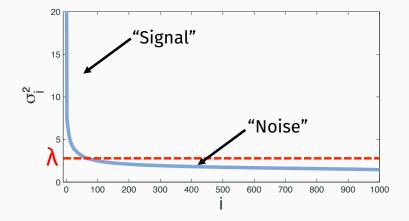
Given: **A**, **b**, λ Solve: $\mathbf{x}^* = \arg \min_{\mathbf{x}} ||\mathbf{A}_{\lambda}\mathbf{x} - \mathbf{b}||^2$



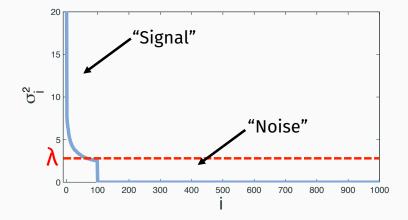
Singular values of A



Singular values of A



Singular values of A_{λ}



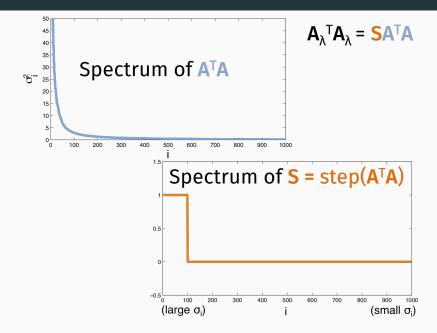
Principal Component Regression (PCR): Goal: $\mathbf{x}^* = \arg\min_{\mathbf{x}} \|\mathbf{A}_{\lambda}\mathbf{x} - \mathbf{b}\|^2$

Solution: $\mathbf{x} = (\mathbf{A}_{\lambda}^{\mathsf{T}} \mathbf{A}_{\lambda})^{-1} \mathbf{A}^{\mathsf{T}} \mathbf{b}$

Principal Component Regression (PCR): Goal: $\mathbf{x}^* = \arg \min_{\mathbf{x}} \|\mathbf{A}_{\lambda}\mathbf{x} - \mathbf{b}\|^2$ Solution: $\mathbf{x} = (\mathbf{A}_{\lambda}^T \mathbf{A}_{\lambda})^{-1} \mathbf{A}^T \mathbf{b}$

Fastest way to apply $\mathbf{A}_{\lambda}^{T}\mathbf{A}_{\lambda}$ and $(\mathbf{A}_{\lambda}^{T}\mathbf{A}_{\lambda})^{-1}$ to a vector is with a matrix step function.

PRINCIPAL COMPONENT REGRESSION



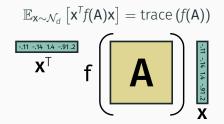
16

$$\sum_{i=1}^{d} \mathbb{I}[\lambda_i > \lambda] = \sum_{i=1}^{d} \operatorname{step}_{\lambda}(\lambda_i(\mathsf{A}))$$

$$\sum_{i=1}^{d} \mathbb{I}[\lambda_i > \lambda] = \sum_{i=1}^{d} \operatorname{step}_{\lambda}(\lambda_i(\mathsf{A})) = \operatorname{trace}\left(\operatorname{step}_{\lambda}(\mathsf{A})\right)$$

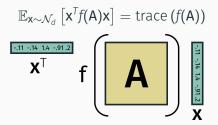
$$\sum_{i=1}^{d} \mathbb{I}[\lambda_i > \lambda] = \sum_{i=1}^{d} \operatorname{step}_{\lambda}(\lambda_i(\mathsf{A})) = \operatorname{trace}\left(\operatorname{step}_{\lambda}(\mathsf{A})\right)$$

Hutchinson's estimator:



$$\sum_{i=1}^{d} \mathbb{I}[\lambda_i > \lambda] = \sum_{i=1}^{d} \operatorname{step}_{\lambda}(\lambda_i(\mathsf{A})) = \operatorname{trace}\left(\operatorname{step}_{\lambda}(\mathsf{A})\right)$$

Hutchinson's estimator:



Same method used for estimating log-determinants and matrix norms.

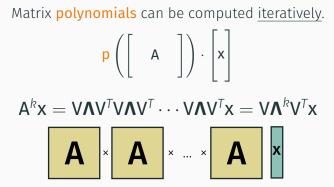
FAST ALGORITHMS FOR MATRIX FUNCTIONS

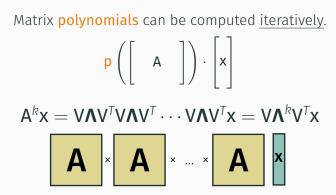
MATRIX POLYNOMIALS

 $f\left(\begin{bmatrix} & \mathsf{A} & \end{bmatrix}\right) \cdot \begin{bmatrix} \mathsf{x} \end{bmatrix}$

Matrix polynomials can be computed iteratively.

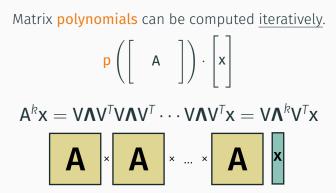
$$p\left(\left[\begin{array}{c} A \end{array} \right] \right) \cdot \left[x \right]$$





Total time to compute $p(\mathbf{A})\mathbf{x} = c_0\mathbf{x} + c_1\mathbf{A}\mathbf{x} + c_2\mathbf{A}^2\mathbf{x} + \ldots + c_k\mathbf{A}^k\mathbf{x}$:

 $O(k \cdot nnz(A))$

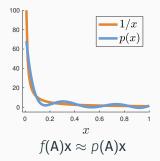


Total time to compute $p(\mathbf{A})\mathbf{x} = c_0\mathbf{x} + c_1\mathbf{A}\mathbf{x} + c_2\mathbf{A}^2\mathbf{x} + \ldots + c_k\mathbf{A}^k\mathbf{x}$:

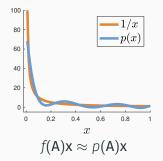
 $O(k \cdot \operatorname{nnz}(\mathbf{A})) \leq O(k \cdot n^2) \ll O(n^3)$

For general matrix functions: approximate f(x) with low-degree polynomial p(x).

For general matrix functions: approximate f(x) with low-degree polynomial p(x).



For general matrix functions: approximate f(x) with low-degree polynomial p(x).



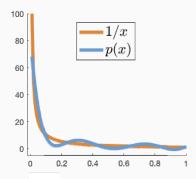
How does error in approximating scale function $f(\cdot)$ translate to error on matrix function?

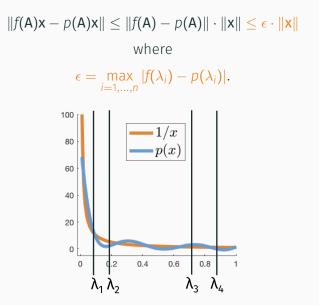
$$\|f(\mathsf{A})\mathsf{x} - p(\mathsf{A})\mathsf{x}\| \le \|f(\mathsf{A}) - p(\mathsf{A})\| \cdot \|\mathsf{x}\|$$

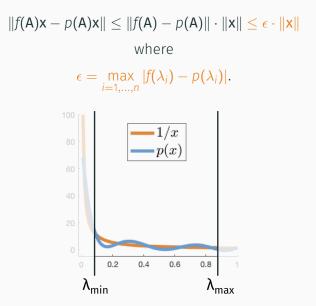
$$\|f(\mathbf{A})\mathbf{x} - p(\mathbf{A})\mathbf{x}\| \le \|f(\mathbf{A}) - p(\mathbf{A})\| \cdot \|\mathbf{x}\| \le \epsilon \cdot \|\mathbf{x}\|$$

where
$$\epsilon = \max_{i=1,\dots,n} |f(\lambda_i) - p(\lambda_i)|.$$

 $\|f(\mathbf{A})\mathbf{x} - p(\mathbf{A})\mathbf{x}\| \le \|f(\mathbf{A}) - p(\mathbf{A})\| \cdot \|\mathbf{x}\| \le \epsilon \cdot \|\mathbf{x}\|$ where $\epsilon = \max_{i=1,\dots,n} |f(\lambda_i) - p(\lambda_i)|.$







20

If we know $\lambda_{\min}(\mathbf{A})$ and $\lambda_{\max}(\mathbf{A})$ we can explicitly compute a near optimal polynomial p via <u>Chebyshev interpolation</u>.

If we know $\lambda_{\min}(\mathbf{A})$ and $\lambda_{\max}(\mathbf{A})$ we can explicitly compute a near optimal polynomial p via <u>Chebyshev interpolation</u>.

$$\delta_{k} = \min_{p \text{ a degree } k \text{ polynomial}} \left(\max_{x \in [\lambda_{\min}(A), \lambda_{\max}(A)]} |f(x) - p(x)| \right)$$

Final bound: Output y such that

 $\|f(\mathbf{A})\mathbf{x} - \mathbf{y}\| \le O(\log k) \cdot \delta_k \cdot \|\mathbf{x}\|.$

If we know $\lambda_{\min}(\mathbf{A})$ and $\lambda_{\max}(\mathbf{A})$ we can explicitly compute a near optimal polynomial p via <u>Chebyshev interpolation</u>.

$$\delta_{k} = \min_{p \text{ a degree } k \text{ polynomial}} \left(\max_{x \in [\lambda_{\min}(A), \lambda_{\max}(A)]} |f(x) - p(x)| \right)$$

Final bound: Output y such that

 $\|f(\mathbf{A})\mathbf{x} - \mathbf{y}\| \le O(\log k) \cdot \delta_k \cdot \|\mathbf{x}\|.$

Example bounds:

- Linear systems in $O\left(\sqrt{\lambda_{\max}/\lambda_{\min}}\right)$ iterations.
- Matrix exponential in $O(||\mathbf{A}||)$ iterations.
- Matrix sign function in $O(1/\epsilon)$ iterations.
- Top eigenvector in $O(\log(n)/\sqrt{\epsilon})$ iterations.

Example bounds:

- Linear systems in $O\left(\sqrt{\lambda_{\max}/\lambda_{\min}}\right)$ iterations.
- Matrix exponential in $O(||\mathbf{A}||)$ iterations.
- Matrix sign function in $O(1/\epsilon)$ iterations.
- Top eigenvector in $O(\log(n)/\sqrt{\epsilon})$ iterations.

No one actually uses Chebyshev interpolation!

THE LANCZOS METHOD FOR MATRIX FUNCTIONS

THE LANCZOS METHOD

Cornelius Lanczos, 1950

THE LANCZOS METHOD

Cornelius Lanczos, 1950

- Simple to implement.
- No need to know $\lambda_{\min}(A)$ and $\lambda_{\max}(A)$.
- Much better convergence in practice (for many reasons).

THE LANCZOS METHOD

Cornelius Lanczos, 1950

- Simple to implement.
- No need to know $\lambda_{\min}(A)$ and $\lambda_{\max}(A)$.
- Much better convergence in practice (for many reasons).
- Matches optimal uniform approximation up to factor 2.

THE LANCZOS METHOD

Cornelius Lanczos, 1950

- Simple to implement.
- No need to know $\lambda_{\min}(A)$ and $\lambda_{\max}(A)$.
- Much better convergence in practice (for many reasons).
- Matches optimal uniform approximation up to factor 2.

Final bound: Output y such that $||f(A)x - y|| \le 2\delta_k \cdot ||x||$.

Step 1: Form orthogonal matrix $\mathbf{Q} = [\mathbf{q}_0, \mathbf{q}_1, \dots, \mathbf{q}_k]$ that spans the Krylov subspace

$$\mathcal{K} = \{\mathbf{x}, \mathbf{A}\mathbf{x}, \mathbf{A}^2\mathbf{x}, \dots \mathbf{A}^k\mathbf{x}\}.$$

Step 1: Form orthogonal matrix $\mathbf{Q} = [\mathbf{q}_0, \mathbf{q}_1, \dots, \mathbf{q}_k]$ that spans the Krylov subspace

$$\mathcal{K} = \{\mathbf{x}, \mathbf{A}\mathbf{x}, \mathbf{A}^2\mathbf{x}, \dots \mathbf{A}^k\mathbf{x}\}.$$

Step 2: Compute

 $\mathbf{T} = \mathbf{Q}^T \mathbf{A} \mathbf{Q}$

Step 1: Form orthogonal matrix $\mathbf{Q} = [\mathbf{q}_0, \mathbf{q}_1, \dots, \mathbf{q}_k]$ that spans the Krylov subspace

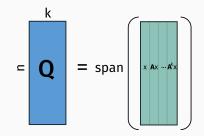
$$\mathcal{K} = \{\mathbf{x}, \mathbf{A}\mathbf{x}, \mathbf{A}^2\mathbf{x}, \dots \mathbf{A}^k\mathbf{x}\}.$$

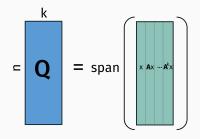
Step 2: Compute

$$\mathbf{T} = \mathbf{Q}^{\mathsf{T}} \mathbf{A} \mathbf{Q}$$

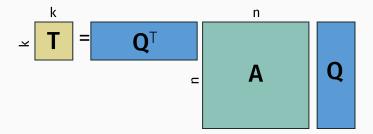
Step 3: Approximate *f*(A)**x** by

 $Qf(T)Q^Tx$

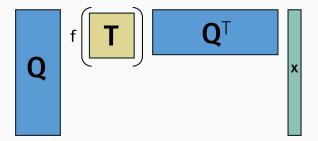




Runtime: $O(k \cdot nnz(A)) + O(nk^2)$

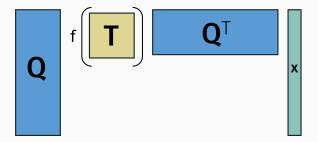


Runtime: $O(k \cdot nnz(A)) + O(nk^2)$

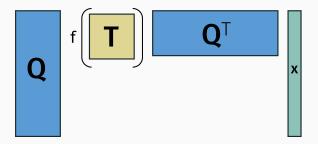


Runtime: $O(k \cdot nnz(A)) + O(nk^2) + O(k^3)$

Reduce the problem to the cost of computing a matrix function for a $k \times k$ matrix.



Runtime: $O(k \cdot nnz(A)) + O(nk^2) + O(k^3)$ Runtime: $O(k \cdot nnz(A) + nk)$ Reduce the problem to the cost of computing a matrix function for a $k \times k$ matrix.

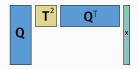


Runtime: $O(k \cdot nnz(A)) + O(nk^2) + O(k^3)$ **Runtime:** $O(k \cdot nnz(A) + nk)$

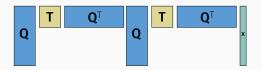
Reduce the problem to the cost of computing a matrix function for a $k \times k$ matrix.

Final bound: Output **y** such that $||f(\mathbf{A})\mathbf{x} - \mathbf{y}|| \le 2\delta_k \cdot ||\mathbf{x}||$.

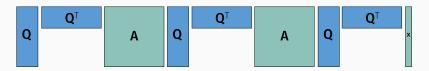
Proof:



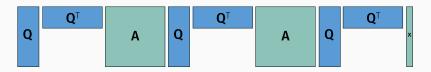
Proof:



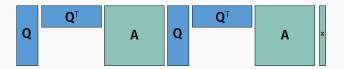
Proof:



Proof:



Proof:



Proof:

Proof:

Lanczos automatically applies the polynomial "part" of *f*. (simple application of triangle inequality)

Lanczos automatically applies the polynomial "part" of *f*. (simple application of triangle inequality)

For <u>any</u> degree k polynomial p,

$$\begin{split} \|f(\mathsf{A})\mathsf{x} - \mathsf{Q}f(\mathsf{T})\mathsf{Q}^{\mathsf{T}}\mathsf{x}\| &\leq \|f(\mathsf{A})\mathsf{x} - p(\mathsf{A})\mathsf{x}\| \\ &+ \|p(\mathsf{A})\mathsf{x} - \mathsf{Q}p(\mathsf{T})\mathsf{Q}^{\mathsf{T}}\mathsf{x}\| \\ &+ \|\mathsf{Q}p(\mathsf{T})\mathsf{Q}^{\mathsf{T}}\mathsf{x} - \mathsf{Q}f(\mathsf{T})\mathsf{Q}^{\mathsf{T}}\mathsf{x}\| \end{split}$$

Lanczos automatically applies the polynomial "part" of *f*. (simple application of triangle inequality)

For <u>any</u> degree *k* polynomial *p*,

 $\begin{aligned} \|f(\mathbf{A})\mathbf{x} - \mathbf{Q}f(\mathbf{T})\mathbf{Q}^{\mathsf{T}}\mathbf{x}\| &\leq \|f(\mathbf{A})\mathbf{x} - p(\mathbf{A})\mathbf{x}\| \\ &+ \|p(\mathbf{A})\mathbf{x} - \mathbf{Q}p(\mathbf{T})\mathbf{Q}^{\mathsf{T}}\mathbf{x}\| \\ &+ \|\mathbf{Q}p(\mathbf{T})\mathbf{Q}^{\mathsf{T}}\mathbf{x} - \mathbf{Q}f(\mathbf{T})\mathbf{Q}^{\mathsf{T}}\mathbf{x}\| \\ &\leq \delta_k \|\mathbf{x}\| \end{aligned}$

Lanczos automatically applies the polynomial "part" of *f*. (simple application of triangle inequality)

For <u>any</u> degree *k* polynomial *p*,

 $\begin{aligned} \|f(\mathbf{A})\mathbf{x} - \mathbf{Q}f(\mathbf{T})\mathbf{Q}^{\mathsf{T}}\mathbf{x}\| &\leq \|f(\mathbf{A})\mathbf{x} - p(\mathbf{A})\mathbf{x}\| \\ &+ \|p(\mathbf{A})\mathbf{x} - \mathbf{Q}p(\mathbf{T})\mathbf{Q}^{\mathsf{T}}\mathbf{x}\| \\ &+ \|\mathbf{Q}p(\mathbf{T})\mathbf{Q}^{\mathsf{T}}\mathbf{x} - \mathbf{Q}f(\mathbf{T})\mathbf{Q}^{\mathsf{T}}\mathbf{x}\| \\ &\leq \delta_{k}\|\mathbf{x}\| + 0 \end{aligned}$

Lanczos automatically applies the polynomial "part" of *f*. (simple application of triangle inequality)

For <u>any</u> degree *k* polynomial *p*,

 $\|f(\mathbf{A})\mathbf{x} - \mathbf{Q}f(\mathbf{T})\mathbf{Q}^{\mathsf{T}}\mathbf{x}\| \leq \|f(\mathbf{A})\mathbf{x} - p(\mathbf{A})\mathbf{x}\| \\ + \|p(\mathbf{A})\mathbf{x} - \mathbf{Q}p(\mathbf{T})\mathbf{Q}^{\mathsf{T}}\mathbf{x}\| \\ + \|\mathbf{Q}p(\mathbf{T})\mathbf{Q}^{\mathsf{T}}\mathbf{x} - \mathbf{Q}f(\mathbf{T})\mathbf{Q}^{\mathsf{T}}\mathbf{x}\| \\ \leq \delta_{k}\|\mathbf{x}\| + 0 + \|p(\mathbf{T}) - f(\mathbf{T})\| \cdot \|\mathbf{Q}^{\mathsf{T}}\mathbf{x}\|$

Since $T = Q^T A Q$, $[\lambda_{\min}(T), \lambda_{\max}(T)] \subseteq [\lambda_{\min}(A), \lambda_{\max}(A)]$.

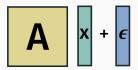
Lanczos automatically applies the polynomial "part" of *f*. (simple application of triangle inequality)

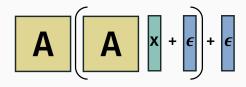
For <u>any</u> degree *k* polynomial *p*,

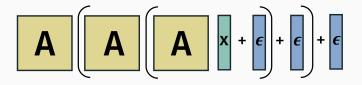
 $\begin{aligned} \|f(\mathbf{A})\mathbf{x} - \mathbf{Q}f(\mathbf{T})\mathbf{Q}^{\mathsf{T}}\mathbf{x}\| &\leq \|f(\mathbf{A})\mathbf{x} - p(\mathbf{A})\mathbf{x}\| \\ &+ \|p(\mathbf{A})\mathbf{x} - \mathbf{Q}p(\mathbf{T})\mathbf{Q}^{\mathsf{T}}\mathbf{x}\| \\ &+ \|\mathbf{Q}p(\mathbf{T})\mathbf{Q}^{\mathsf{T}}\mathbf{x} - \mathbf{Q}f(\mathbf{T})\mathbf{Q}^{\mathsf{T}}\mathbf{x}\| \\ &\leq \delta_{k}\|\mathbf{x}\| + 0 + \delta_{k}\|\mathbf{x}\|. \end{aligned}$

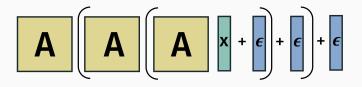
Since $T = Q^T A Q$, $[\lambda_{\min}(T), \lambda_{\max}(T)] \subseteq [\lambda_{\min}(A), \lambda_{\max}(A)]$.

POLYNOMIAL METHODS WITH NOISE







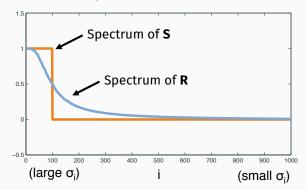


Natural model when Lanczos is combined with super-scalable randomized methods.

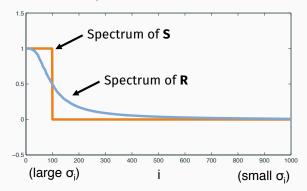
Powerful paradigm:

- · $A = B^{-1}$ for some matrix **B**.
- Apply B^{-1} to vectors very quickly and approximately.

Fastest algorithms for computing $S = \text{step}_{\lambda}(A^{T}A)$ actually compute $\text{step}_{1/2}(R)$ where $R = (A^{T}A + \lambda I)^{-1}A^{T}A$.

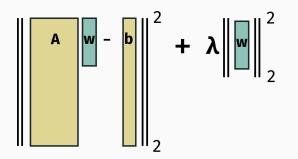


Fastest algorithms for computing $S = \text{step}_{\lambda}(A^{T}A)$ actually compute $\text{step}_{1/2}(R)$ where $R = (A^{T}A + \lambda I)^{-1}A^{T}A$.

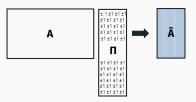


Most of the work is computing **Rx**.

 $\mathbf{R}\mathbf{x} = (\mathbf{A}^{\mathsf{T}}\mathbf{A} + \lambda \mathbf{I})^{-1}\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{x}$ is a convex optimization problem.



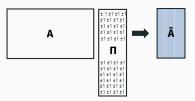
Lots of recent interest and new algorithms for convex problems on massive datasets (i.e. when **A** does not fit in memory).



Stochastic Iterative Methods

Randomized Sketching

Lots of recent interest and new algorithms for convex problems on massive datasets (i.e. when **A** does not fit in memory).



Stochastic Iterative Methods

Randomized Sketching

Runtimes scale roughly as $O(nnz(A) \cdot log(1/\epsilon))$. (for ϵ approximate solution)

LANCZOS AND RANDOMIZED METHODS

LANCZOS AND RANDOMIZED METHODS

- Faster eigenvector algorithms (in many regimes).
- Faster eigenvalue counting algorithms.
- Faster log-determinant and matrix norm algorithms.
- Faster balanced separator algorithms for graphs (via Laplacian matrix exponential).

We need to understand how the performance of our algorithms change when we replace every matrix-vector multiplication **Ax** with an approximate solution. We need to understand how the performance of our algorithms change when we replace every matrix-vector multiplication **Ax** with an approximate solution.

Are matrix function algorithms stable?

We need to understand how the performance of our algorithms change when we replace every matrix-vector multiplication **Ax** with an approximate solution.

Are matrix function algorithms stable?

Same stability questions were asked decades ago to understand <u>roundoff error</u> when computing **Ax**!

 $fl(x \circ y) = (1 \pm \epsilon)(x \circ y)$ for $\circ = +, -, \times, \div$

It is very easy to design iterative methods that converge very slowly when **Ax** is computed approximately. <u>But the Lanczos</u> method (with no modifications) continues to perform well.

It is very easy to design iterative methods that converge very slowly when **Ax** is computed approximately. <u>But the Lanczos</u> <u>method (with no modifications) continues to perform well.</u>

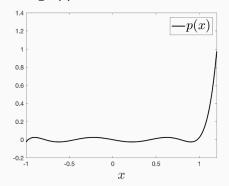
Can we explain this phenomena?

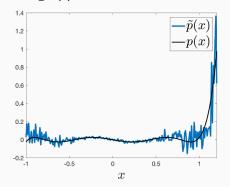
How can we apply polynomials in a stable way?

How can we apply polynomials in a stable way?

- 1. Want to compute $p(x) = c_0 + c_1 x + ... + c_k x^k$.
- We do not know x, but we have access to a function approxMult that for any input z outputs:

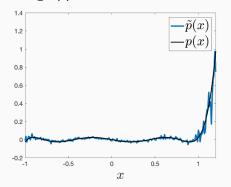
 $approxMult(z) = z \cdot x + \epsilon.$





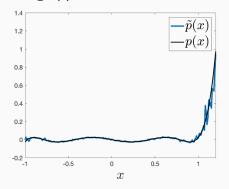
Directly compute and sum monomials.

 $x^{i} = approxMult(approxMult(...approxMult(1)...))$



Factor $p(x) = (x - .98)(x - .78) \dots (x - .43).$

 $t_1 = (\texttt{approxMult}(1) - .98), t_2 = \texttt{approxMult}(t_1) - .78 \cdot t_1, \dots$

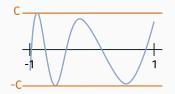


Use special recurrence relation for this polynomial.

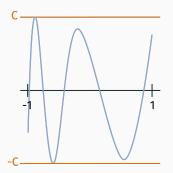
$$t_i = 2 \cdot \texttt{approxMult}(t_{i-1}) - t_{i-2}$$

Assume we want to approximate p(x) for $x \in [-1, 1]$. Assume $|p(x)| \le C$.

Assume we want to approximate p(x) for $x \in [-1, 1]$. Assume $|p(x)| \le C$.



Assume we want to approximate p(x) for $x \in [-1, 1]$. Assume $|p(x)| \le C$.



Claim

We can compute <u>any</u> p(x) to accuracy $\epsilon \cdot Ck^3$ if **approxMult** has accuracy ϵ .

 $(X + \epsilon_1)$

 $(X(X + \epsilon_1) + \epsilon_2)$

 $(X(X(X+\epsilon_1)+\epsilon_2)+\epsilon_3)$

$$x^{i} + x^{i-1}\epsilon_1 + x^{i-2}\epsilon_2 + \ldots + \epsilon_i.$$

$$x^{i} + x^{i-1}\epsilon_1 + x^{i-2}\epsilon_2 + \ldots + \epsilon_i.$$

Since $|x| \leq 1$, error on x^i bounded by $\epsilon_1 + \epsilon_2 + \ldots + \epsilon_3 \leq \epsilon i$.

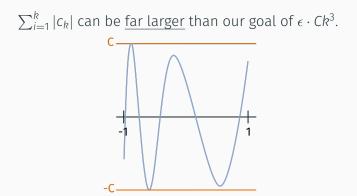
$$x^i + x^{i-1}\epsilon_1 + x^{i-2}\epsilon_2 + \ldots + \epsilon_i.$$

Since $|x| \leq 1$, error on x^i bounded by $\epsilon_1 + \epsilon_2 + \ldots + \epsilon_3 \leq \epsilon i$.

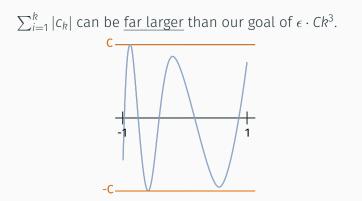
We can then compute $p(x) = c_0 + c_1 x + ... c_k x^k$ up to error:

$$C_1\epsilon + 2 \cdot C_2\epsilon + \ldots + k \cdot C_k\epsilon \leq \epsilon k \cdot \sum_{i=1}^k |C_k|$$

FIRST ATTEMPT

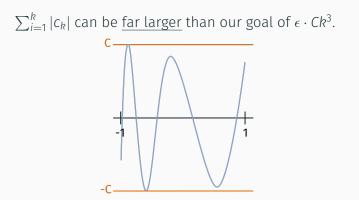


FIRST ATTEMPT

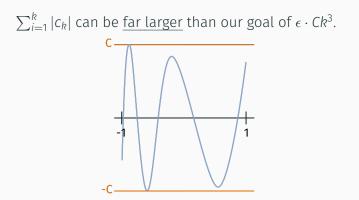


There are polynomials with C = 1 but $\sum_{i=1}^{k} |c_k| = O(2^k)$.

FIRST ATTEMPT



There are polynomials with C = 1 but $\sum_{i=1}^{k} |c_k| = O(2^k)$. Exponential instead of polynomial loss in k.



There are polynomials with C = 1 but $\sum_{i=1}^{k} |c_k| = O(2^k)$.

Exponential instead of polynomial loss in k.

Runtimes of randomized system solvers depended on $log(1/\epsilon)$.

What are those polynomials?

What are those polynomials?

Chebyshev polynomials of the first kind.

 $T_0(x) = 1$ 0.8 $T_1(x) = x$ 0.6 0.4 $T_2(x) = 2x^2 - 1$ 0.2 0 -0.2 -0.4 -0.6 -0.8 $T_k(x) = 2xT_{k-1}(x) - T_{k-2}(x)$ 0.8 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

1

"BAD" POLYNOMIALS

What are those polynomials?

Chebyshev polynomials of the first kind.

$T_0(x) =$	1
${ m T_1}(x) =$	x
$T_2(x) =$	$2x^2-1$
$T_3(x) =$	$4x^3 - 3x$
$T_4(x) =$	$8x^4 - 8x^2 + 1$
$T_5(x) =$	$16x^5 - 20x^3 + 5x$
${ m T}_6(x) =$	$32x^6 - 48x^4 + 18x^2 - 1$
$T_7(x) =$	$64x^7 - 112x^5 + 56x^3 - 7x$
$T_8(x) =$	$128x^8 - 256x^6 + 160x^4 - 32x^2 + 1 \\$
$T_9(x) =$	$256x^9 - 576x^7 + 432x^5 - 120x^3 + 9x$
$T_{10}(x) =$	$512x^{10} - 1280x^8 + 1120x^6 - 400x^4 + 50x^2 - 1$
${ m T}_{11}(x) \;\;=\;\;$	$1024x^{11} - 2816x^9 + 2816x^7 - 1232x^5 + 220x^3 - 11x$

"BAD" POLYNOMIALS

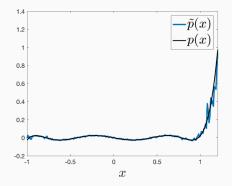
What are those polynomials?

Chebyshev polynomials of the first kind.

$\mathrm{T}_0(x) =$	1
${ m T_1}(x) =$	x
$\mathrm{T}_2(x) =$	$2x^2-1$
$T_3(x) =$	$4x^3 - 3x$
$T_4(x) =$	$8x^4 - 8x^2 + 1$
$T_5(x) =$	$16x^5 - 20x^3 + 5x$
${f T}_6(x) =$	$32x^6 - 48x^4 + 18x^2 - 1$
$T_7(x) =$	$64x^7 - 112x^5 + 56x^3 - 7x$
$T_8(x) =$	$128x^8 - 256x^6 + 160x^4 - 32x^2 + 1 \\$
$T_9(x) =$	$256x^9 - 576x^7 + 432x^5 - 120x^3 + 9x$
$T_{10}(x) =$	$512x^{10} - 1280x^8 + 1120x^6 - 400x^4 + 50x^2 - 1$
$T_{11}(x) =$	$1024x^{11} - 2816x^9 + 2816x^7 - 1232x^5 + 220x^3 - 11x$

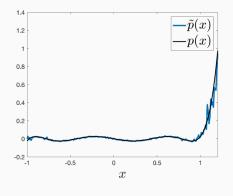
We can apply these in a stable way, using their recurrence! 42

"GOOD" POLYNOMIALS?



 $t_i = 2 \cdot \operatorname{approxMult}(t_{i-1}) - t_{i-2}$

"GOOD" POLYNOMIALS?



 $t_i = 2 \cdot \operatorname{approxMult}(t_{i-1}) - t_{i-2}$

Not hard to show that when computing $T_k(x)$ the error $\leq \epsilon k^2$.

Chebyshev polynomails are the <u>only</u> hard case.

Chebyshev polynomails are the <u>only</u> hard case.

Property: If a degree k polynomial p(x) is bounded by C on [-1, 1], it can be written as

$$p(x) = c_0 T_0(x) + c_1 T_1(x) + \dots c_k T_k(x)$$

where every $c_i \leq C$.

Chebyshev polynomails are the <u>only</u> hard case.

Property: If a degree k polynomial p(x) is bounded by C on [-1, 1], it can be written as

$$p(x) = c_0 T_0(x) + c_1 T_1(x) + \dots c_k T_k(x)$$

where every $c_i \leq C$.

Total error of sum p(x) is bounded by $C \cdot 1^2 \epsilon + C \cdot 2^2 \epsilon + \ldots + C \cdot k^2 \epsilon \leq Ck^3 \epsilon.$ Same arguments extends from scalar polynomials to matrix polynomials.

Step 1: Lanczos stably applies Chebyshev polynomials (building on results of Paige ['71, '76, '80]).

Step 1: Lanczos stably applies Chebyshev polynomials (building on results of Paige ['71, '76, '80]).

Step 2: By linearity, Lanczos stably applies polynomials bounded by *C*.

Step 1: Lanczos stably applies Chebyshev polynomials (building on results of Paige ['71, '76, '80]).

Step 2: By linearity, Lanczos stably applies polynomials bounded by *C*.

Step 3: If $|f(x)| \le C$, a good approximating polynomial has $|p(x)| \le O(C)$, so Lanczos is stable for bounded functions.

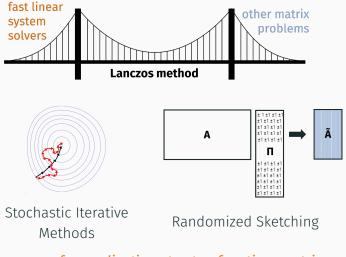
Step 1: Lanczos stably applies Chebyshev polynomials (building on results of Paige ['71, '76, '80]).

Step 2: By linearity, Lanczos stably applies polynomials bounded by *C*.

Step 3: If $|f(x)| \le C$, a good approximating polynomial has $|p(x)| \le O(C)$, so Lanczos is stable for bounded functions.

Use Lanczos without fear (on bounded functions)!

STABILITY OF LANCZOS



See paper for applications to step function, matrix exponential, top eigenvector, etc.

Answer to old question on Lanczos in finite precision:

Theorem (Lanczos is stable for any bounded function) If $|f(x)| \leq C$ for $x \in [\lambda_{\min}(A), \lambda_{\max}(A)]$, then if Lanczos is run for k iterations on a computer with $O(\log(nC\kappa))$ bits of precision, it outputs a vector **y** such that

$$\|f(\mathbf{A})\mathbf{x}-\mathbf{y}\| \leq 7k \cdot \delta_k \cdot \|\mathbf{x}\|$$

where δ_k is the error of the best degree k uniform approximation to f.

Answer to old question on Lanczos in finite precision:

Theorem (Lanczos is stable for any bounded function) If $|f(x)| \le C$ for $x \in [\lambda_{\min}(A), \lambda_{\max}(A)]$, then if Lanczos is run for k iterations on a computer with $O(\log(nC\kappa))$ bits of precision, it outputs a vector **y** such that

$$\|f(\mathbf{A})\mathbf{x}-\mathbf{y}\| \leq 7k \cdot \delta_k \cdot \|\mathbf{x}\|$$

where δ_k is the error of the best degree k uniform approximation to f.

• Compare to $||f(\mathbf{A})\mathbf{x} - \mathbf{y}|| \le 2 \cdot \delta_k \cdot ||\mathbf{x}||$ in exact arithmetic.

Answer to old question on Lanczos in finite precision:

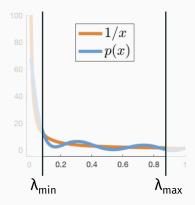
Theorem (Lanczos is stable for any bounded function) If $|f(x)| \leq C$ for $x \in [\lambda_{\min}(A), \lambda_{\max}(A)]$, then if Lanczos is run for k iterations on a computer with $O(\log(nC\kappa))$ bits of precision, it outputs a vector **y** such that

$$\|f(\mathbf{A})\mathbf{x}-\mathbf{y}\| \leq 7k \cdot \delta_k \cdot \|\mathbf{x}\|$$

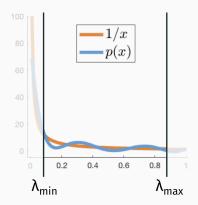
where δ_k is the error of the best degree k uniform approximation to f.

- Compare to $||f(\mathbf{A})\mathbf{x} \mathbf{y}|| \le 2 \cdot \delta_k \cdot ||\mathbf{x}||$ in exact arithmetic.
- Matches known bound for $A^{-1}x$ (Greenbaum, '89).

NEGATIVE RESULT FOR LINEAR SYSTEMS We proved earlier that Lanczos always matches the best uniform approximating polynomial for f(x):

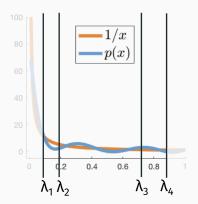


We proved earlier that Lanczos always matches the best uniform approximating polynomial for f(x):



For linear systems it actually does better than that.

We proved earlier that Lanczos always matches the best uniform approximating polynomial for f(x):



For linear systems it actually does better than that.

• The best **uniform** approximation to 1/x has degree $\sqrt{\lambda_{\max} / \lambda_{\min}} \cdot \log(1/\epsilon)$.

- The best **uniform** approximation to 1/x has degree $\sqrt{\lambda_{\max} / \lambda_{\min}} \cdot \log(1/\epsilon)$.
- 1/x can be represented exactly by a degree n 1 polynomial if **A** only has n eigenvalues.

- The best **uniform** approximation to 1/x has degree $\sqrt{\lambda_{\max} / \lambda_{\min}} \cdot \log(1/\epsilon)$.
- 1/x can be represented exactly by a degree n 1 polynomial if **A** only has n eigenvalues.

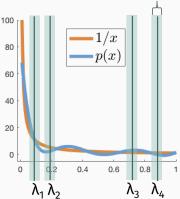
Claim: On exact arithmetic computers, linear systems can be solved in $O(nnz(A) \cdot n)$ time (i.e. *n* iterations of Lanczos)

- The best **uniform** approximation to 1/x has degree $\sqrt{\lambda_{\max} / \lambda_{\min}} \cdot \log(1/\epsilon)$.
- 1/x can be represented exactly by a degree n 1 polynomial if **A** only has n eigenvalues.

Claim: On exact arithmetic computers, linear systems can be solved in $O(nnz(A) \cdot n)$ time (i.e. *n* iterations of Lanczos)

Research question: To what extent does this bound hold true in finite precision? Are $n \log n$ iterations sufficient? n^2 ?

Greenbaum (1989): Finite precision Lanczos and conjugate gradient match the best polynomial approximating 1/x in **tiny** intervals around **A**'s eigenvalues: **η**



 η is on the order of machine precision!

Theorem (Stable polynomial lower bound.)

For any n, there is a matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ with condition number $\lambda_{\max} / \lambda_{\min}$ such that no k degree polynomial satisfies Greenbaum's condition with error $\leq 1/3$ for all

 $k \leq (\lambda_{\max} / \lambda_{\min})^{1/5}$

even when $\eta \leq \frac{1}{2^{n/\log \kappa}}$.

Theorem (Stable polynomial lower bound.)

For any n, there is a matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ with condition number $\lambda_{\max} / \lambda_{\min}$ such that no k degree polynomial satisfies Greenbaum's condition with error $\leq 1/3$ for all

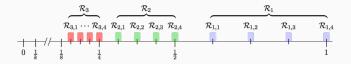
 $k \leq (\lambda_{\max} / \lambda_{\min})^{1/5}$

even when $\eta \leq \frac{1}{2^{n/\log \kappa}}$.

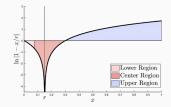
In other words, we cannot avoid polynomial dependence on condition number unless we have nearly *n* bits of precision.

LOWER BOUND

Construction: Eigenvalues roughly uniform on geometric scale.



Proof: Simple potential function argument.



- \cdot Can $(\lambda_{\max} / \lambda_{\min})^{1/5}$ be tightened to $(\lambda_{\max} / \lambda_{\min})^{1/2}$
- Does Greenbaum's estimate fully characterize Lanczos? Can the lower bound be extend to an actual runtime lower bound?
- How about for a more general class of algorithms? Any method accessing **A** only through noisy matrix-vector products?

THANK YOU!