# Single Pass Spectral Sparsification in Dynamic Streams

2014.11.10 M. Kapralov, Y.T. Lee, C. Musco, C. Musco, A. Sidford Massachusetts Institute of Technology

#### Overview

□ In  $\tilde{O}(n)$  space, maintain a graph compression from which we can always return a spectral sparsifier.

Main technique

 $\Box$  Use  $\ell_2$  heavy hitter sketches to sample by effective resistance in the streaming model.

#### Overview

□ In  $\tilde{O}(n)$  space, maintain a graph compression from which we can always return a spectral sparsifier.

#### Main technique

 $\Box$  Use  $\ell_2$  heavy hitter sketches to sample by effective resistance in the streaming model.

#### Outline



#### 2 Semi-Streaming Computational Model

3 Prior Work Review

- 4 Our Algorithm
  - Recover High Effective Resistance Edges
  - Sampling by Effective Resistance
  - Recursive Sparsification [Li, Miller, Peng '12]

#### Overview

#### 1 Graph Sparsification

2 Semi-Streaming Computational Model

3 Prior Work Review

4 Our Algorithm

- Recover High Effective Resistance Edges
- Sampling by Effective Resistance
- Recursive Sparsification [Li, Miller, Peng '12]

#### **General Idea**

- □ Approximate a dense graph with a much sparser graph.
- $\Box$  Reduce  $O(n^2)$  edges  $\rightarrow O(n \log n)$  edges



#### **General Idea**

- □ Approximate a dense graph with a much sparser graph.
- $\Box$  Reduce  $O(n^2)$  edges  $\rightarrow O(n \log n)$  edges



Cut Sparsification (Benczúr, Karger '96)

 $\Box$  Preserve *every* cut value to within  $(1 \pm \varepsilon)$  factor



Cut Sparsification (Benczúr, Karger '96)

 $\Box$  Preserve *every* cut value to within  $(1 \pm \varepsilon)$  factor



Cut Sparsification (Benczúr, Karger '96)

 $\Box$  Preserve *every* cut value to within  $(1 \pm \varepsilon)$  factor



Cut Sparsification (Benczúr, Karger '96)

 $\Box$  Preserve *every* cut value to within  $(1 \pm \varepsilon)$  factor



Cut Sparsification (Benczúr, Karger '96)

 $\Box$  Preserve *every* cut value to within  $(1 \pm \varepsilon)$  factor



Cut Sparsification (Benczúr, Karger '96)

 $\Box$  Preserve *every* cut value to within  $(1 \pm \varepsilon)$  factor



Cut Sparsification (Benczúr, Karger '96)

 $\Box$  Preserve *every* cut value to within  $(1 \pm \varepsilon)$  factor



Cut Sparsification (Benczúr, Karger '96)

 $\Box$  Preserve *every* cut value to within  $(1 \pm \varepsilon)$  factor



Cut Sparsification (Benczúr, Karger '96)

 $\Box$  Preserve *every* cut value to within  $(1 \pm \varepsilon)$  factor



- □ Let  $\mathbf{B} \in \mathbb{R}^{\binom{n}{2} \times n}$  be the vertex-edge incidence matrix for a graph *G*.
- $\Box$  Let  $\mathbf{x} \in \{0,1\}^n$  be an "indicator vector" for some cut.



$$\begin{array}{c|ccccc} v_1 & v_2 & v_3 & v_4 \\ e_{12} & \begin{bmatrix} 1 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ e_{13} & \begin{bmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ e_{23} & \begin{bmatrix} 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ e_{34} & \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix} \end{array}$$

- □ Let  $\mathbf{B} \in \mathbb{R}^{\binom{n}{2} \times n}$  be the vertex-edge incidence matrix for a graph *G*.
- $\Box$  Let  $\mathbf{x} \in \{0,1\}^n$  be an "indicator vector" for some cut.



- □ Let  $\mathbf{B} \in \mathbb{R}^{\binom{n}{2} \times n}$  be the vertex-edge incidence matrix for a graph *G*.
- $\Box$  Let  $\mathbf{x} \in \{0,1\}^n$  be an "indicator vector" for some cut.



- □ Let  $\mathbf{B} \in \mathbb{R}^{\binom{n}{2} \times n}$  be the vertex-edge incidence matrix for a graph *G*.
- $\Box$  Let  $\mathbf{x} \in \{0,1\}^n$  be an "indicator vector" for some cut.



$$\begin{array}{c|ccccc} v_1 & v_2 & v_3 & v_4 \\ e_{12} & \begin{bmatrix} 1 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ e_{13} & \begin{bmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ e_{23} & 0 & 1 & -1 & 0 \\ e_{24} & 0 & 1 & 0 & -1 \\ e_{34} & \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix} \end{array}$$

- □ Let  $\mathbf{B} \in \mathbb{R}^{\binom{n}{2} \times n}$  be the vertex-edge incidence matrix for a graph *G*.
- $\Box$  Let  $\mathbf{x} \in \{0,1\}^n$  be an "indicator vector" for some cut.



$$\begin{array}{c|ccccc} v_1 & v_2 & v_3 & v_4 \\ e_{12} & \begin{bmatrix} 1 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ e_{13} & \begin{bmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ e_{23} & \begin{bmatrix} 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ e_{34} & \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix} \end{array}$$

- □ Let  $\mathbf{B} \in \mathbb{R}^{\binom{n}{2} \times n}$  be the vertex-edge incidence matrix for a graph *G*.
- $\Box$  Let  $\mathbf{x} \in \{0,1\}^n$  be an "indicator vector" for some cut.



$$\begin{array}{c|cccccc} v_1 & v_2 & v_3 & v_4 \\ e_{12} & \begin{bmatrix} 1 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ e_{13} & \begin{bmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ e_{23} & \begin{bmatrix} 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ e_{34} & \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix} \end{array}$$

- □ Let  $\mathbf{B} \in \mathbb{R}^{\binom{n}{2} \times n}$  be the vertex-edge incidence matrix for a graph *G*.
- $\square$  Let  $\mathbf{x} \in \{0,1\}^n$  be an "indicator vector" for some cut.



$$\begin{array}{c|cccccc} v_1 & v_2 & v_3 & v_4 \\ e_{12} & \begin{bmatrix} 1 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ e_{13} & \begin{bmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ e_{23} & \begin{bmatrix} 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ e_{34} & \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \end{array}$$

- □ Let  $\mathbf{B} \in \mathbb{R}^{\binom{n}{2} \times n}$  be the vertex-edge incidence matrix for a graph *G*.
- $\Box$  Let  $\mathbf{x} \in \{0,1\}^n$  be an "indicator vector" for some cut.



$$\begin{array}{c|ccccc} v_1 & v_2 & v_3 & v_4 \\ e_{12} & \begin{bmatrix} 1 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ e_{13} & \begin{bmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ e_{23} & \begin{bmatrix} 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ e_{34} & \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix} \end{array}$$

Cut Sparsification (Benczúr, Karger '96)

□ Let  $\mathbf{B} \in \mathbb{R}^{\binom{n}{2} \times n}$  be the vertex-edge incidence matrix for a graph *G*.

٠..



Cut Sparsification (Benczúr, Karger '96)

□ Let  $\mathbf{B} \in \mathbb{R}^{\binom{n}{2} \times n}$  be the vertex-edge incidence matrix for a graph *G*.

٠..



Cut Sparsification (Benczúr, Karger '96)

□ Let  $\mathbf{B} \in \mathbb{R}^{\binom{n}{2} \times n}$  be the vertex-edge incidence matrix for a graph *G*.

٠..



Cut Sparsification (Benczúr, Karger '96)

□ Let  $\mathbf{B} \in \mathbb{R}^{\binom{n}{2} \times n}$  be the vertex-edge incidence matrix for a graph *G*.

٠..



Cut Sparsification (Benczúr, Karger '96)

□ Let  $\mathbf{B} \in \mathbb{R}^{\binom{n}{2} \times n}$  be the vertex-edge incidence matrix for a graph *G*.

٠..



- □ Let  $\mathbf{B} \in \mathbb{R}^{\binom{n}{2} \times n}$  be the vertex-edge incidence matrix for a graph *G*.
- $\Box$  Let  $\mathbf{x} \in \{0,1\}^n$  be an "indicator vector" for some cut.



$$\begin{array}{cccccc} v_1 & v_2 & v_3 & v_4 \\ e_{12} & \begin{bmatrix} 1 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ e_{13} & \begin{bmatrix} 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ e_{34} & \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \times \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}$$

- □ Let  $\mathbf{B} \in \mathbb{R}^{\binom{n}{2} \times n}$  be the vertex-edge incidence matrix for a graph *G*.
- $\Box$  Let  $\mathbf{x} \in \{0,1\}^n$  be an "indicator vector" for some cut.



- □ Let  $\mathbf{B} \in \mathbb{R}^{\binom{n}{2} \times n}$  be the vertex-edge incidence matrix for a graph *G*.
- $\Box$  Let  $\mathbf{x} \in \{0,1\}^n$  be an "indicator vector" for some cut.



- □ Let  $\mathbf{B} \in \mathbb{R}^{\binom{n}{2} \times n}$  be the vertex-edge incidence matrix for a graph *G*.
- $\Box$  Let  $\mathbf{x} \in \{0,1\}^n$  be an "indicator vector" for some cut.



$$\begin{array}{ccccccc} v_1 & v_2 & v_3 & v_4 \\ e_{12} & \begin{bmatrix} 1 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ e_{23} & \begin{bmatrix} 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 1 \\ 0 \end{bmatrix} \\ \mathbf{B}$$

- □ Let  $\mathbf{B} \in \mathbb{R}^{\binom{n}{2} \times n}$  be the vertex-edge incidence matrix for a graph *G*.
- $\Box$  Let  $\mathbf{x} \in \{0,1\}^n$  be an "indicator vector" for some cut.



Cut Sparsification (Benczúr, Karger '96) So,  $\|\mathbf{Bx}\|_2^2 = \text{cut value}$ .

# $\begin{aligned} & \mbox{Goal} \\ & \mbox{Find some } \tilde{\mathbf{B}} \mbox{ such that, for all } \mathbf{x} \in \{0,1\}^n, \\ & (1-\varepsilon) \|\mathbf{B}\mathbf{x}\|_2^2 \leq \|\tilde{\mathbf{B}}\mathbf{x}\|_2^2 \leq (1+\varepsilon) \|\mathbf{B}\mathbf{x}\|_2^2 \end{aligned}$

 $\Box \mathbf{x}^{\top} \mathbf{\tilde{B}}^{\top} \mathbf{\tilde{B}} \mathbf{x} \approx \mathbf{x}^{\top} \mathbf{B}^{\top} \mathbf{B} \mathbf{x}.$  $\Box \mathbf{L} = \mathbf{B}^{\top} \mathbf{B} \text{ is the graph Laplacian.}$ 

Cut Sparsification (Benczúr, Karger '96) So,  $\|\mathbf{Bx}\|_2^2 = \text{cut value}$ .

# $\begin{aligned} & \mbox{Goal} \\ & \mbox{Find some } \tilde{\mathbf{B}} \mbox{ such that, for all } \mathbf{x} \in \{0,1\}^n, \\ & (1-\varepsilon) \|\mathbf{B}\mathbf{x}\|_2^2 \leq \|\tilde{\mathbf{B}}\mathbf{x}\|_2^2 \leq (1+\varepsilon) \|\mathbf{B}\mathbf{x}\|_2^2 \end{aligned}$

 $\Box \mathbf{x}^{\mathsf{T}} \widetilde{\mathbf{B}}^{\mathsf{T}} \widetilde{\mathbf{B}} \mathbf{x} \approx \mathbf{x}^{\mathsf{T}} \mathbf{B}^{\mathsf{T}} \mathbf{B} \mathbf{x}.$  $\Box \mathbf{L} = \mathbf{B}^{\mathsf{T}} \mathbf{B} \text{ is the graph Laplacian.}$
Cut Sparsification (Benczúr, Karger '96) So,  $\|\mathbf{Bx}\|_2^2 = \text{cut value}$ .

# GoalFind some $\tilde{\mathbf{B}}$ such that, for all $\mathbf{x} \in \{0,1\}^n$ , $(1-\varepsilon) \|\mathbf{B}\mathbf{x}\|_2^2 \le \|\tilde{\mathbf{B}}\mathbf{x}\|_2^2 \le (1+\varepsilon) \|\mathbf{B}\mathbf{x}\|_2^2$

 $\Box \mathbf{x}^{\top} \mathbf{\tilde{B}}^{\top} \mathbf{\tilde{B}} \mathbf{x} \approx \mathbf{x}^{\top} \mathbf{B}^{\top} \mathbf{B} \mathbf{x}.$  $\Box \mathbf{L} = \mathbf{B}^{\top} \mathbf{B} \text{ is the graph Laplacian.}$ 

#### Spectral Sparsification (Spielman, Teng '04)

# Goal Find some $\tilde{\mathbf{B}}$ such that, for all $\mathbf{x} \in \{0, 1\}^n \mathbb{R}^n$ , $(1 - \varepsilon) \|\mathbf{B}\mathbf{x}\|_2^2 \le \|\tilde{\mathbf{B}}\mathbf{x}\|_2^2 \le (1 + \varepsilon) \|\mathbf{B}\mathbf{x}\|_2^2$

**Applications:** Anything cut sparsifiers can do, Laplacian system solves, computing effective resistances, spectral clustering, calculating random walk properties, etc.

#### Spectral Sparsification (Spielman, Teng '04)

## Goal Find some $\tilde{\mathbf{B}}$ such that, for all $\mathbf{x} \in \{0, 1\}^n \mathbb{R}^n$ , $(1 - \varepsilon) \|\mathbf{B}\mathbf{x}\|_2^2 \le \|\tilde{\mathbf{B}}\mathbf{x}\|_2^2 \le (1 + \varepsilon) \|\mathbf{B}\mathbf{x}\|_2^2$

**Applications:** Anything cut sparsifiers can do, Laplacian system solves, computing effective resistances, spectral clustering, calculating random walk properties, etc.

#### All Equivalent:

## $\|\tilde{\mathbf{B}}\mathbf{x}\|_2^2 \approx_{\epsilon} \|\mathbf{B}\mathbf{x}\|_2^2 \qquad \mathbf{x}^\top \tilde{\mathbf{L}}\mathbf{x} \approx_{\epsilon} \mathbf{x}^\top \mathbf{L}\mathbf{x} \qquad \mathbf{x}^\top \tilde{\mathbf{L}}^{-1}\mathbf{x} \approx_{\epsilon} \mathbf{x}^\top \mathbf{L}^{-1}\mathbf{x}$

#### All Equivalent:

 $\|\mathbf{\tilde{B}}\mathbf{x}\|_2^2 \approx_{\epsilon} \|\mathbf{B}\mathbf{x}\|_2^2 \qquad \mathbf{x}^\top \mathbf{\tilde{L}}\mathbf{x} \approx_{\epsilon} \mathbf{x}^\top \mathbf{L}\mathbf{x} \qquad \mathbf{x}^\top \mathbf{\tilde{L}}^{-1}\mathbf{x} \approx_{\epsilon} \mathbf{x}^\top \mathbf{L}^{-1}\mathbf{x}$ 

#### All Equivalent:

 $\|\mathbf{\tilde{B}}\mathbf{x}\|_2^2 \approx_{\epsilon} \|\mathbf{B}\mathbf{x}\|_2^2 \qquad \mathbf{x}^\top \mathbf{\tilde{L}}\mathbf{x} \approx_{\epsilon} \mathbf{x}^\top \mathbf{L}\mathbf{x} \qquad \mathbf{x}^\top \mathbf{\tilde{L}}^{-1}\mathbf{x} \approx_{\epsilon} \mathbf{x}^\top \mathbf{L}^{-1}\mathbf{x}$ 

#### All Equivalent:

 $\|\mathbf{\tilde{B}}\mathbf{x}\|_2^2 \approx_{\epsilon} \|\mathbf{B}\mathbf{x}\|_2^2 \qquad \mathbf{x}^\top \mathbf{\tilde{L}}\mathbf{x} \approx_{\epsilon} \mathbf{x}^\top \mathbf{L}\mathbf{x} \qquad \mathbf{x}^\top \mathbf{\tilde{L}}^{-1}\mathbf{x} \approx_{\epsilon} \mathbf{x}^\top \mathbf{L}^{-1}\mathbf{x}$ 

#### All Equivalent:

 $\|\mathbf{\tilde{B}}\mathbf{x}\|_2^2 \approx_{\epsilon} \|\mathbf{B}\mathbf{x}\|_2^2 \qquad \mathbf{x}^\top \mathbf{\tilde{L}}\mathbf{x} \approx_{\epsilon} \mathbf{x}^\top \mathbf{L}\mathbf{x} \qquad \mathbf{x}^\top \mathbf{\tilde{L}}^{-1}\mathbf{x} \approx_{\epsilon} \mathbf{x}^\top \mathbf{L}^{-1}\mathbf{x}$ 

#### How are sparsifiers constructed?



#### How are sparsifiers constructed?

Sampling probabilities:

- Connectivity for cut sparsifiers [Benczúr, Karger '96], [Fung, Hariharan, Harvey, Panigrahi '11].
- Effective resistances (i.e statistical leverage scores) for spectral sparsifiers [Spielman, Srivastava '08].

#### How are sparsifiers constructed?

Sampling probabilities:

- Connectivity for cut sparsifiers [Benczúr, Karger '96], [Fung, Hariharan, Harvey, Panigrahi '11].
- Effective resistances (i.e statistical leverage scores) for spectral sparsifiers [Spielman, Srivastava '08].

#### How are sparsifiers constructed?

Sampling probabilities:

- Connectivity for cut sparsifiers [Benczúr, Karger '96], [Fung, Hariharan, Harvey, Panigrahi '11].
- Effective resistances (i.e statistical leverage scores) for spectral sparsifiers [Spielman, Srivastava '08].

#### How are sparsifiers constructed?

Sampling probabilities:

- Connectivity for cut sparsifiers [Benczúr, Karger '96], [Fung, Hariharan, Harvey, Panigrahi '11].
- Effective resistances (i.e statistical leverage scores) for spectral sparsifiers [Spielman, Srivastava '08].

#### How are sparsifiers constructed?

Sampling probabilities:

- Connectivity for cut sparsifiers [Benczúr, Karger '96], [Fung, Hariharan, Harvey, Panigrahi '11].
- Effective resistances (i.e statistical leverage scores) for spectral sparsifiers [Spielman, Srivastava '08].

Actually oversample: by (effective resistance) ×  $O(\log n/\epsilon^2)$ . Gives sparsifiers with  $O(n \log n/\epsilon^2)$  edges – reducing from  $O(n^2)$ .

- □ Makes sense to compress a graph, but what if we cannot afford to store it in the first place?
- □ Is it possible to "sketch" a graph in small space by maintaining a sparsifier or some other representation?



#### 2 Semi-Streaming Computational Model

3 Prior Work Review

4 Our Algorithm

- Recover High Effective Resistance Edges
- Sampling by Effective Resistance
- Recursive Sparsification [Li, Miller, Peng '12]

- □ Space allowance  $n \log^{c}(n)$ .
- Receive data via edge updates.
- Minimum spanning tree, maximal matching, graph connectivity, etc.

- □ Space allowance  $n \log^{c}(n)$ .
- Receive data via edge updates.
- Minimum spanning tree, maximal matching, graph connectivity, etc.



- □ Space allowance  $n \log^{c}(n)$ .
- Receive data via edge updates.
- Minimum spanning tree, maximal matching, graph connectivity, etc.



- □ Space allowance  $n \log^{c}(n)$ .
- Receive data via edge updates.
- Minimum spanning tree, maximal matching, graph connectivity, etc.



- $\Box$  Space allowance  $n \log^{c}(n)$ .
- Receive data via edge updates.
- Minimum spanning tree, maximal matching, graph connectivity, etc.



- □ Space allowance  $n \log^{c}(n)$ .
- Receive data via edge updates.
- Minimum spanning tree, maximal matching, graph connectivity, etc.



- □ Space allowance  $n \log^{c}(n)$ .
- Receive data via edge updates.
- Minimum spanning tree, maximal matching, graph connectivity, etc.



- □ Space allowance  $n \log^{c}(n)$ .
- Receive data via edge updates.
- Minimum spanning tree, maximal matching, graph connectivity, etc.



- □ Space allowance  $n \log^{c}(n)$ .
- Receive data via edge updates.
- Minimum spanning tree, maximal matching, graph connectivity, etc.



- □ Space allowance  $n \log^{c}(n)$ .
- Receive data via edge updates.
- Minimum spanning tree, maximal matching, graph connectivity, etc.



- $\Box$  Space allowance  $n \log^{c}(n)$ .
- □ Receive data via edge updates.
- Minimum spanning tree, maximal matching, graph connectivity, etc.



### Overview

#### 1 Graph Sparsification

#### 2 Semi-Streaming Computational Model

#### 3 Prior Work Review

#### 4 Our Algorithm

- Recover High Effective Resistance Edges
- Sampling by Effective Resistance
- Recursive Sparsification [Li, Miller, Peng '12]
□ [Ahn, Guha '09], [Kelner, Levin '11]: Cut and spectral sparsifiers in *insertion only* streams.

- [Ahn, Guha, McGregor '12a]: Introduced linear sketching for graphs. This breakthrough work is the first to handle edge deletions for graph problems. Connectivity, MST, multi-pass sparsifiers.
  - □ [Ahn, Guha, McGregor '12b], [Goel, Kapralov, Post '12]: Extend techniques to get single pass cut sparsifiers.
- □ [Ahn, Guha, McGregor '13]: Dynamic spectral sparsifiers, but  $O(n^{5/3})$  space.
- □ **[Kapralov, Woodruff '14]**: Dynamic spectral sparsifiers, but multi-pass.

- □ [Ahn, Guha '09], [Kelner, Levin '11]: Cut and spectral sparsifiers in *insertion only* streams.
- □ [Ahn, Guha, McGregor '12a]: Introduced linear sketching for graphs. This breakthrough work is the first to handle edge deletions for graph problems. Connectivity, MST, multi-pass sparsifiers.
  - □ [Ahn, Guha, McGregor '12b], [Goel, Kapralov, Post '12]: Extend techniques to get single pass cut sparsifiers.
- □ [Ahn, Guha, McGregor '13]: Dynamic spectral sparsifiers, but  $O(n^{5/3})$  space.
- □ **[Kapralov, Woodruff '14]**: Dynamic spectral sparsifiers, but multi-pass.

- □ [Ahn, Guha '09], [Kelner, Levin '11]: Cut and spectral sparsifiers in *insertion only* streams.
- [Ahn, Guha, McGregor '12a]: Introduced linear sketching for graphs. This breakthrough work is the first to handle edge deletions for graph problems. Connectivity, MST, multi-pass sparsifiers.
  - [Ahn, Guha, McGregor '12b], [Goel, Kapralov, Post '12]: Extend techniques to get single pass cut sparsifiers.
- □ [Ahn, Guha, McGregor '13]: Dynamic spectral sparsifiers, but  $O(n^{5/3})$  space.
- □ **[Kapralov, Woodruff '14]**: Dynamic spectral sparsifiers, but multi-pass.

- □ [Ahn, Guha '09], [Kelner, Levin '11]: Cut and spectral sparsifiers in *insertion only* streams.
- [Ahn, Guha, McGregor '12a]: Introduced linear sketching for graphs. This breakthrough work is the first to handle edge deletions for graph problems. Connectivity, MST, multi-pass sparsifiers.
  - [Ahn, Guha, McGregor '12b], [Goel, Kapralov, Post '12]: Extend techniques to get single pass cut sparsifiers.
- □ [Ahn, Guha, McGregor '13]: Dynamic spectral sparsifiers, but  $O(n^{5/3})$  space.
- □ **[Kapralov, Woodruff '14]**: Dynamic spectral sparsifiers, but multi-pass.

- □ [Ahn, Guha '09], [Kelner, Levin '11]: Cut and spectral sparsifiers in *insertion only* streams.
- [Ahn, Guha, McGregor '12a]: Introduced linear sketching for graphs. This breakthrough work is the first to handle edge deletions for graph problems. Connectivity, MST, multi-pass sparsifiers.
  - [Ahn, Guha, McGregor '12b], [Goel, Kapralov, Post '12]: Extend techniques to get single pass cut sparsifiers.
- □ [Ahn, Guha, McGregor '13]: Dynamic spectral sparsifiers, but  $O(n^{5/3})$  space.
- □ [Kapralov, Woodruff '14]: Dynamic spectral sparsifiers, but multi-pass.

- □ [Ahn, Guha '09], [Kelner, Levin '11]: Cut and spectral sparsifiers in *insertion only* streams.
- [Ahn, Guha, McGregor '12a]: Introduced linear sketching for graphs. This breakthrough work is the first to handle edge deletions for graph problems. Connectivity, MST, multi-pass sparsifiers.
  - [Ahn, Guha, McGregor '12b], [Goel, Kapralov, Post '12]: Extend techniques to get single pass cut sparsifiers.
- □ [Ahn, Guha, McGregor '13]: Dynamic spectral sparsifiers, but  $O(n^{5/3})$  space.
- □ [Kapralov, Woodruff '14]: Dynamic spectral sparsifiers, but multi-pass.

### Overview

### 1 Graph Sparsification

2 Semi-Streaming Computational Model

#### 3 Prior Work Review

#### 4 Our Algorithm

- Recover High Effective Resistance Edges
- Sampling by Effective Resistance
- Recursive Sparsification [Li, Miller, Peng '12]







Sketch:





#### **How do we get around this issue?** Take a cue from standard streaming algorithms:

- □ Linear Sketching!
- Does *not* depend on insertion/deletion order.

#### How do we get around this issue?

- □ Linear Sketching!
- Does *not* depend on insertion/deletion order.



#### How do we get around this issue?

- Linear Sketching!
- Does *not* depend on insertion/deletion order.



#### How do we get around this issue?

- Linear Sketching!
- Does *not* depend on insertion/deletion order.



#### How do we get around this issue?

- Linear Sketching!
- Does *not* depend on insertion/deletion order.



#### How do we get around this issue?

- Linear Sketching!
- Does *not* depend on insertion/deletion order.



#### How do we get around this issue?

- Linear Sketching!
- Does *not* depend on insertion/deletion order.



#### How do we get around this issue?

- Linear Sketching!
- Does *not* depend on insertion/deletion order.



#### How do we get around this issue?

- Linear Sketching!
- Does *not* depend on insertion/deletion order.



#### How do we get around this issue?

- Linear Sketching!
- Does *not* depend on insertion/deletion order.



#### How do we get around this issue?

- Linear Sketching!
- Does *not* depend on insertion/deletion order.



#### How do we get around this issue?

- Linear Sketching!
- Does *not* depend on insertion/deletion order.



#### How do we get around this issue?

- □ Linear Sketching!
- Does *not* depend on insertion/deletion order.



# Algorithm Overview

- **1** Assume we have a coarse sparsifier i.e.  $(1 \pm \frac{1}{2})$  approximation  $\tilde{\mathbf{B}}^{\top}\tilde{\mathbf{B}} = \tilde{\mathbf{L}}$ .
- Show procedure for recovering high effective resistance edges
- 3 Use black-box to sample edges by effective resistance

# Algorithm Overview

- **1** Assume we have a coarse sparsifier i.e.  $(1 \pm \frac{1}{2})$  approximation  $\tilde{\mathbf{B}}^{\top}\tilde{\mathbf{B}} = \tilde{\mathbf{L}}$ .
- Show procedure for recovering high effective resistance edges
- 3 Use black-box to sample edges by effective resistance

- **1** Assume we have a coarse sparsifier i.e.  $(1 \pm \frac{1}{2})$  approximation  $\tilde{\mathbf{B}}^{\top}\tilde{\mathbf{B}} = \tilde{\mathbf{L}}$ .
- 2 Show procedure for recovering high effective resistance edges
- 3 Use black-box to sample edges by effective resistance

- **1** Assume we have a coarse sparsifier i.e.  $(1 \pm \frac{1}{2})$  approximation  $\tilde{\mathbf{B}}^{\top}\tilde{\mathbf{B}} = \tilde{\mathbf{L}}$ .
- 2 Show procedure for recovering high effective resistance edges
- 3 Use black-box to sample edges by effective resistance

### Overview

### 1 Graph Sparsification

- 2 Semi-Streaming Computational Model
- 3 Prior Work Review

# 4 Our Algorithm

- Recover High Effective Resistance Edges
- Sampling by Effective Resistance
- Recursive Sparsification [Li, Miller, Peng '12]

- □ Distinct elements
- Vector norms
- □ Entropy estimation
- □ Really any streaming problem...

- Distinct elements
- Vector norms
- Entropy estimation
- □ Really any streaming problem...

- Distinct elements
- Vector norms
- Entropy estimation
- □ Really any streaming problem...

- Distinct elements
- Vector norms
- Entropy estimation
- □ Really any streaming problem...

- Distinct elements
- Vector norms
- Entropy estimation
- □ Really any streaming problem...

# Graph Sketching

#### **Analyzing Graph Structure via Linear Measurements,** Ahn, Guha, McGregor 2012

□ Use a sparse recovery sketch.

#### Analyzing Graph Structure via Linear Measurements, Ahn, Guha, McGregor 2012

□ Use a sparse recovery sketch.


Analyzing Graph Structure via Linear Measurements, Ahn, Guha, McGregor 2012

□ Use a sparse recovery sketch.



Analyzing Graph Structure via Linear Measurements, Ahn, Guha, McGregor 2012

□ Use a sparse recovery sketch.



#### **Prior Work:**

- $\hfill\square$  Apply sparse recovery sketches to the columns of B.
- □ Recover *cut information*  $\rightarrow$  *k*-connectivity, cut sparsifiers!

Our Approach:

#### **Prior Work:**

- $\hfill\square$  Apply sparse recovery sketches to the columns of B.
- $\Box$  Recover *cut information*  $\rightarrow$  *k*-connectivity, cut sparsifiers!

#### **Our Approach:**

#### **Prior Work:**

- $\hfill\square$  Apply sparse recovery sketches to the columns of B.
- $\square$  Recover *cut information*  $\rightarrow$  *k*-connectivity, cut sparsifiers!

#### Our Approach:



**Prior Work:** 

- $\hfill\square$  Apply sparse recovery sketches to the columns of B.
- $\square$  Recover *cut information*  $\rightarrow$  *k*-connectivity, cut sparsifiers!

#### **Our Approach:**



**Prior Work:** 

- $\hfill\square$  Apply sparse recovery sketches to the columns of B.
- $\square$  Recover *cut information*  $\rightarrow$  *k*-connectivity, cut sparsifiers!

#### **Our Approach:**



#### **Prior Work:**

- $\hfill\square$  Apply sparse recovery sketches to the columns of B.
- $\square$  Recover *cut information*  $\rightarrow$  *k*-connectivity, cut sparsifiers!

#### Our Approach:



**Prior Work:** 

- $\hfill\square$  Apply sparse recovery sketches to the columns of B.
- $\square$  Recover *cut information*  $\rightarrow$  *k*-connectivity, cut sparsifiers!

#### **Our Approach:**



**Prior Work:** 

- $\hfill\square$  Apply sparse recovery sketches to the columns of B.
- $\square$  Recover *cut information*  $\rightarrow$  *k*-connectivity, cut sparsifiers!

#### **Our Approach:**



We are still going to sample by effective resistance.

- □ Treat graph as resistor network, each edge has resistance 1.
- □ Flow 1 unit of current from node *i* to *j* and measure voltage drop between the nodes.

We are still going to sample by effective resistance.

- □ Treat graph as resistor network, each edge has resistance 1.
- □ Flow 1 unit of current from node *i* to *j* and measure voltage drop between the nodes.



We are still going to sample by effective resistance.

- □ Treat graph as resistor network, each edge has resistance 1.
- □ Flow 1 unit of current from node *i* to *j* and measure voltage drop between the nodes.



Using standard V = IR equations:



Using standard V = IR equations:



Using standard V = IR equations:



Effective resistance of edge *e* is  $\tau_e = \mathbf{x}_e^\top \mathbf{L}^{-1} \mathbf{x}_e$ .

Alternatively,  $au_e$  is the  $e^{\iota \eta}$  entry in the vector:

 $\mathsf{BL}^{-1}\mathsf{x}_e$ 

AND

$$\tau_e = \mathbf{x}_e^\top \mathbf{L}^{-1} \mathbf{x}_e = \mathbf{x}_e^\top (\mathbf{L}^{-1})^\top \mathbf{B}^\top \mathbf{B} \mathbf{L}^{-1} \mathbf{x}_e = \|\mathbf{B} \mathbf{L}^{-1} \mathbf{x}_e\|_2^2$$

Effective resistance of edge e is  $\tau_e = \mathbf{x}_e^{\top} \mathbf{L}^{-1} \mathbf{x}_e$ . Alternatively,  $\tau_e$  is the  $e^{\text{th}}$  entry in the vector:

 $\mathbf{BL}^{-1}\mathbf{x}_e$ 

AND

$$\tau_e = \mathbf{x}_e^\top \mathbf{L}^{-1} \mathbf{x}_e = \mathbf{x}_e^\top (\mathbf{L}^{-1})^\top \mathbf{B}^\top \mathbf{B} \mathbf{L}^{-1} \mathbf{x}_e = \|\mathbf{B} \mathbf{L}^{-1} \mathbf{x}_e\|_2^2$$

Effective resistance of edge e is  $\tau_e = \mathbf{x}_e^{\top} \mathbf{L}^{-1} \mathbf{x}_e$ . Alternatively,  $\tau_e$  is the  $e^{\text{th}}$  entry in the vector:

 $\mathbf{BL}^{-1}\mathbf{x}_e$ 

AND

$$\tau_e = \mathbf{x}_e^\top \mathbf{L}^{-1} \mathbf{x}_e = \mathbf{x}_e^\top (\mathbf{L}^{-1})^\top \mathbf{B}^\top \mathbf{B} \mathbf{L}^{-1} \mathbf{x}_e = \|\mathbf{B} \mathbf{L}^{-1} \mathbf{x}_e\|_2^2$$

Effective Resistance:





Effective Resistance:





Effective Resistance:





Effective Resistance:














#### Sparse recovery specifics:

 $\mathbf{BL}^{-1}\mathbf{x}_{e}$ 

### $\ell_2$ Heavy Hitters [GLPS10]:

- □ Sketch poly(n) vector in polylog(n) space.
- □ Extract any element who's square is a  $O(1/\log n)$  fraction of the vector's squared norm.

Sparse recovery specifics:

 $\mathbf{B}\mathbf{L}^{-1}\mathbf{x}_{e}$ 

### $\ell_2$ Heavy Hitters [GLPS10]:

- □ Sketch poly(n) vector in polylog(n) space.
- □ Extract any element who's square is a  $O(1/\log n)$  fraction of the vector's squared norm.

#### Putting it all together:

 $\mathbf{B}\mathbf{L}^{-1}\mathbf{x}_{e}$ 

- **1** Sketch  $(\Pi_{\text{heavy hitters}})\mathbf{B}$  in  $n \log^{c} n$  space.
- 2 Compute  $(\Pi_{heavy hitters})B\tilde{L}^{-1}$
- **3** For every possible edge e, compute  $(\Pi_{\text{heavy hitters}})B\tilde{L}^{-1}x_e$
- Extract heavy hitters from the vector, check if e<sup>th</sup> entry is one.

$$\frac{\mathbf{B}\tilde{\mathbf{L}}^{-1}\mathbf{x}_{e}(e)^{2}}{\|\mathbf{B}\tilde{\mathbf{L}}^{-1}\mathbf{x}_{e}\|_{2}^{2}}\approx\frac{\tau_{e}^{2}}{\tau_{e}}=\tau_{e}$$

#### Putting it all together:

$$\mathbf{BL}^{-1}\mathbf{x}_{e}$$

- **1** Sketch  $(\Pi_{\text{heavy hitters}})\mathbf{B}$  in  $n \log^{c} n$  space.
- **2** Compute  $(\Pi_{\text{heavy hitters}})B\tilde{L}^{-1}$ .
- **B** For every possible edge e, compute  $(\Pi_{\text{heavy hitters}})B\tilde{L}^{-1}x_e$
- 4 Extract heavy hitters from the vector, check if e<sup>th</sup> entry is one.

$$\frac{\mathbf{B}\tilde{\mathbf{L}}^{-1}\mathbf{x}_{e}(e)^{2}}{\|\mathbf{B}\tilde{\mathbf{L}}^{-1}\mathbf{x}_{e}\|_{2}^{2}}\approx\frac{\tau_{e}^{2}}{\tau_{e}}=\tau_{e}$$

### Putting it all together:

$$\mathbf{B}\mathbf{L}^{-1}\mathbf{x}_{e}$$

- **1** Sketch  $(\Pi_{\text{heavy hitters}})\mathbf{B}$  in  $n \log^{c} n$  space.
- **2** Compute  $(\Pi_{\text{heavy hitters}})B\tilde{L}^{-1}$ .
- **3** For every possible edge e, compute  $(\Pi_{\text{heavy hitters}})B\tilde{L}^{-1}x_e$
- Extract heavy hitters from the vector, check if e<sup>th</sup> entry is one.

$$\frac{\mathbf{B}\tilde{\mathbf{L}}^{-1}\mathbf{x}_{e}(e)^{2}}{\|\mathbf{B}\tilde{\mathbf{L}}^{-1}\mathbf{x}_{e}\|_{2}^{2}}\approx\frac{\tau_{e}^{2}}{\tau_{e}}=\tau_{e}$$

Putting it all together:

$$\mathbf{B}\mathbf{L}^{-1}\mathbf{x}_{e}$$

- **1** Sketch  $(\Pi_{\text{heavy hitters}})\mathbf{B}$  in  $n \log^{c} n$  space.
- **2** Compute  $(\Pi_{\text{heavy hitters}})B\tilde{L}^{-1}$ .
- **3** For every possible edge e, compute  $(\Pi_{\text{heavy hitters}})B\tilde{L}^{-1}x_e$
- Extract heavy hitters from the vector, check if e<sup>th</sup> entry is one.

$$\frac{\mathbf{B}\tilde{\mathbf{L}}^{-1}\mathbf{x}_{e}(e)^{2}}{\|\mathbf{B}\tilde{\mathbf{L}}^{-1}\mathbf{x}_{e}\|_{2}^{2}}\approx\frac{\tau_{e}^{2}}{\tau_{e}}=\tau_{e}$$

Putting it all together:

$$\mathbf{B}\mathbf{L}^{-1}\mathbf{x}_{e}$$

- **1** Sketch  $(\Pi_{\text{heavy hitters}})\mathbf{B}$  in  $n \log^{c} n$  space.
- **2** Compute  $(\Pi_{\text{heavy hitters}})B\tilde{L}^{-1}$ .
- **3** For every possible edge e, compute  $(\Pi_{\text{heavy hitters}})B\tilde{L}^{-1}x_e$
- Extract heavy hitters from the vector, check if e<sup>th</sup> entry is one.

$$\frac{\mathbf{B}\tilde{\mathbf{L}}^{-1}\mathbf{x}_{e}(e)^{2}}{\|\mathbf{B}\tilde{\mathbf{L}}^{-1}\mathbf{x}_{e}\|_{2}^{2}}\approx\frac{\tau_{e}^{2}}{\tau_{e}}=\tau_{e}$$

### Overview

### 1 Graph Sparsification

#### 2 Semi-Streaming Computational Model

#### 3 Prior Work Review

### 4 Our Algorithm

Recover High Effective Resistance Edges

### Sampling by Effective Resistance

Recursive Sparsification [Li, Miller, Peng '12]

How about edges with lower effective resistance? Sketch:



How about edges with lower effective resistance? Sketch:





How about edges with lower effective resistance? Sketch:





How about edges with lower effective resistance? Sketch:



 $\mathbf{B}\mathbf{L}^{-1}\mathbf{x}_{e}$ 

How about edges with lower effective resistance? Sketch:



 $\mathbf{B}\mathbf{L}^{-1}\mathbf{x}_{e}$ 

# $\|\mathbf{B}_{1/2}\mathbf{\tilde{L}}^{-1}\mathbf{x}_e\|_2^2 \approx \frac{1}{2} \times \|\mathbf{B}\mathbf{\tilde{L}}^{-1}\mathbf{x}_e\|_2^2$

HOWEVER, if *e* makes it through the sampling procedure:

$$\mathbf{B}_{1/2}\tilde{\mathbf{L}}^{-1}\mathbf{x}_e(e)^2 = \mathbf{B}\tilde{\mathbf{L}}^{-1}\mathbf{x}_e(e)^2$$

So,

Ratio for heavy-hitters 
$$= \frac{\mathbf{B}_{1/2}\tilde{\mathbf{L}}^{-1}\mathbf{x}_{e}(e)^{2}}{\|\mathbf{B}_{1/2}\tilde{\mathbf{L}}^{-1}\mathbf{x}_{e}\|_{2}^{2}} \approx 2 \times \frac{\mathbf{B}\tilde{\mathbf{L}}^{-1}\mathbf{x}_{e}(e)^{2}}{\|\mathbf{B}\tilde{\mathbf{L}}^{-1}\mathbf{x}_{e}\|_{2}^{2}}$$

$$\|\mathbf{B}_{1/2}\mathbf{\tilde{L}}^{-1}\mathbf{x}_e\|_2^2 \approx \frac{1}{2} \times \|\mathbf{B}\mathbf{\tilde{L}}^{-1}\mathbf{x}_e\|_2^2$$

HOWEVER, if *e* makes it through the sampling procedure:

$$\mathbf{B}_{1/2}\mathbf{\tilde{L}}^{-1}\mathbf{x}_e(e)^2 = \mathbf{B}\mathbf{\tilde{L}}^{-1}\mathbf{x}_e(e)^2$$

So

Ratio for heavy-hitters 
$$= \frac{\mathbf{B}_{1/2}\tilde{\mathbf{L}}^{-1}\mathbf{x}_e(e)^2}{\|\mathbf{B}_{1/2}\tilde{\mathbf{L}}^{-1}\mathbf{x}_e\|_2^2} \approx 2 \times \frac{\mathbf{B}\tilde{\mathbf{L}}^{-1}\mathbf{x}_e(e)^2}{\|\mathbf{B}\tilde{\mathbf{L}}^{-1}\mathbf{x}_e\|_2^2}$$

$$\|\mathbf{B}_{1/2}\mathbf{\tilde{L}}^{-1}\mathbf{x}_e\|_2^2 \approx \frac{1}{2} \times \|\mathbf{B}\mathbf{\tilde{L}}^{-1}\mathbf{x}_e\|_2^2$$

HOWEVER, if *e* makes it through the sampling procedure:

$$\mathbf{B}_{1/2}\mathbf{\tilde{L}}^{-1}\mathbf{x}_e(e)^2 = \mathbf{B}\mathbf{\tilde{L}}^{-1}\mathbf{x}_e(e)^2$$

So,

Ratio for heavy-hitters 
$$= \frac{\mathbf{B}_{1/2}\tilde{\mathbf{L}}^{-1}\mathbf{x}_{e}(e)^{2}}{\|\mathbf{B}_{1/2}\tilde{\mathbf{L}}^{-1}\mathbf{x}_{e}\|_{2}^{2}} \approx 2 \times \frac{\mathbf{B}\tilde{\mathbf{L}}^{-1}\mathbf{x}_{e}(e)^{2}}{\|\mathbf{B}\tilde{\mathbf{L}}^{-1}\mathbf{x}_{e}\|_{2}^{2}}$$

### $\mathbf{B}\mathbf{L}^{-1}\mathbf{x}_{e}$

#### How about edges with lower effective resistance?

□ First level:  $\tau_e > 1/\log n$  with probability 1.

- □ Second level:  $\tau_e > 1/2 \log n$  with probability 1/2.
- □ Third level:  $\tau_e > 1/4 \log n$  with probability 1/4.
- $\Box$  Forth level:  $\tau_e > 1/8 \log n$  with probability 1/8.

□ ..



#### How about edges with lower effective resistance?

□ First level:  $\tau_e > 1/\log n$  with probability 1.

□ Second level:  $\tau_e > 1/2 \log n$  with probability 1/2.

- □ Third level:  $\tau_e > 1/4 \log n$  with probability 1/4.
- $\Box$  Forth level:  $\tau_e > 1/8 \log n$  with probability 1/8.

□ ..

### $\mathbf{B}\mathbf{L}^{-1}\mathbf{x}_{e}$

#### How about edges with lower effective resistance?

□ First level:  $\tau_e > 1/\log n$  with probability 1.

□ Second level:  $\tau_e > 1/2 \log n$  with probability 1/2.

 $\Box$  Third level:  $au_e > 1/4 \log n$  with probability 1/4.

□ Forth level:  $\tau_e > 1/8 \log n$  with probability 1/8.

□ ..



#### How about edges with lower effective resistance?

□ First level:  $\tau_e > 1/\log n$  with probability 1.

- □ Second level:  $\tau_e > 1/2 \log n$  with probability 1/2.
- □ Third level:  $\tau_e > 1/4 \log n$  with probability 1/4.
- □ Forth level:  $\tau_e > 1/8 \log n$  with probability 1/8.

□ ..



#### How about edges with lower effective resistance?

□ First level:  $\tau_e > 1/\log n$  with probability 1.

- □ Second level:  $\tau_e > 1/2 \log n$  with probability 1/2.
- □ Third level:  $\tau_e > 1/4 \log n$  with probability 1/4.
- $\Box$  Forth level:  $\tau_e > 1/8 \log n$  with probability 1/8.

□ ..

### $\mathbf{B}\mathbf{L}^{-1}\mathbf{x}_{e}$

#### How about edges with lower effective resistance?

□ First level:  $\tau_e > 1/\log n$  with probability 1.

- □ Second level:  $\tau_e > 1/2 \log n$  with probability 1/2.
- □ Third level:  $\tau_e > 1/4 \log n$  with probability 1/4.
- $\Box$  Forth level:  $\tau_e > 1/8 \log n$  with probability 1/8.

□ ...

### $\mathbf{B}\mathbf{L}^{-1}\mathbf{x}_{e}$

#### How about edges with lower effective resistance?

□ First level:  $\tau_e > 1/\log n$  with probability 1.

- □ Second level:  $\tau_e > 1/2 \log n$  with probability 1/2.
- □ Third level:  $\tau_e > 1/4 \log n$  with probability 1/4.
- □ Forth level:  $\tau_e > 1/8 \log n$  with probability 1/8.

□ ...





Performing this sampling while processing edges in the stream requires  $O(\log n)$  random bits per edge.  $O(n^2 \log n)$  bits in total.

Fixed using a pseudorandom number generator.





Performing this sampling while processing edges in the stream requires  $O(\log n)$  random bits per edge.  $O(n^2 \log n)$  bits in total.

Fixed using a pseudorandom number generator.

### Overview

### 1 Graph Sparsification

### 2 Semi-Streaming Computational Model

3 Prior Work Review

#### 4 Our Algorithm

Recover High Effective Resistance Edges

- Sampling by Effective Resistance
- Recursive Sparsification [Li, Miller, Peng '12]

### Final Piece [Li, Miller, Peng '12]

 $\Box$  We need a constant error sparsifier to get a  $(1 \pm \epsilon)$  sparsifier.

#### Final Piece [Li, Miller, Peng '12]

 $\Box$  We need a constant error sparsifier to get a  $(1 \pm \epsilon)$  sparsifier.



### Final Piece [Li, Miller, Peng '12]

 $\Box$  We need a constant error sparsifier to get a  $(1 \pm \epsilon)$  sparsifier.



#### Final Piece [Li, Miller, Peng '12]

 $\Box$  We need a constant error sparsifier to get a  $(1 \pm \epsilon)$  sparsifier.



#### Final Piece [Li, Miller, Peng '12]

 $\Box$  We need a constant error sparsifier to get a  $(1 \pm \epsilon)$  sparsifier.



#### **Actual Implementation:**

We add an identity matrix to  ${\boldsymbol{\mathsf{B}}}$  instead of complete graph edges.

No need for an expander - the identity is already sparse!

#### **Actual Implementation:**

We add an identity matrix to  ${\boldsymbol{\mathsf{B}}}$  instead of complete graph edges.



No need for an expander – the identity is already sparse!

#### **Actual Implementation:**

We add an identity matrix to  ${\boldsymbol{\mathsf{B}}}$  instead of complete graph edges.



No need for an expander - the identity is already sparse!

### **Full Procedure:**



Number of levels depends on log condition number of  ${\bf B}$ , which is bounded for an unweighted graph.

#### Works for any matrix!

- □ To work for a general matrix B and general quadratic form B<sup>T</sup>B we need:
  - A row dictionary to test every possible entry.
  - A condition number bound.
- Generically, storing a compression of B<sup>T</sup>B takes Ω(n<sup>2</sup>) space.
  Avoid lower bound simply when the row dictionary is poly(n) size.
- $\hfill\square$  To work for a general matrix B and general quadratic form  $B^\top B$  we need:
  - A row dictionary to test every possible entry.
  - □ A condition number bound.
- □ Generically, storing a compression of  $\mathbf{B}^{\top}\mathbf{B}$  takes  $\Omega(n^2)$  space. Avoid lower bound simply when the row dictionary is poly(n) size.

- $\hfill\square$  To work for a general matrix B and general quadratic form  $B^\top B$  we need:
  - □ A row dictionary to test every possible entry.
  - A condition number bound.
- □ Generically, storing a compression of  $\mathbf{B}^{\top}\mathbf{B}$  takes  $\Omega(n^2)$  space. Avoid lower bound simply when the row dictionary is poly(n) size.

- $\hfill\square$  To work for a general matrix B and general quadratic form  $B^\top B$  we need:
  - □ A row dictionary to test every possible entry.
  - A condition number bound.
- □ Generically, storing a compression of  $\mathbf{B}^{\top}\mathbf{B}$  takes  $\Omega(n^2)$  space. Avoid lower bound simply when the row dictionary is poly(n) size.

- $\hfill\square$  To work for a general matrix B and general quadratic form  $B^\top B$  we need:
  - A row dictionary to test every possible entry.
  - A condition number bound.
- Generically, storing a compression of B<sup>T</sup>B takes Ω(n<sup>2</sup>) space. Avoid lower bound simply when the row dictionary is poly(n) size.

Recall



Requires  $O(n^2 \log n)$  bits in total. We need to store these bits *persistently*.

## Nisan's PRG [Nisan '92]

#### Theorem

Any algorithm running in S space and using R random bits can be simulated using a PRG that uses a seed of  $O(S \log R)$  truly random bits.

- **I** The probability of any outcome changes by at most  $2^{-O(S)}$ .
- **2** Each random bit can be generated in  $S \log R$  time.

We have  $S = O(n \log^c n)$  and  $R = O(n^2 \log n)$ , so  $S \log R$  is just  $O(n \log^c n)$  truly random bits for our seed.

## Nisan's PRG [Nisan '92]

#### Theorem

Any algorithm running in S space and using R random bits can be simulated using a PRG that uses a seed of  $O(S \log R)$  truly random bits.

- **I** The probability of any outcome changes by at most  $2^{-O(S)}$ .
- **2** Each random bit can be generated in  $S \log R$  time.

We have  $S = O(n \log^c n)$  and  $R = O(n^2 \log n)$ , so  $S \log R$  is just  $O(n \log^c n)$  truly random bits for our seed.

**Nisan's PRG [Nisan '92]** But out algorithm doesn't run in *S* space as described!

**Solution**: [Indyk '00] Our algorithm can run in  $O(n \log^c n)$  if our edges come in order  $\rightarrow$  we can throw away hash bits as we go.

### Nisan's PRG [Nisan '92] But out algorithm doesn't run in *S* space as described!



**Solution**: [Indyk '00] Our algorithm can run in  $O(n \log^c n)$  if our edges come in order  $\rightarrow$  we can throw away hash bits as we go.

Nisan's PRG [Nisan '92] But out algorithm doesn't run in *S* space as described!



**Solution**: [Indyk '00] Our algorithm can run in  $O(n \log^c n)$  if our edges come in order  $\rightarrow$  we can throw away hash bits as we go.

## Nisan's PRG [Nisan '92]

So, we can apply the PRG to our algorithm assuming ordered insertions/deletions.

But, since the algorithm is linear, the order in which edges are received does not matter. Thus, the algorithm works for any edge stream.

Unfortunately, every time we need a random has bit, we require  $S \log R = O(n \log^c n)$  computation  $\rightarrow$  slow update time.

### Nisan's PRG [Nisan '92]

So, we can apply the PRG to our algorithm assuming ordered insertions/deletions.

But, since the algorithm is linear, the order in which edges are received does not matter. Thus, the algorithm works for any edge stream.

Unfortunately, every time we need a random has bit, we require  $S \log R = O(n \log^c n)$  computation  $\rightarrow$  slow update time.

### Nisan's PRG [Nisan '92]

So, we can apply the PRG to our algorithm assuming ordered insertions/deletions.

But, since the algorithm is linear, the order in which edges are received does not matter. Thus, the algorithm works for any edge stream.

Unfortunately, every time we need a random has bit, we require  $S \log R = O(n \log^c n)$  computation  $\rightarrow$  slow update time.



# Thank you!