Single Pass Spectral Sparsification in Dynamic Streams

2014.11.10 M. Kapralov, Y.T. Lee, C. Musco, C. Musco, A. Sidford Massachusetts Institute of Technology

Overview

□ In $\tilde{O}(n)$ space, maintain a graph compression from which we can always return a spectral sparsifier.

Main technique

 \Box Use ℓ_2 heavy hitter sketches to sample by effective resistance in the streaming model.

Overview

□ In $\tilde{O}(n)$ space, maintain a graph compression from which we can always return a spectral sparsifier.

Main technique

 \Box Use ℓ_2 heavy hitter sketches to sample by effective resistance in the streaming model.

Outline

2 Semi-Streaming Computational Model

3 Prior Work Review

- 4 Our Algorithm
 - Recover High Effective Resistance Edges
 - Sampling by Effective Resistance
 - Recursive Sparsification [Li, Miller, Peng '12]

Overview

1 Graph Sparsification

2 Semi-Streaming Computational Model

3 Prior Work Review

4 Our Algorithm

- Recover High Effective Resistance Edges
- Sampling by Effective Resistance
- Recursive Sparsification [Li, Miller, Peng '12]

General Idea

- □ Approximate a dense graph with a much sparser graph.
- \Box Reduce $O(n^2)$ edges $\rightarrow O(n \log n)$ edges

General Idea

- □ Approximate a dense graph with a much sparser graph.
- \Box Reduce $O(n^2)$ edges $\rightarrow O(n \log n)$ edges

Cut Sparsification (Benczúr, Karger '96)

 \Box Preserve *every* cut value to within $(1 \pm \varepsilon)$ factor

Cut Sparsification (Benczúr, Karger '96)

 \Box Preserve *every* cut value to within $(1 \pm \varepsilon)$ factor

Cut Sparsification (Benczúr, Karger '96)

 \Box Preserve *every* cut value to within $(1 \pm \varepsilon)$ factor

Cut Sparsification (Benczúr, Karger '96)

 \Box Preserve *every* cut value to within $(1 \pm \varepsilon)$ factor

Cut Sparsification (Benczúr, Karger '96)

 \Box Preserve *every* cut value to within $(1 \pm \varepsilon)$ factor

Cut Sparsification (Benczúr, Karger '96)

 \Box Preserve *every* cut value to within $(1 \pm \varepsilon)$ factor

Cut Sparsification (Benczúr, Karger '96)

 \Box Preserve *every* cut value to within $(1 \pm \varepsilon)$ factor

Cut Sparsification (Benczúr, Karger '96)

 \Box Preserve *every* cut value to within $(1 \pm \varepsilon)$ factor

Cut Sparsification (Benczúr, Karger '96)

 \Box Preserve *every* cut value to within $(1 \pm \varepsilon)$ factor

- □ Let $\mathbf{B} \in \mathbb{R}^{\binom{n}{2} \times n}$ be the vertex-edge incidence matrix for a graph *G*.
- \Box Let $\mathbf{x} \in \{0,1\}^n$ be an "indicator vector" for some cut.

$$\begin{array}{c|ccccc} v_1 & v_2 & v_3 & v_4 \\ e_{12} & \begin{bmatrix} 1 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ e_{13} & \begin{bmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ e_{23} & \begin{bmatrix} 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ e_{34} & \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix} \end{array}$$

- □ Let $\mathbf{B} \in \mathbb{R}^{\binom{n}{2} \times n}$ be the vertex-edge incidence matrix for a graph *G*.
- \Box Let $\mathbf{x} \in \{0,1\}^n$ be an "indicator vector" for some cut.

- □ Let $\mathbf{B} \in \mathbb{R}^{\binom{n}{2} \times n}$ be the vertex-edge incidence matrix for a graph *G*.
- \Box Let $\mathbf{x} \in \{0,1\}^n$ be an "indicator vector" for some cut.

- □ Let $\mathbf{B} \in \mathbb{R}^{\binom{n}{2} \times n}$ be the vertex-edge incidence matrix for a graph *G*.
- \Box Let $\mathbf{x} \in \{0,1\}^n$ be an "indicator vector" for some cut.

$$\begin{array}{c|ccccc} v_1 & v_2 & v_3 & v_4 \\ e_{12} & \begin{bmatrix} 1 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ e_{13} & \begin{bmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ e_{23} & 0 & 1 & -1 & 0 \\ e_{24} & 0 & 1 & 0 & -1 \\ e_{34} & \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix} \end{array}$$

- □ Let $\mathbf{B} \in \mathbb{R}^{\binom{n}{2} \times n}$ be the vertex-edge incidence matrix for a graph *G*.
- \Box Let $\mathbf{x} \in \{0,1\}^n$ be an "indicator vector" for some cut.

$$\begin{array}{c|ccccc} v_1 & v_2 & v_3 & v_4 \\ e_{12} & \begin{bmatrix} 1 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ e_{13} & \begin{bmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ e_{23} & \begin{bmatrix} 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ e_{34} & \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix} \end{array}$$

- □ Let $\mathbf{B} \in \mathbb{R}^{\binom{n}{2} \times n}$ be the vertex-edge incidence matrix for a graph *G*.
- \Box Let $\mathbf{x} \in \{0,1\}^n$ be an "indicator vector" for some cut.

$$\begin{array}{c|cccccc} v_1 & v_2 & v_3 & v_4 \\ e_{12} & \begin{bmatrix} 1 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ e_{13} & \begin{bmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ e_{23} & \begin{bmatrix} 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ e_{34} & \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix} \end{array}$$

- □ Let $\mathbf{B} \in \mathbb{R}^{\binom{n}{2} \times n}$ be the vertex-edge incidence matrix for a graph *G*.
- \square Let $\mathbf{x} \in \{0,1\}^n$ be an "indicator vector" for some cut.

$$\begin{array}{c|cccccc} v_1 & v_2 & v_3 & v_4 \\ e_{12} & \begin{bmatrix} 1 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ e_{13} & \begin{bmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ e_{23} & \begin{bmatrix} 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ e_{34} & \begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \end{array}$$

- □ Let $\mathbf{B} \in \mathbb{R}^{\binom{n}{2} \times n}$ be the vertex-edge incidence matrix for a graph *G*.
- \Box Let $\mathbf{x} \in \{0,1\}^n$ be an "indicator vector" for some cut.

$$\begin{array}{c|ccccc} v_1 & v_2 & v_3 & v_4 \\ e_{12} & \begin{bmatrix} 1 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ e_{13} & \begin{bmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ e_{23} & \begin{bmatrix} 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ e_{34} & \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix} \end{array}$$

Cut Sparsification (Benczúr, Karger '96)

□ Let $\mathbf{B} \in \mathbb{R}^{\binom{n}{2} \times n}$ be the vertex-edge incidence matrix for a graph *G*.

٠..

Cut Sparsification (Benczúr, Karger '96)

□ Let $\mathbf{B} \in \mathbb{R}^{\binom{n}{2} \times n}$ be the vertex-edge incidence matrix for a graph *G*.

٠..

Cut Sparsification (Benczúr, Karger '96)

□ Let $\mathbf{B} \in \mathbb{R}^{\binom{n}{2} \times n}$ be the vertex-edge incidence matrix for a graph *G*.

٠..

Cut Sparsification (Benczúr, Karger '96)

□ Let $\mathbf{B} \in \mathbb{R}^{\binom{n}{2} \times n}$ be the vertex-edge incidence matrix for a graph *G*.

٠..

Cut Sparsification (Benczúr, Karger '96)

□ Let $\mathbf{B} \in \mathbb{R}^{\binom{n}{2} \times n}$ be the vertex-edge incidence matrix for a graph *G*.

٠..

- □ Let $\mathbf{B} \in \mathbb{R}^{\binom{n}{2} \times n}$ be the vertex-edge incidence matrix for a graph *G*.
- \Box Let $\mathbf{x} \in \{0,1\}^n$ be an "indicator vector" for some cut.

$$\begin{array}{cccccc} v_1 & v_2 & v_3 & v_4 \\ e_{12} & \begin{bmatrix} 1 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ e_{13} & \begin{bmatrix} 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ e_{34} & \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \times \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}$$

- □ Let $\mathbf{B} \in \mathbb{R}^{\binom{n}{2} \times n}$ be the vertex-edge incidence matrix for a graph *G*.
- \Box Let $\mathbf{x} \in \{0,1\}^n$ be an "indicator vector" for some cut.

- □ Let $\mathbf{B} \in \mathbb{R}^{\binom{n}{2} \times n}$ be the vertex-edge incidence matrix for a graph *G*.
- \Box Let $\mathbf{x} \in \{0,1\}^n$ be an "indicator vector" for some cut.

- □ Let $\mathbf{B} \in \mathbb{R}^{\binom{n}{2} \times n}$ be the vertex-edge incidence matrix for a graph *G*.
- \Box Let $\mathbf{x} \in \{0,1\}^n$ be an "indicator vector" for some cut.

$$\begin{array}{ccccccc} v_1 & v_2 & v_3 & v_4 \\ e_{12} & \begin{bmatrix} 1 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ e_{23} & \begin{bmatrix} 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 1 \\ 0 \end{bmatrix} \\ \mathbf{B}$$

- □ Let $\mathbf{B} \in \mathbb{R}^{\binom{n}{2} \times n}$ be the vertex-edge incidence matrix for a graph *G*.
- \Box Let $\mathbf{x} \in \{0,1\}^n$ be an "indicator vector" for some cut.

Cut Sparsification (Benczúr, Karger '96) So, $\|\mathbf{Bx}\|_2^2 = \text{cut value}$.

$\begin{aligned} & \mbox{Goal} \\ & \mbox{Find some } \tilde{\mathbf{B}} \mbox{ such that, for all } \mathbf{x} \in \{0,1\}^n, \\ & (1-\varepsilon) \|\mathbf{B}\mathbf{x}\|_2^2 \leq \|\tilde{\mathbf{B}}\mathbf{x}\|_2^2 \leq (1+\varepsilon) \|\mathbf{B}\mathbf{x}\|_2^2 \end{aligned}$

 $\Box \mathbf{x}^{\top} \mathbf{\tilde{B}}^{\top} \mathbf{\tilde{B}} \mathbf{x} \approx \mathbf{x}^{\top} \mathbf{B}^{\top} \mathbf{B} \mathbf{x}.$ $\Box \mathbf{L} = \mathbf{B}^{\top} \mathbf{B} \text{ is the graph Laplacian.}$

Cut Sparsification (Benczúr, Karger '96) So, $\|\mathbf{Bx}\|_2^2 = \text{cut value}$.

$\begin{aligned} & \mbox{Goal} \\ & \mbox{Find some } \tilde{\mathbf{B}} \mbox{ such that, for all } \mathbf{x} \in \{0,1\}^n, \\ & (1-\varepsilon) \|\mathbf{B}\mathbf{x}\|_2^2 \leq \|\tilde{\mathbf{B}}\mathbf{x}\|_2^2 \leq (1+\varepsilon) \|\mathbf{B}\mathbf{x}\|_2^2 \end{aligned}$

 $\Box \mathbf{x}^{\mathsf{T}} \widetilde{\mathbf{B}}^{\mathsf{T}} \widetilde{\mathbf{B}} \mathbf{x} \approx \mathbf{x}^{\mathsf{T}} \mathbf{B}^{\mathsf{T}} \mathbf{B} \mathbf{x}.$ $\Box \mathbf{L} = \mathbf{B}^{\mathsf{T}} \mathbf{B} \text{ is the graph Laplacian.}$
Cut Sparsification (Benczúr, Karger '96) So, $\|\mathbf{Bx}\|_2^2 = \text{cut value}$.

GoalFind some $\tilde{\mathbf{B}}$ such that, for all $\mathbf{x} \in \{0,1\}^n$, $(1-\varepsilon) \|\mathbf{B}\mathbf{x}\|_2^2 \le \|\tilde{\mathbf{B}}\mathbf{x}\|_2^2 \le (1+\varepsilon) \|\mathbf{B}\mathbf{x}\|_2^2$

 $\Box \mathbf{x}^{\top} \mathbf{\tilde{B}}^{\top} \mathbf{\tilde{B}} \mathbf{x} \approx \mathbf{x}^{\top} \mathbf{B}^{\top} \mathbf{B} \mathbf{x}.$ $\Box \mathbf{L} = \mathbf{B}^{\top} \mathbf{B} \text{ is the graph Laplacian.}$

Spectral Sparsification (Spielman, Teng '04)

Goal Find some $\tilde{\mathbf{B}}$ such that, for all $\mathbf{x} \in \{0, 1\}^n \mathbb{R}^n$, $(1 - \varepsilon) \|\mathbf{B}\mathbf{x}\|_2^2 \le \|\tilde{\mathbf{B}}\mathbf{x}\|_2^2 \le (1 + \varepsilon) \|\mathbf{B}\mathbf{x}\|_2^2$

Applications: Anything cut sparsifiers can do, Laplacian system solves, computing effective resistances, spectral clustering, calculating random walk properties, etc.

Spectral Sparsification (Spielman, Teng '04)

Goal Find some $\tilde{\mathbf{B}}$ such that, for all $\mathbf{x} \in \{0, 1\}^n \mathbb{R}^n$, $(1 - \varepsilon) \|\mathbf{B}\mathbf{x}\|_2^2 \le \|\tilde{\mathbf{B}}\mathbf{x}\|_2^2 \le (1 + \varepsilon) \|\mathbf{B}\mathbf{x}\|_2^2$

Applications: Anything cut sparsifiers can do, Laplacian system solves, computing effective resistances, spectral clustering, calculating random walk properties, etc.

All Equivalent:

$\|\tilde{\mathbf{B}}\mathbf{x}\|_2^2 \approx_{\epsilon} \|\mathbf{B}\mathbf{x}\|_2^2 \qquad \mathbf{x}^\top \tilde{\mathbf{L}}\mathbf{x} \approx_{\epsilon} \mathbf{x}^\top \mathbf{L}\mathbf{x} \qquad \mathbf{x}^\top \tilde{\mathbf{L}}^{-1}\mathbf{x} \approx_{\epsilon} \mathbf{x}^\top \mathbf{L}^{-1}\mathbf{x}$

All Equivalent:

 $\|\mathbf{\tilde{B}}\mathbf{x}\|_2^2 \approx_{\epsilon} \|\mathbf{B}\mathbf{x}\|_2^2 \qquad \mathbf{x}^\top \mathbf{\tilde{L}}\mathbf{x} \approx_{\epsilon} \mathbf{x}^\top \mathbf{L}\mathbf{x} \qquad \mathbf{x}^\top \mathbf{\tilde{L}}^{-1}\mathbf{x} \approx_{\epsilon} \mathbf{x}^\top \mathbf{L}^{-1}\mathbf{x}$

All Equivalent:

 $\|\mathbf{\tilde{B}}\mathbf{x}\|_2^2 \approx_{\epsilon} \|\mathbf{B}\mathbf{x}\|_2^2 \qquad \mathbf{x}^\top \mathbf{\tilde{L}}\mathbf{x} \approx_{\epsilon} \mathbf{x}^\top \mathbf{L}\mathbf{x} \qquad \mathbf{x}^\top \mathbf{\tilde{L}}^{-1}\mathbf{x} \approx_{\epsilon} \mathbf{x}^\top \mathbf{L}^{-1}\mathbf{x}$

All Equivalent:

 $\|\mathbf{\tilde{B}}\mathbf{x}\|_2^2 \approx_{\epsilon} \|\mathbf{B}\mathbf{x}\|_2^2 \qquad \mathbf{x}^\top \mathbf{\tilde{L}}\mathbf{x} \approx_{\epsilon} \mathbf{x}^\top \mathbf{L}\mathbf{x} \qquad \mathbf{x}^\top \mathbf{\tilde{L}}^{-1}\mathbf{x} \approx_{\epsilon} \mathbf{x}^\top \mathbf{L}^{-1}\mathbf{x}$

All Equivalent:

 $\|\mathbf{\tilde{B}}\mathbf{x}\|_2^2 \approx_{\epsilon} \|\mathbf{B}\mathbf{x}\|_2^2 \qquad \mathbf{x}^\top \mathbf{\tilde{L}}\mathbf{x} \approx_{\epsilon} \mathbf{x}^\top \mathbf{L}\mathbf{x} \qquad \mathbf{x}^\top \mathbf{\tilde{L}}^{-1}\mathbf{x} \approx_{\epsilon} \mathbf{x}^\top \mathbf{L}^{-1}\mathbf{x}$

How are sparsifiers constructed?

How are sparsifiers constructed?

Sampling probabilities:

- Connectivity for cut sparsifiers [Benczúr, Karger '96], [Fung, Hariharan, Harvey, Panigrahi '11].
- Effective resistances (i.e statistical leverage scores) for spectral sparsifiers [Spielman, Srivastava '08].

How are sparsifiers constructed?

Sampling probabilities:

- Connectivity for cut sparsifiers [Benczúr, Karger '96], [Fung, Hariharan, Harvey, Panigrahi '11].
- Effective resistances (i.e statistical leverage scores) for spectral sparsifiers [Spielman, Srivastava '08].

How are sparsifiers constructed?

Sampling probabilities:

- Connectivity for cut sparsifiers [Benczúr, Karger '96], [Fung, Hariharan, Harvey, Panigrahi '11].
- Effective resistances (i.e statistical leverage scores) for spectral sparsifiers [Spielman, Srivastava '08].

How are sparsifiers constructed?

Sampling probabilities:

- Connectivity for cut sparsifiers [Benczúr, Karger '96], [Fung, Hariharan, Harvey, Panigrahi '11].
- Effective resistances (i.e statistical leverage scores) for spectral sparsifiers [Spielman, Srivastava '08].

How are sparsifiers constructed?

Sampling probabilities:

- Connectivity for cut sparsifiers [Benczúr, Karger '96], [Fung, Hariharan, Harvey, Panigrahi '11].
- Effective resistances (i.e statistical leverage scores) for spectral sparsifiers [Spielman, Srivastava '08].

Actually oversample: by (effective resistance) × $O(\log n/\epsilon^2)$. Gives sparsifiers with $O(n \log n/\epsilon^2)$ edges – reducing from $O(n^2)$.

- □ Makes sense to compress a graph, but what if we cannot afford to store it in the first place?
- □ Is it possible to "sketch" a graph in small space by maintaining a sparsifier or some other representation?

2 Semi-Streaming Computational Model

3 Prior Work Review

4 Our Algorithm

- Recover High Effective Resistance Edges
- Sampling by Effective Resistance
- Recursive Sparsification [Li, Miller, Peng '12]

- □ Space allowance $n \log^{c}(n)$.
- Receive data via edge updates.
- Minimum spanning tree, maximal matching, graph connectivity, etc.

- □ Space allowance $n \log^{c}(n)$.
- Receive data via edge updates.
- Minimum spanning tree, maximal matching, graph connectivity, etc.

- □ Space allowance $n \log^{c}(n)$.
- Receive data via edge updates.
- Minimum spanning tree, maximal matching, graph connectivity, etc.

- □ Space allowance $n \log^{c}(n)$.
- Receive data via edge updates.
- Minimum spanning tree, maximal matching, graph connectivity, etc.

- \Box Space allowance $n \log^{c}(n)$.
- Receive data via edge updates.
- Minimum spanning tree, maximal matching, graph connectivity, etc.

- □ Space allowance $n \log^{c}(n)$.
- Receive data via edge updates.
- Minimum spanning tree, maximal matching, graph connectivity, etc.

- □ Space allowance $n \log^{c}(n)$.
- Receive data via edge updates.
- Minimum spanning tree, maximal matching, graph connectivity, etc.

- □ Space allowance $n \log^{c}(n)$.
- Receive data via edge updates.
- Minimum spanning tree, maximal matching, graph connectivity, etc.

- □ Space allowance $n \log^{c}(n)$.
- Receive data via edge updates.
- Minimum spanning tree, maximal matching, graph connectivity, etc.

- □ Space allowance $n \log^{c}(n)$.
- Receive data via edge updates.
- Minimum spanning tree, maximal matching, graph connectivity, etc.

- \Box Space allowance $n \log^{c}(n)$.
- □ Receive data via edge updates.
- Minimum spanning tree, maximal matching, graph connectivity, etc.

Overview

1 Graph Sparsification

2 Semi-Streaming Computational Model

3 Prior Work Review

4 Our Algorithm

- Recover High Effective Resistance Edges
- Sampling by Effective Resistance
- Recursive Sparsification [Li, Miller, Peng '12]
□ [Ahn, Guha '09], [Kelner, Levin '11]: Cut and spectral sparsifiers in *insertion only* streams.

- [Ahn, Guha, McGregor '12a]: Introduced linear sketching for graphs. This breakthrough work is the first to handle edge deletions for graph problems. Connectivity, MST, multi-pass sparsifiers.
 - □ [Ahn, Guha, McGregor '12b], [Goel, Kapralov, Post '12]: Extend techniques to get single pass cut sparsifiers.
- □ [Ahn, Guha, McGregor '13]: Dynamic spectral sparsifiers, but $O(n^{5/3})$ space.
- □ **[Kapralov, Woodruff '14]**: Dynamic spectral sparsifiers, but multi-pass.

- □ [Ahn, Guha '09], [Kelner, Levin '11]: Cut and spectral sparsifiers in *insertion only* streams.
- □ [Ahn, Guha, McGregor '12a]: Introduced linear sketching for graphs. This breakthrough work is the first to handle edge deletions for graph problems. Connectivity, MST, multi-pass sparsifiers.
 - □ [Ahn, Guha, McGregor '12b], [Goel, Kapralov, Post '12]: Extend techniques to get single pass cut sparsifiers.
- □ [Ahn, Guha, McGregor '13]: Dynamic spectral sparsifiers, but $O(n^{5/3})$ space.
- □ **[Kapralov, Woodruff '14]**: Dynamic spectral sparsifiers, but multi-pass.

- □ [Ahn, Guha '09], [Kelner, Levin '11]: Cut and spectral sparsifiers in *insertion only* streams.
- [Ahn, Guha, McGregor '12a]: Introduced linear sketching for graphs. This breakthrough work is the first to handle edge deletions for graph problems. Connectivity, MST, multi-pass sparsifiers.
 - [Ahn, Guha, McGregor '12b], [Goel, Kapralov, Post '12]: Extend techniques to get single pass cut sparsifiers.
- □ [Ahn, Guha, McGregor '13]: Dynamic spectral sparsifiers, but $O(n^{5/3})$ space.
- □ **[Kapralov, Woodruff '14]**: Dynamic spectral sparsifiers, but multi-pass.

- □ [Ahn, Guha '09], [Kelner, Levin '11]: Cut and spectral sparsifiers in *insertion only* streams.
- [Ahn, Guha, McGregor '12a]: Introduced linear sketching for graphs. This breakthrough work is the first to handle edge deletions for graph problems. Connectivity, MST, multi-pass sparsifiers.
 - [Ahn, Guha, McGregor '12b], [Goel, Kapralov, Post '12]: Extend techniques to get single pass cut sparsifiers.
- □ [Ahn, Guha, McGregor '13]: Dynamic spectral sparsifiers, but $O(n^{5/3})$ space.
- □ **[Kapralov, Woodruff '14]**: Dynamic spectral sparsifiers, but multi-pass.

- □ [Ahn, Guha '09], [Kelner, Levin '11]: Cut and spectral sparsifiers in *insertion only* streams.
- [Ahn, Guha, McGregor '12a]: Introduced linear sketching for graphs. This breakthrough work is the first to handle edge deletions for graph problems. Connectivity, MST, multi-pass sparsifiers.
 - [Ahn, Guha, McGregor '12b], [Goel, Kapralov, Post '12]: Extend techniques to get single pass cut sparsifiers.
- □ [Ahn, Guha, McGregor '13]: Dynamic spectral sparsifiers, but $O(n^{5/3})$ space.
- □ [Kapralov, Woodruff '14]: Dynamic spectral sparsifiers, but multi-pass.

- □ [Ahn, Guha '09], [Kelner, Levin '11]: Cut and spectral sparsifiers in *insertion only* streams.
- [Ahn, Guha, McGregor '12a]: Introduced linear sketching for graphs. This breakthrough work is the first to handle edge deletions for graph problems. Connectivity, MST, multi-pass sparsifiers.
 - [Ahn, Guha, McGregor '12b], [Goel, Kapralov, Post '12]: Extend techniques to get single pass cut sparsifiers.
- □ [Ahn, Guha, McGregor '13]: Dynamic spectral sparsifiers, but $O(n^{5/3})$ space.
- □ [Kapralov, Woodruff '14]: Dynamic spectral sparsifiers, but multi-pass.

Overview

1 Graph Sparsification

2 Semi-Streaming Computational Model

3 Prior Work Review

4 Our Algorithm

- Recover High Effective Resistance Edges
- Sampling by Effective Resistance
- Recursive Sparsification [Li, Miller, Peng '12]

Sketch:

How do we get around this issue? Take a cue from standard streaming algorithms:

- □ Linear Sketching!
- Does *not* depend on insertion/deletion order.

How do we get around this issue?

- □ Linear Sketching!
- Does *not* depend on insertion/deletion order.

How do we get around this issue?

- Linear Sketching!
- Does *not* depend on insertion/deletion order.

How do we get around this issue?

- Linear Sketching!
- Does *not* depend on insertion/deletion order.

How do we get around this issue?

- Linear Sketching!
- Does *not* depend on insertion/deletion order.

How do we get around this issue?

- Linear Sketching!
- Does *not* depend on insertion/deletion order.

How do we get around this issue?

- Linear Sketching!
- Does *not* depend on insertion/deletion order.

How do we get around this issue?

- Linear Sketching!
- Does *not* depend on insertion/deletion order.

How do we get around this issue?

- Linear Sketching!
- Does *not* depend on insertion/deletion order.

How do we get around this issue?

- Linear Sketching!
- Does *not* depend on insertion/deletion order.

How do we get around this issue?

- Linear Sketching!
- Does *not* depend on insertion/deletion order.

How do we get around this issue?

- Linear Sketching!
- Does *not* depend on insertion/deletion order.

How do we get around this issue?

- □ Linear Sketching!
- Does *not* depend on insertion/deletion order.

Algorithm Overview

- **1** Assume we have a coarse sparsifier i.e. $(1 \pm \frac{1}{2})$ approximation $\tilde{\mathbf{B}}^{\top}\tilde{\mathbf{B}} = \tilde{\mathbf{L}}$.
- Show procedure for recovering high effective resistance edges
- 3 Use black-box to sample edges by effective resistance

Algorithm Overview

- **1** Assume we have a coarse sparsifier i.e. $(1 \pm \frac{1}{2})$ approximation $\tilde{\mathbf{B}}^{\top}\tilde{\mathbf{B}} = \tilde{\mathbf{L}}$.
- Show procedure for recovering high effective resistance edges
- 3 Use black-box to sample edges by effective resistance

- **1** Assume we have a coarse sparsifier i.e. $(1 \pm \frac{1}{2})$ approximation $\tilde{\mathbf{B}}^{\top}\tilde{\mathbf{B}} = \tilde{\mathbf{L}}$.
- 2 Show procedure for recovering high effective resistance edges
- 3 Use black-box to sample edges by effective resistance

- **1** Assume we have a coarse sparsifier i.e. $(1 \pm \frac{1}{2})$ approximation $\tilde{\mathbf{B}}^{\top}\tilde{\mathbf{B}} = \tilde{\mathbf{L}}$.
- 2 Show procedure for recovering high effective resistance edges
- 3 Use black-box to sample edges by effective resistance

Overview

1 Graph Sparsification

- 2 Semi-Streaming Computational Model
- 3 Prior Work Review

4 Our Algorithm

- Recover High Effective Resistance Edges
- Sampling by Effective Resistance
- Recursive Sparsification [Li, Miller, Peng '12]

- □ Distinct elements
- Vector norms
- □ Entropy estimation
- □ Really any streaming problem...

- Distinct elements
- Vector norms
- Entropy estimation
- □ Really any streaming problem...

- Distinct elements
- Vector norms
- Entropy estimation
- □ Really any streaming problem...

- Distinct elements
- Vector norms
- Entropy estimation
- □ Really any streaming problem...

- Distinct elements
- Vector norms
- Entropy estimation
- □ Really any streaming problem...

Graph Sketching

Analyzing Graph Structure via Linear Measurements, Ahn, Guha, McGregor 2012

□ Use a sparse recovery sketch.

Analyzing Graph Structure via Linear Measurements, Ahn, Guha, McGregor 2012

□ Use a sparse recovery sketch.

Analyzing Graph Structure via Linear Measurements, Ahn, Guha, McGregor 2012

□ Use a sparse recovery sketch.

Analyzing Graph Structure via Linear Measurements, Ahn, Guha, McGregor 2012

□ Use a sparse recovery sketch.

Prior Work:

- $\hfill\square$ Apply sparse recovery sketches to the columns of B.
- □ Recover *cut information* \rightarrow *k*-connectivity, cut sparsifiers!

Our Approach:

Prior Work:

- $\hfill\square$ Apply sparse recovery sketches to the columns of B.
- \Box Recover *cut information* \rightarrow *k*-connectivity, cut sparsifiers!

Our Approach:

Prior Work:

- $\hfill\square$ Apply sparse recovery sketches to the columns of B.
- \square Recover *cut information* \rightarrow *k*-connectivity, cut sparsifiers!

Our Approach:

Prior Work:

- $\hfill\square$ Apply sparse recovery sketches to the columns of B.
- \square Recover *cut information* \rightarrow *k*-connectivity, cut sparsifiers!

Our Approach:

Prior Work:

- $\hfill\square$ Apply sparse recovery sketches to the columns of B.
- \square Recover *cut information* \rightarrow *k*-connectivity, cut sparsifiers!

Our Approach:

Prior Work:

- $\hfill\square$ Apply sparse recovery sketches to the columns of B.
- \square Recover *cut information* \rightarrow *k*-connectivity, cut sparsifiers!

Our Approach:

Prior Work:

- $\hfill\square$ Apply sparse recovery sketches to the columns of B.
- \square Recover *cut information* \rightarrow *k*-connectivity, cut sparsifiers!

Our Approach:

Prior Work:

- $\hfill\square$ Apply sparse recovery sketches to the columns of B.
- \square Recover *cut information* \rightarrow *k*-connectivity, cut sparsifiers!

Our Approach:

We are still going to sample by effective resistance.

- □ Treat graph as resistor network, each edge has resistance 1.
- □ Flow 1 unit of current from node *i* to *j* and measure voltage drop between the nodes.

We are still going to sample by effective resistance.

- □ Treat graph as resistor network, each edge has resistance 1.
- □ Flow 1 unit of current from node *i* to *j* and measure voltage drop between the nodes.

We are still going to sample by effective resistance.

- □ Treat graph as resistor network, each edge has resistance 1.
- □ Flow 1 unit of current from node *i* to *j* and measure voltage drop between the nodes.

Using standard V = IR equations:

Using standard V = IR equations:

Using standard V = IR equations:

Effective resistance of edge *e* is $\tau_e = \mathbf{x}_e^\top \mathbf{L}^{-1} \mathbf{x}_e$.

Alternatively, au_e is the $e^{\iota \eta}$ entry in the vector:

 $\mathsf{BL}^{-1}\mathsf{x}_e$

AND

$$\tau_e = \mathbf{x}_e^\top \mathbf{L}^{-1} \mathbf{x}_e = \mathbf{x}_e^\top (\mathbf{L}^{-1})^\top \mathbf{B}^\top \mathbf{B} \mathbf{L}^{-1} \mathbf{x}_e = \|\mathbf{B} \mathbf{L}^{-1} \mathbf{x}_e\|_2^2$$

Effective resistance of edge e is $\tau_e = \mathbf{x}_e^{\top} \mathbf{L}^{-1} \mathbf{x}_e$. Alternatively, τ_e is the e^{th} entry in the vector:

 $\mathbf{BL}^{-1}\mathbf{x}_e$

AND

$$\tau_e = \mathbf{x}_e^\top \mathbf{L}^{-1} \mathbf{x}_e = \mathbf{x}_e^\top (\mathbf{L}^{-1})^\top \mathbf{B}^\top \mathbf{B} \mathbf{L}^{-1} \mathbf{x}_e = \|\mathbf{B} \mathbf{L}^{-1} \mathbf{x}_e\|_2^2$$

Effective resistance of edge e is $\tau_e = \mathbf{x}_e^{\top} \mathbf{L}^{-1} \mathbf{x}_e$. Alternatively, τ_e is the e^{th} entry in the vector:

 $\mathbf{BL}^{-1}\mathbf{x}_e$

AND

$$\tau_e = \mathbf{x}_e^\top \mathbf{L}^{-1} \mathbf{x}_e = \mathbf{x}_e^\top (\mathbf{L}^{-1})^\top \mathbf{B}^\top \mathbf{B} \mathbf{L}^{-1} \mathbf{x}_e = \|\mathbf{B} \mathbf{L}^{-1} \mathbf{x}_e\|_2^2$$

Effective Resistance:

Effective Resistance:

Effective Resistance:

Effective Resistance:

Sparse recovery specifics:

 $\mathbf{BL}^{-1}\mathbf{x}_{e}$

ℓ_2 Heavy Hitters [GLPS10]:

- □ Sketch poly(n) vector in polylog(n) space.
- □ Extract any element who's square is a $O(1/\log n)$ fraction of the vector's squared norm.

Sparse recovery specifics:

 $\mathbf{B}\mathbf{L}^{-1}\mathbf{x}_{e}$

ℓ_2 Heavy Hitters [GLPS10]:

- □ Sketch poly(n) vector in polylog(n) space.
- □ Extract any element who's square is a $O(1/\log n)$ fraction of the vector's squared norm.

Putting it all together:

 $\mathbf{B}\mathbf{L}^{-1}\mathbf{x}_{e}$

- **1** Sketch $(\Pi_{\text{heavy hitters}})\mathbf{B}$ in $n \log^{c} n$ space.
- 2 Compute $(\Pi_{heavy hitters})B\tilde{L}^{-1}$
- **3** For every possible edge e, compute $(\Pi_{\text{heavy hitters}})B\tilde{L}^{-1}x_e$
- Extract heavy hitters from the vector, check if eth entry is one.

$$\frac{\mathbf{B}\tilde{\mathbf{L}}^{-1}\mathbf{x}_{e}(e)^{2}}{\|\mathbf{B}\tilde{\mathbf{L}}^{-1}\mathbf{x}_{e}\|_{2}^{2}}\approx\frac{\tau_{e}^{2}}{\tau_{e}}=\tau_{e}$$

Putting it all together:

$$\mathbf{BL}^{-1}\mathbf{x}_{e}$$

- **1** Sketch $(\Pi_{\text{heavy hitters}})\mathbf{B}$ in $n \log^{c} n$ space.
- **2** Compute $(\Pi_{\text{heavy hitters}})B\tilde{L}^{-1}$.
- **B** For every possible edge e, compute $(\Pi_{\text{heavy hitters}})B\tilde{L}^{-1}x_e$
- 4 Extract heavy hitters from the vector, check if eth entry is one.

$$\frac{\mathbf{B}\tilde{\mathbf{L}}^{-1}\mathbf{x}_{e}(e)^{2}}{\|\mathbf{B}\tilde{\mathbf{L}}^{-1}\mathbf{x}_{e}\|_{2}^{2}}\approx\frac{\tau_{e}^{2}}{\tau_{e}}=\tau_{e}$$

Putting it all together:

$$\mathbf{B}\mathbf{L}^{-1}\mathbf{x}_{e}$$

- **1** Sketch $(\Pi_{\text{heavy hitters}})\mathbf{B}$ in $n \log^{c} n$ space.
- **2** Compute $(\Pi_{\text{heavy hitters}})B\tilde{L}^{-1}$.
- **3** For every possible edge e, compute $(\Pi_{\text{heavy hitters}})B\tilde{L}^{-1}x_e$
- Extract heavy hitters from the vector, check if eth entry is one.

$$\frac{\mathbf{B}\tilde{\mathbf{L}}^{-1}\mathbf{x}_{e}(e)^{2}}{\|\mathbf{B}\tilde{\mathbf{L}}^{-1}\mathbf{x}_{e}\|_{2}^{2}}\approx\frac{\tau_{e}^{2}}{\tau_{e}}=\tau_{e}$$

Putting it all together:

$$\mathbf{B}\mathbf{L}^{-1}\mathbf{x}_{e}$$

- **1** Sketch $(\Pi_{\text{heavy hitters}})\mathbf{B}$ in $n \log^{c} n$ space.
- **2** Compute $(\Pi_{\text{heavy hitters}})B\tilde{L}^{-1}$.
- **3** For every possible edge e, compute $(\Pi_{\text{heavy hitters}})B\tilde{L}^{-1}x_e$
- Extract heavy hitters from the vector, check if eth entry is one.

$$\frac{\mathbf{B}\tilde{\mathbf{L}}^{-1}\mathbf{x}_{e}(e)^{2}}{\|\mathbf{B}\tilde{\mathbf{L}}^{-1}\mathbf{x}_{e}\|_{2}^{2}}\approx\frac{\tau_{e}^{2}}{\tau_{e}}=\tau_{e}$$

Putting it all together:

$$\mathbf{B}\mathbf{L}^{-1}\mathbf{x}_{e}$$

- **1** Sketch $(\Pi_{\text{heavy hitters}})\mathbf{B}$ in $n \log^{c} n$ space.
- **2** Compute $(\Pi_{\text{heavy hitters}})B\tilde{L}^{-1}$.
- **3** For every possible edge e, compute $(\Pi_{\text{heavy hitters}})B\tilde{L}^{-1}x_e$
- Extract heavy hitters from the vector, check if eth entry is one.

$$\frac{\mathbf{B}\tilde{\mathbf{L}}^{-1}\mathbf{x}_{e}(e)^{2}}{\|\mathbf{B}\tilde{\mathbf{L}}^{-1}\mathbf{x}_{e}\|_{2}^{2}}\approx\frac{\tau_{e}^{2}}{\tau_{e}}=\tau_{e}$$

Overview

1 Graph Sparsification

2 Semi-Streaming Computational Model

3 Prior Work Review

4 Our Algorithm

Recover High Effective Resistance Edges

Sampling by Effective Resistance

Recursive Sparsification [Li, Miller, Peng '12]

How about edges with lower effective resistance? Sketch:

How about edges with lower effective resistance? Sketch:

How about edges with lower effective resistance? Sketch:

How about edges with lower effective resistance? Sketch:

 $\mathbf{B}\mathbf{L}^{-1}\mathbf{x}_{e}$

How about edges with lower effective resistance? Sketch:

 $\mathbf{B}\mathbf{L}^{-1}\mathbf{x}_{e}$

$\|\mathbf{B}_{1/2}\mathbf{\tilde{L}}^{-1}\mathbf{x}_e\|_2^2 \approx \frac{1}{2} \times \|\mathbf{B}\mathbf{\tilde{L}}^{-1}\mathbf{x}_e\|_2^2$

HOWEVER, if *e* makes it through the sampling procedure:

$$\mathbf{B}_{1/2}\tilde{\mathbf{L}}^{-1}\mathbf{x}_e(e)^2 = \mathbf{B}\tilde{\mathbf{L}}^{-1}\mathbf{x}_e(e)^2$$

So,

Ratio for heavy-hitters
$$= \frac{\mathbf{B}_{1/2}\tilde{\mathbf{L}}^{-1}\mathbf{x}_{e}(e)^{2}}{\|\mathbf{B}_{1/2}\tilde{\mathbf{L}}^{-1}\mathbf{x}_{e}\|_{2}^{2}} \approx 2 \times \frac{\mathbf{B}\tilde{\mathbf{L}}^{-1}\mathbf{x}_{e}(e)^{2}}{\|\mathbf{B}\tilde{\mathbf{L}}^{-1}\mathbf{x}_{e}\|_{2}^{2}}$$

$$\|\mathbf{B}_{1/2}\mathbf{\tilde{L}}^{-1}\mathbf{x}_e\|_2^2 \approx \frac{1}{2} \times \|\mathbf{B}\mathbf{\tilde{L}}^{-1}\mathbf{x}_e\|_2^2$$

HOWEVER, if *e* makes it through the sampling procedure:

$$\mathbf{B}_{1/2}\mathbf{\tilde{L}}^{-1}\mathbf{x}_e(e)^2 = \mathbf{B}\mathbf{\tilde{L}}^{-1}\mathbf{x}_e(e)^2$$

So

Ratio for heavy-hitters
$$= \frac{\mathbf{B}_{1/2}\tilde{\mathbf{L}}^{-1}\mathbf{x}_e(e)^2}{\|\mathbf{B}_{1/2}\tilde{\mathbf{L}}^{-1}\mathbf{x}_e\|_2^2} \approx 2 \times \frac{\mathbf{B}\tilde{\mathbf{L}}^{-1}\mathbf{x}_e(e)^2}{\|\mathbf{B}\tilde{\mathbf{L}}^{-1}\mathbf{x}_e\|_2^2}$$

$$\|\mathbf{B}_{1/2}\mathbf{\tilde{L}}^{-1}\mathbf{x}_e\|_2^2 \approx \frac{1}{2} \times \|\mathbf{B}\mathbf{\tilde{L}}^{-1}\mathbf{x}_e\|_2^2$$

HOWEVER, if *e* makes it through the sampling procedure:

$$\mathbf{B}_{1/2}\mathbf{\tilde{L}}^{-1}\mathbf{x}_e(e)^2 = \mathbf{B}\mathbf{\tilde{L}}^{-1}\mathbf{x}_e(e)^2$$

So,

Ratio for heavy-hitters
$$= \frac{\mathbf{B}_{1/2}\tilde{\mathbf{L}}^{-1}\mathbf{x}_{e}(e)^{2}}{\|\mathbf{B}_{1/2}\tilde{\mathbf{L}}^{-1}\mathbf{x}_{e}\|_{2}^{2}} \approx 2 \times \frac{\mathbf{B}\tilde{\mathbf{L}}^{-1}\mathbf{x}_{e}(e)^{2}}{\|\mathbf{B}\tilde{\mathbf{L}}^{-1}\mathbf{x}_{e}\|_{2}^{2}}$$

$\mathbf{B}\mathbf{L}^{-1}\mathbf{x}_{e}$

How about edges with lower effective resistance?

□ First level: $\tau_e > 1/\log n$ with probability 1.

- □ Second level: $\tau_e > 1/2 \log n$ with probability 1/2.
- □ Third level: $\tau_e > 1/4 \log n$ with probability 1/4.
- \Box Forth level: $\tau_e > 1/8 \log n$ with probability 1/8.

□ ..

How about edges with lower effective resistance?

□ First level: $\tau_e > 1/\log n$ with probability 1.

□ Second level: $\tau_e > 1/2 \log n$ with probability 1/2.

- □ Third level: $\tau_e > 1/4 \log n$ with probability 1/4.
- \Box Forth level: $\tau_e > 1/8 \log n$ with probability 1/8.

□ ..

$\mathbf{B}\mathbf{L}^{-1}\mathbf{x}_{e}$

How about edges with lower effective resistance?

□ First level: $\tau_e > 1/\log n$ with probability 1.

□ Second level: $\tau_e > 1/2 \log n$ with probability 1/2.

 \Box Third level: $au_e > 1/4 \log n$ with probability 1/4.

□ Forth level: $\tau_e > 1/8 \log n$ with probability 1/8.

□ ..

How about edges with lower effective resistance?

□ First level: $\tau_e > 1/\log n$ with probability 1.

- □ Second level: $\tau_e > 1/2 \log n$ with probability 1/2.
- □ Third level: $\tau_e > 1/4 \log n$ with probability 1/4.
- □ Forth level: $\tau_e > 1/8 \log n$ with probability 1/8.

□ ..

How about edges with lower effective resistance?

□ First level: $\tau_e > 1/\log n$ with probability 1.

- □ Second level: $\tau_e > 1/2 \log n$ with probability 1/2.
- □ Third level: $\tau_e > 1/4 \log n$ with probability 1/4.
- \Box Forth level: $\tau_e > 1/8 \log n$ with probability 1/8.

□ ..

$\mathbf{B}\mathbf{L}^{-1}\mathbf{x}_{e}$

How about edges with lower effective resistance?

□ First level: $\tau_e > 1/\log n$ with probability 1.

- □ Second level: $\tau_e > 1/2 \log n$ with probability 1/2.
- □ Third level: $\tau_e > 1/4 \log n$ with probability 1/4.
- \Box Forth level: $\tau_e > 1/8 \log n$ with probability 1/8.

□ ...

$\mathbf{B}\mathbf{L}^{-1}\mathbf{x}_{e}$

How about edges with lower effective resistance?

□ First level: $\tau_e > 1/\log n$ with probability 1.

- □ Second level: $\tau_e > 1/2 \log n$ with probability 1/2.
- □ Third level: $\tau_e > 1/4 \log n$ with probability 1/4.
- □ Forth level: $\tau_e > 1/8 \log n$ with probability 1/8.

□ ...

Performing this sampling while processing edges in the stream requires $O(\log n)$ random bits per edge. $O(n^2 \log n)$ bits in total.

Fixed using a pseudorandom number generator.

Performing this sampling while processing edges in the stream requires $O(\log n)$ random bits per edge. $O(n^2 \log n)$ bits in total.

Fixed using a pseudorandom number generator.

Overview

1 Graph Sparsification

2 Semi-Streaming Computational Model

3 Prior Work Review

4 Our Algorithm

Recover High Effective Resistance Edges

- Sampling by Effective Resistance
- Recursive Sparsification [Li, Miller, Peng '12]

Final Piece [Li, Miller, Peng '12]

 \Box We need a constant error sparsifier to get a $(1 \pm \epsilon)$ sparsifier.

Final Piece [Li, Miller, Peng '12]

 \Box We need a constant error sparsifier to get a $(1 \pm \epsilon)$ sparsifier.

Final Piece [Li, Miller, Peng '12]

 \Box We need a constant error sparsifier to get a $(1 \pm \epsilon)$ sparsifier.

Final Piece [Li, Miller, Peng '12]

 \Box We need a constant error sparsifier to get a $(1 \pm \epsilon)$ sparsifier.

Final Piece [Li, Miller, Peng '12]

 \Box We need a constant error sparsifier to get a $(1 \pm \epsilon)$ sparsifier.

Actual Implementation:

We add an identity matrix to ${\boldsymbol{\mathsf{B}}}$ instead of complete graph edges.

No need for an expander - the identity is already sparse!

Actual Implementation:

We add an identity matrix to ${\boldsymbol{\mathsf{B}}}$ instead of complete graph edges.

No need for an expander – the identity is already sparse!

Actual Implementation:

We add an identity matrix to ${\boldsymbol{\mathsf{B}}}$ instead of complete graph edges.

No need for an expander - the identity is already sparse!

Full Procedure:

Number of levels depends on log condition number of ${\bf B}$, which is bounded for an unweighted graph.

Works for any matrix!

- □ To work for a general matrix B and general quadratic form B^TB we need:
 - A row dictionary to test every possible entry.
 - A condition number bound.
- Generically, storing a compression of B^TB takes Ω(n²) space.
 Avoid lower bound simply when the row dictionary is poly(n) size.
- $\hfill\square$ To work for a general matrix B and general quadratic form $B^\top B$ we need:
 - A row dictionary to test every possible entry.
 - □ A condition number bound.
- □ Generically, storing a compression of $\mathbf{B}^{\top}\mathbf{B}$ takes $\Omega(n^2)$ space. Avoid lower bound simply when the row dictionary is poly(n) size.

- $\hfill\square$ To work for a general matrix B and general quadratic form $B^\top B$ we need:
 - □ A row dictionary to test every possible entry.
 - A condition number bound.
- □ Generically, storing a compression of $\mathbf{B}^{\top}\mathbf{B}$ takes $\Omega(n^2)$ space. Avoid lower bound simply when the row dictionary is poly(n) size.

- $\hfill\square$ To work for a general matrix B and general quadratic form $B^\top B$ we need:
 - □ A row dictionary to test every possible entry.
 - A condition number bound.
- □ Generically, storing a compression of $\mathbf{B}^{\top}\mathbf{B}$ takes $\Omega(n^2)$ space. Avoid lower bound simply when the row dictionary is poly(n) size.

- $\hfill\square$ To work for a general matrix B and general quadratic form $B^\top B$ we need:
 - A row dictionary to test every possible entry.
 - A condition number bound.
- Generically, storing a compression of B^TB takes Ω(n²) space. Avoid lower bound simply when the row dictionary is poly(n) size.

Recall

Requires $O(n^2 \log n)$ bits in total. We need to store these bits *persistently*.

Nisan's PRG [Nisan '92]

Theorem

Any algorithm running in S space and using R random bits can be simulated using a PRG that uses a seed of $O(S \log R)$ truly random bits.

- **I** The probability of any outcome changes by at most $2^{-O(S)}$.
- **2** Each random bit can be generated in $S \log R$ time.

We have $S = O(n \log^c n)$ and $R = O(n^2 \log n)$, so $S \log R$ is just $O(n \log^c n)$ truly random bits for our seed.

Nisan's PRG [Nisan '92]

Theorem

Any algorithm running in S space and using R random bits can be simulated using a PRG that uses a seed of $O(S \log R)$ truly random bits.

- **I** The probability of any outcome changes by at most $2^{-O(S)}$.
- **2** Each random bit can be generated in $S \log R$ time.

We have $S = O(n \log^c n)$ and $R = O(n^2 \log n)$, so $S \log R$ is just $O(n \log^c n)$ truly random bits for our seed.

Nisan's PRG [Nisan '92] But out algorithm doesn't run in *S* space as described!

Solution: [Indyk '00] Our algorithm can run in $O(n \log^c n)$ if our edges come in order \rightarrow we can throw away hash bits as we go.

Nisan's PRG [Nisan '92] But out algorithm doesn't run in *S* space as described!

Solution: [Indyk '00] Our algorithm can run in $O(n \log^c n)$ if our edges come in order \rightarrow we can throw away hash bits as we go.

Nisan's PRG [Nisan '92] But out algorithm doesn't run in *S* space as described!

Solution: [Indyk '00] Our algorithm can run in $O(n \log^c n)$ if our edges come in order \rightarrow we can throw away hash bits as we go.

Nisan's PRG [Nisan '92]

So, we can apply the PRG to our algorithm assuming ordered insertions/deletions.

But, since the algorithm is linear, the order in which edges are received does not matter. Thus, the algorithm works for any edge stream.

Unfortunately, every time we need a random has bit, we require $S \log R = O(n \log^c n)$ computation \rightarrow slow update time.

Nisan's PRG [Nisan '92]

So, we can apply the PRG to our algorithm assuming ordered insertions/deletions.

But, since the algorithm is linear, the order in which edges are received does not matter. Thus, the algorithm works for any edge stream.

Unfortunately, every time we need a random has bit, we require $S \log R = O(n \log^c n)$ computation \rightarrow slow update time.

Nisan's PRG [Nisan '92]

So, we can apply the PRG to our algorithm assuming ordered insertions/deletions.

But, since the algorithm is linear, the order in which edges are received does not matter. Thus, the algorithm works for any edge stream.

Unfortunately, every time we need a random has bit, we require $S \log R = O(n \log^c n)$ computation \rightarrow slow update time.

Thank you!