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SPECTRAL DENSITY ESTIMATION

Basic problem in linear algebra:
• Given a diagonalizable1 n× n matrix A with real
eigenvalues λ1, . . . , λn.

• Goal is to approximate this spectrum in ≪ O(n3) time.

1Let’s assume symmetric today, with eigenvalues in [−1, 1]. 3



SPECTRAL DENSITY ESTIMATION

Possible approach: Compute a few outlying eigenpairs of A
using an iterative method, like Lanczos iteration.

Access A via a small number of matrix-vector multiplications,
which can be implemented in O(n2) time or faster.

Can also be applied to implicit matrices. 4



SPECTRAL DENSITY ESTIMATION

We want to capture information about the whole spectrum.
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SPECTRAL DENSITY ESTIMATION

Would also be happy with a “smooth” approximation to the
eigenvalue distribution

Easily discretized if approximate eigenvalues are desired.
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SPECTRAL DENSITY ESTIMATION

View spectrum as a probability density. If A has eigenvalues
λ1, . . . , λn,

Spectral density: s(x) = 1
n

n∑
i=1

δ(x− λi).

Goal: Find density q which is close to s is some statistical
distance.
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EXAMPLE APPLICATIONS

• Computational physics and chemistry. [Weiße, Wellein,
Alvermann, Fehske 2006]

• Subroutine used to initialize parallel eigensolvers, like the
FEAST eigensolver [Polizzi, 2009].

• Approximate spectral sums:
∑n

i=1 f(λi) ≈
∑n

i=1 f(λ̃i):
• Matrix norms
• Log determinant: f(x) = log(x).
• Estrada index: f(x) = exp(x).
• Number of triangles in a graph: f(x) = x3.
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EXAMPLE APPLICATIONS

Analyzing the spectra of weight matrices and Hessian matrices
in deep learning. Understanding generalization, improving
convergence, optimization methods, etc.

Predicting trends in the quality of state-of-the-art neural
networks without access to training or testing data, [Martin,

Peng, Mahoney, Nature Comm. 2021].
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EXAMPLE APPLICATIONS

Analyzing graph structure in network science. E.g. the
adjacency matrix of a social network graph.

Network Density of States, [Dong, Benson, Bindel, KDD 2019].
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EXISTING METHODS

There has a been a lot of work on this problem, and many
methods proposed to solve it.

• Kernel Polynomial Method (KPM)
• Lanczos Spectroscopic Method (SLQ)
• Delta-Gauss-Legendre quadrature
• Lanczos Method for CDF
• Explicit Moment Matching (MM)

See [Lin, Saad, Yang, 2014] for a good overview.
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MAIN RESULT

Emerging result: Several of these methods (KPM, SLQ, MM) can
provably compute an ϵ-approximate spectral density using just
O
( 1
ϵ

)
matrix vector multiplications with A.

Worst case O(n2/ϵ) time for a dense n× n matrix.

[Chen, Trogdon, Ubaru. ICML 2021] proves a result for the
Stochastic Lanczos Quadrature Method.

We focus on the kernel polynomail and moment matching
methods.

12



WHAT DO WE MEAN BY APPROXIMATE?

View spectrum as a probability density. If A has eigenvalues
λ1, . . . , λn,

Spectral density: s(x) = 1
n

n∑
i=1

δ(x− λi).

Goal: Find density q which is close to s is some statistical
distance.

Natural choice: Wasserstein-1 distance W1(s,q). Aka “earth
mover’s distance”.

Goal is to find q with W1(s,q) ≤ ϵ.
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WASSERSTEIN DISTANCE

Compute cost of optimal transport plan for moving one
distribution to another. E.g. for two point-mass distributions:

W1(s,q) = 1
4(d1 + d2 + d3 + d4).

For spectral densities s,q with eigenvalues λ and λ̃,
W1(s,q) = 1

n∥λ− λ̃∥1.
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WASSERSTEIN DISTANCE

Nice property: can also be used compare continuous and
point mass distributions.
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WASSERSTEIN DISTANCE

Assume distribution are supported on [−1, 1] and let f be a
1-Lipschitz function from [−1, 1] → R.

I.e. |f(x)− f(y)| < |x− y| for all x, y.

Dual characterization:

W1(s,q) = max
1-Lipschitz f

⟨f, s− q⟩

where ⟨a,b⟩ =
∫ 1
−1 a(x)b(x)dx.
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POLYNOMIAL PROJECTION

This characterization immediately suggests an approach to
obtaining an accurate SDE:

• Let P be a projection operator onto the first k Chebyshev
polynomials.

• Return q = PTs

W1(s,q) = max
f
⟨f, s− q⟩ = max

f
⟨f, (I − PT)s⟩

= max
f
⟨(I − P)f, s⟩

= max
f
⟨f− Pf, s⟩

Since f is 1-Lipschitz, standard results tell use that f− Pf is
small. In particular, we have:

∥f− Pf∥∞ ≤ O
(
1
k

)
. 17



POLYNOMIAL PROJECTION

If q = PTs where P projects onto the first O(1/ϵ) Chebyshev
polynomails then we have:

W1(s,q) = max
f
⟨f− Pf, s⟩ ≤ ∥f− Pf∥∞∥s∥1 ≤ ϵ.

That’s it!

Two items remain to resolve:

1. How to ensure q is a positive density? We use a Jackson
damped Chebyshev expansion instead.

2. How to actually compute q? Let’s discuss this next.

18



POLYNOMIAL PROJECTION

Key step: For i = 1, . . . , k we need to compute

⟨Ti, s⟩ =
∫ 1

−1
s(x)Ti(x)dx

=
1
n
∑
j=1

Ti(λj) = tr(Ti(A)).
19



STOCHASTIC TRACE ESTIMATION

Goal: For i = 1, . . . , 1/ϵ, need to compute tr(Ti(A)).

Can be done very efficiently using a stochastic trace
estimation algorithm!

We only require a small number of matrix-vector
multiplications with Ti(A).
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ASIDE ON STOCHASTIC TRACE ESTIMATION

Hutchinson 1991, Girard 1987:

• Draw x1, . . . , xm ∈ Rn i.i.d. with random {+1,−1} entries.
• Return T̃ = 1

m
∑m

i=1 xTi Bxi as approximation to tr(B).

Requires m matvecs with B.
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HUTCHINSON’S ANALYSIS

Let T̃ be the trace estimate returned by Hutchinson’s method.

Claim (Rudelson, Vershynin, 2013, Roosta, Ascher 2015)

If m = O
(
log(1/δ)

ϵ2

)
, then with probability (1− δ),∣∣∣T̃− tr(B)

∣∣∣ ≤ ϵ∥B∥F.

Note that when B’s eigenvalues lie between [−1, 1], we have
that ∥B∥F = O(

√
n)..
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TAKEAWAY

We can compute 1
n tr(Ti(A)) up to additive error ϵ2 using

roughly:

ℓ = min

(
1, 1
nϵ4

)
matrix-vector multiplies with Ti(A).

Overall require iℓ matrix-vector multiplies with A.
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FULL KERNEL POLYNOMIAL METHOD

Theorem (Kernel Polynomial Method)
The Jackson-damped KPM provides an ϵ-approximate SDE
with O(ℓ/ϵ) matvecs with A where ℓ = min

(
1, 1

nϵ4
)
.

Theorem (Moment Matching Method)
A Chebyshev polynomial based MM-method provides an
ϵ-approximate SDE with O(ℓ/ϵ) matvecs with A where
ℓ = min

(
1, 1

nϵ2
)
.

For typical values of n, ϵ, worst case running time is O(n2/ϵ)

for an n× n matrix A.
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NEW METHODS

One recent method avoids the O(n2) cost for certain classes of
matrices, running in sublinear time.

• [Cohen-Steiner, Kong, Sohler, Valiant, 2018] gives a
method for normalized graph adjacency and Laplacian
matrices assuming sample access to the graph.

• In 2O(1/ϵ) time returns ϵ-approximate spectrum. Not
practical, but very interesting! No dependence on n.

Important in network science applications. 25



COHEN-STEINER ET AL.

Uses a random walk based estimator to compute tr(Ai) for
i = 1, . . . , k. Naturally interpretable as the chance of return
after an i step random walk.

If we can compute tr(Ai) for i = 1, . . . , k, then we can of course
compute tr(Ti(A)).

But this is a very poorly conditioned statement. Need to
compute each tr(Ai) to accuracy 1

2
O(1/ϵ) to get an ϵ

approximation to each tr(Ti(A)).
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ALTERNATIVE APPROACH

Directly speed up computation of tr(Ti(A)). Recall that we
required repeated matrix-vector multiplications with Ti(A),
which required matrix-vector multiplications with A.

We can speed these up using random sampling!

A relatively coarse approximation is enough.
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APPROXIMATE MATVECS FOR ADJACENCY MATRICES

Claim (Approximate Matrix-Vector Multiplication)
There’s an algorithm AMV(A, x) which, given sample access
to any n× n normalized adjacency matrix A, computes with
high probability:

∥AMV(A, x)− Ax∥2 ≤ ϵ∥x∥2.

The algorithm runs in O(n/ϵ2) time.
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APPROXIMATE MATVECS FOR ADJACENCY MATRICES

Approximate Ax by randomly sampling columns proportional
to ℓ2 norm.

Drineas, Kannan, Mahoney, 2006. If we sample O
( 1
∆2

)
columns, each with probability proportional to

∥Ai∥22
∥A∥2F

,

then with high probability:

∥AMV(A, x)− Ax∥2 ≤ ∆∥A∥F∥x∥2. 29



APPROXIMATE MATVECS FOR ADJACENCY MATRICES

Need to set ∆ = ϵ/∥A∥F, which means that we will collect ∥A∥22
ϵ2

samples.

Key Observation: Only columns corresponding to nodes with
low-degree (i.e. sparse columns) get sampled with high
probability. Dense columns are less likely to be sampled.
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IMPLEMENTING THE SAMPLING SCHEME

For node i with neighborhood N (i),

∥Ai∥22 =
∑

j∈N (i)

1
didj

.

• Pick random node j.
• Pick random neighbor i ∈ N (j)
• Sample column Ai with probability 1/di.

Claim: With probability
1
n

∑
j∈N (i)

1
didj

=
1
n∥A

i∥22

we sample column Ai. With some probability we get no sample.

Only get a sample with probability ∥A∥2F/n, so need to repeat
the process O(n/ϵ2) samples total. 31



PROVING EFFICIENCY

What is the expected sparsity S of each column sampled?

E[S] =
n∑
i=1

di
1
n∥A

i∥22

=
1
n

n∑
i=1

di
∑

j∈N (i)

1
didj

=
1
n

n∑
i=1

∑
j∈N (i)

1
dj

= 1.

So if we take O(n/ϵ2) samples, it takes expected time O(n/ϵ2)
to compute an ϵ-approximate matrix-vector product!
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PUTTING IT ALL TOGETHER

Our final goal is not to just multiply vectors by A, but instead to
multiply by Ti(A).

One option is to use the three-term recurrence relation for
Chebyshev polynomials:

• v0 = x
• v1 = Ax.
• For k = 2, . . . , i,

• vk = 2Avk−1 − vk−2.

• Return vi
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PUTTING IT ALL TOGETHER

How does error accumulate if we implement this recurrence
with approximate matvecs?

• v0 = x
• v1 = AMV(A, x).
• For k ≥ 2,

• vk = 2AMV(A, vk−1)− vk−2.
• Return vi

Clenshaw showed, using an arguement based on Chebyshev
polynomials of the second kind, that error builds quadratically.
I.e. we can guarantee:

∥Ti(A)x− vi∥2 ≤ (i2) · ϵ∥x∥2
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FULL KERNEL POLYNOMIAL METHOD

Theorem (Sublinear Time SDE)
It is possible to obtain and ϵ-approximate spectral density for
a normalized graph adjacency matrix in O(n/ϵ7) time.
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OPEN QUESTIONS

• Improved ϵ dependence? Extension to weighted graphs?
• Compare to 2O(1/ϵ) time for Cohen-Steiner et al. method. Is
O(1/ϵc) time possible for normalized adjacency matrices?
O(

√
n/ϵc)?

• Are there other classes of matrices where sublinear time
results are possible?

• Is Wasserstein-1 distance the only metric we should care
about?
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OPEN QUESTIONS

How to handle structured spectra?
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THANKS! QUESTIONS?
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MOMENT MATCHING METHOD

Alternative approach:

• Let Mk(s) = [⟨s, T0⟩, ⟨s, T1⟩, . . . , ⟨s, Tk⟩] be a vector
containing the first k Chebyshev moments of s.

• Find positive function q minimizing ∥Mk(s)−Mk(q)∥1.
• Can be solved efficiently using a small linear program or
projected gradient descent.
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