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other resources

“Ridge Leverage Scores for Low-Approximation” =
“Dimensionality Reduction for k-Means Clustering and

Low-Rank Approximation”

+
“Uniform Sampling for Matrix Approximation”

Papers and slides available at chrismusco.com.
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how to deal with huge data sets?
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∙ computing power (MapReduce/Hadoop, Apache Spark, etc.)
∙ limited data access (iterative methods, stochastic methods)
∙ dimensionality reduction (“sketch-and-solve”)

2



how to deal with huge data sets?

n 
 d

at
a 

po
in

ts
!

d  features!

Ã!A!

d’ << d  features!

∙ computing power (MapReduce/Hadoop, Apache Spark, etc.)

∙ limited data access (iterative methods, stochastic methods)
∙ dimensionality reduction (“sketch-and-solve”)

2



how to deal with huge data sets?

n 
 d

at
a 

po
in

ts
!

d  features!

Ã!A!

d’ << d  features!

∙ computing power (MapReduce/Hadoop, Apache Spark, etc.)
∙ limited data access (iterative methods, stochastic methods)

∙ dimensionality reduction (“sketch-and-solve”)

2



how to deal with huge data sets?

n 
 d

at
a 

po
in

ts
!

d  features!

Ã!A!

d’ << d  features!

∙ computing power (MapReduce/Hadoop, Apache Spark, etc.)
∙ limited data access (iterative methods, stochastic methods)
∙ dimensionality reduction (“sketch-and-solve”)

2



dimensionality reduction

Replace high dimensional data with low dimensional sketch.
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dimensionality reduction

Solution on sketch Ã should approximate original solution.
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dimensionality reduction

Replace dimensional of data points, not their number.
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dimensionality reduction (the other direction)

Reduce the number of data points, not their dimension.
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Ã is often called a coreset.
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methods overview

There are tons of sketching techniques, each with their own
advantages and disadvantages.

∙ Johnson-Lindenstrauss projections = super fast to apply,
naturally adapts to streaming/distributed environments.

∙ Deterministic methods (SVD, Frequent Directions) = best
data compression.

∙ Data Selection/Sampling = preserves structure and sparsity.
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sketching by sampling

Original Data
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Sampling is also closely tied to understanding heuristic
methods and has produced valuable theory.
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importance sampling

Uniformly sampling data rarely works (imagine adding a bunch
of all-zeros columns to A).

A

Sketching by sampling is all about understanding which
sampling probability to assign to each column in A. 9
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what’s this paper about?

1. Leverage Scores are used ubiquitously as importance
sampling probabilities for matrix sketching.

2. These scores have been extended to sketches for low-rank
approximation problems, but not in a satisfying way.

3. We give a more natural extension, via Ridge Leverage Scores.
These scores lead to simple proofs and have a bunch of
desirable properties and new applications.
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subspace embeddings

Definition (Subspace Embedding)

A sketch Ã such that, for all vectors x, ∥xTÃ∥ = (1± ϵ)∥xTA∥.

Ã

2

2
xT

A

2

2
xT

= (1±ε)

Applications:

∙ Approximate (constrained) linear regression.

∙ Constructing preconditioners for iterative system solvers.
∙ Spectral sparsifiers for fast approximate graph algorithms.
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quadratic form sampling

Equivalent formulation of subspace embeddings:

∥xTA∥22 = (1± ϵ)∥xTÃ∥22

(1− ϵ)ÃÃT ⪯ AAT ⪯ (1+ ϵ)ÃÃT

Let’s think about subspace embeddings as approximating the
quadratic form AAT.
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quadratic form sampling

A AT = AAT

AAT =
d∑
i=1

aiaTi
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general importance sampling procedure

Sampling Scheme: For any set of sampling probabilities
p1,p2, . . . ,pd include column ai in Ã with probability pi and
reweight the column by 1

pi .

Then:

E
[
ÃÃT
]
=

d∑
i=1

pi ·
(
1
pi
aiaTi

)
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probability choices

How to get good concentration?

Need to select more “unique” columns with higher probability.

If we don’t select ai then xTÃÃTx = 0, while xTAATx is positive.

xTÃÃTx cannot equal (1± ϵ)xTAATx.
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defining optimization problem

How to measure “unique-ness”:

Definition (Leverage Score, τ )

τ(ai) = min ∥y∥22 such that ai = Ay

ai y = aiA

τ(ai) ≤ 1 since we can choose y to be the ith basis vector.
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defining optimization problem

How to measure “unique-ness”:

Definition (Leverage Score, τ )

τ(ai) = min ∥y∥22 such that ai = Ay

ai = aiaiai ai

.25

.25

.25

.25

If more columns align with ai, τ(ai) decreases.
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computing leverage scores

Problem: Find τ(ai) = min ∥y∥22 such that ai = Ay.

Solution:

y = (ATA)−1ATai
τ(ai) = ∥y∥22 = aTi (ATA)−1ai

∑
i τ(ai) = tr(AT(ATA)−1A)

= rank(A) ≤ n

.
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matrix chernoff bound

More specifically, to get a subspace embedding, we sample
each column ai with probability τ(ai) · log nϵ2

.

We’re approximating A with a sum of (binary) random matrices:

Xi =

 1
piaia

T
i with probability pi

0 with probability (1− pi)

ÃÃT =
∑d

i=1 Xi.

τ(ai) log nϵ2
is the lowest pi which ensures 1

piaia
T
i ⪯

ϵ2

log nAAT.

“User-friendly tail bounds for sums of random matrices”,
Joel Tropp
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final subspace embedding theorem

Ã

2

2

Õ(n)

xT
A

2

2
xT

= (1±ε) nn

Theorem (Subspace Embedding via Sampling)

Sampling O
(
n log n

ϵ2

)
columns from A by leverage score gives an

ϵ factor subspace embedding with high probability.

n logn
ϵ2

=
∑
i
τ(ai)

logn
ϵ2
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important note

Naively, computing leverage scores requires computing
(AAT)−1, which would be difficult for a large A.

Fortunately, leverage scores are very robust – they can be
estimated using very weak approximations to A.

Ã


A
sample

approximate 
leverage scores

Can even be computed in a single pass over A’s columns!

20



important note

Naively, computing leverage scores requires computing
(AAT)−1, which would be difficult for a large A.

Fortunately, leverage scores are very robust – they can be
estimated using very weak approximations to A.

Ã


A
sample

approximate 
leverage scores

Can even be computed in a single pass over A’s columns!

20



important note

Naively, computing leverage scores requires computing
(AAT)−1, which would be difficult for a large A.

Fortunately, leverage scores are very robust – they can be
estimated using very weak approximations to A.

Ã


A
sample

approximate 
leverage scores

Can even be computed in a single pass over A’s columns!

20



important note

Naively, computing leverage scores requires computing
(AAT)−1, which would be difficult for a large A.

Fortunately, leverage scores are very robust – they can be
estimated using very weak approximations to A.

Ã


A
sample

approximate 
leverage scores

Can even be computed in a single pass over A’s columns!
20



extending leverage scores

Leverage scores have been very influential, even beyond
direct application to subspace embeddings.

linear system solving, low-rank approximation, k-means
clustering, convex optimization, linear programming, matrix

completion, multi-label classification, spectral graph problems

There are many generalizations and modifications of leverage
scores.
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extending leverage scores

Extensions to low-rank problems have been especially popular.

22



low-rank sketching

A = U Σ VT

σ1
σ2

σd-1
σd

left singular vectors singular values right singular vectors

For subspace embeddings we approximate AAT = UΣ2UT.

For xTÃÃTx ≈ xTAATx for all x we need to preserve information
about every singular direction/value. Specifically, it can be
shown that σi(Ã) = (1± ϵ)σi(A)
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low-rank sketching

Ak = Σk

σ1
σ2

σd-1
σd

Uk
Vk

T
Σk

left singular vectors singular values right singular vectors

For many sketching applications, we only need Ã to capture
information about A’s top singular directions/values.

In these cases, we should be able to obtain smaller sketches –
i.e. O(k) instead of O(n).
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canonical problem

Find low-rank matrix close to A.

A Ak −

F

2

rank k

∥A− QQTA∥2F = sum of squared distances to hyperplane
spanned by Q.
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canonical problem

Find low-rank matrix close in Frobenius norm to A.

A AQ −

F

2

d

QT

k

orthonormal 
basis

∥A− QQTA∥2F = sum of squared distances to hyperplane
spanned by Q.

24



canonical problem

Find low-rank matrix close in Frobenius norm to A.

∥A− QQTA∥2F = sum of squared distances to hyperplane
spanned by Q.

24



low-rank approximation

Without any constraints, finding the optimal rank k Q is
equivalent to singular value decomposition:

Ak = Σk

σ1
σ2

σd-1
σd

Uk
Vk

T
Σk

left singular vectors singular values right singular vectors

∥A− Ak∥2F = ∥A− UkUTkA∥2F = min ∥A− QQTA∥2F.

Set Q = Uk, i.e. to the top k singular vectors of A.
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Set Q = Uk, i.e. to the top k singular vectors of A.
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low-rank approximation with constraints

With constraints, Frobenius norm low-rank approximation

captures a variety of additional interesting problems:

min
rank(Q)=k,Q∈S

∥A− QQTA∥2F

S is an arbitrary set of rank k orthonormal matrices.

∙ nonnegative PCA

∙ sparse PCA
∙ k-means clustering (see slides on my website)
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low-rank approximation

In either case, we need to capture information about A’s top
singular vectors only.

27



specific sketching guarantees

Two well studied guarantees for low-rank sketching.

Column Subset Selection:

Find an Ã such that ∥A− projÃ(A)∥2F ≤ (1+ ϵ)∥A− Ak∥2F.

Projection Cost Preserving Sample:

Find an Ã such that ∥Ã− QQTÃ∥2F = (1± ϵ)∥A− QQTA∥2F for all
rank k orthonormal matrices Q.
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projection cost preservation

0

1

2

3

4

5

6

Q

 Cost(Q,A)
 (1±ε)Cost(Q,A)      

∥Ã− QQ⊤Ã∥2F = (1± ϵ)∥A− QQ⊤A∥2F
29



specific sketching guarantees

Subspace Embedding implies Column Subset Selection and
Projection Cost Preservation.

But we would get a sketch with too many samples:
Õ(n) columns vs. ideally Õ(k) columns

.
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Õ(n) columns vs. ideally Õ(k) columns.
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subspace scores

“Low-rank leverage scores” for column-subset selection:

∙ Equivalent to leverage score sampling from Ak, but we keep
the columns in A.

∙ Gives an approximation to AkATk, but with additional error
depending on the matrix tail ∥A− Ak∥2F.

∙
∑

i τ̃(ai) = rank(Ak) = k

[Drineas, Mahoney, Muthukrishnan ‘08, and Sarlós ‘06]
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projection cost subspace scores

“Low-rank leverage scores” for projection cost preservation:

∙ Similar intuition, but with an extra term to capture some
information about A’s tail singular values.

[Cohen, Elder, Musco, Musco, Persu ‘15]
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limitations of prior work

Great, we can solve both low-rank sampling problems.

But...

1. The only efficient algorithms for computing low-rank
leverage scores rely on other sketching techniques, often
defeating the purpose of sampling to begin with.

Ã


A
sample

approximate 
leverage scores

2. The scores cannot be computed in a data stream.
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limitations of prior work

Single Underlying Issue:
Existing low-rank scores are not monotonic.

ai y = aiA

τ(ai) = min ∥y∥22 such that ai = Ay
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limitations of prior work

Single Underlying Issue:
Existing low-rank scores are not monotonic.

ai y = aiA

For standard leverage scores, adding a column to A can only
decrease the importance of existing columns.

34



importance of monotonicity

Streaming setup:

Receive columns of A one-by-one. Reject each with probability
depending on it’s (low-rank) leverage score with respect to the
columns seen so far [Kelner, Levin ‘11].

A

ai

# columns observed  

Rejection probability only decreases, so we never delete a
column with too high of probability.
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importance of monotonicity

Iterative Leverage Score Sampling: Monotonicity is essential
because it ensures that a uniform subsample of columns can
at least be used to find upper bounds for leverage scores.
[Cohen, Lee, Musco, Musco, Peng, Sidford ‘15]

A

ai

36



importance of monotonicity

Iterative Leverage Score Sampling: Monotonicity is essential
because it ensures that a uniform subsample of columns can
at least be used to find upper bounds for leverage scores.
[Cohen, Lee, Musco, Musco, Peng, Sidford ‘15]

A

ai

36



score instability

Why aren’t prior low-rank leverage scores monotonic?

They depend on (AkAk)−1, which is inherently unstable

.
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Adding a column could cause aTi (AkAk)−1ai to drop significantly.
Here aT1(A1A1)−1a1 =⇒ 0.
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our solution

How to avoid instability?

“Soften” the existing definition of rank k leverage scores.

The λ-Ridge Leverage Scores of [Alaoui, Mahoney ‘15].

σi
(
ATA(ATkAk)−1

)
=

1 for i ≥ k,
0 for i < k.

σi
(
ATA(ATA+ λI)−1

)
=

σ2i
σ2i + λ
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soft step

Relatively “gentle” soft step:

0 5 10 15 20 25 30 35 40 45 50
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another perspective

We can “wash out” the importance of columns by computing
leverage scores over A with an identity appended:

ai y = aiA

Effect is weaker when ai aligns with large singular vectors of A.
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main theorem

Theorem (Ridge Leverage Score Sampling)

With λ set to ∥A− Ak∥2F/k, sampling O(k log k/ϵ2) columns by
ridge leverage score produces an ϵ error projection cost
preserving sketch with high probability.

Sampling O(k log k/ϵ)
columns produces an ϵ error column subset.

Furthermore, (∥A− Ak∥2F/k)-ridge leverage scores are
monotonic with respect to column additions.
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monotonicity of ridge leverage scores

ai y = aiA
√λ

√λ

√λ
√λ
√λ
√λ

Since λ = ∥A− Ak∥2F can only increase as columns are added to
A, this perspective immediately implies that ridge leverage
score are monotonic.
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intermediate result

With λ set to ∥A− Ak∥2F/k, sampling by ridge leverage score
produces a sketch Ã such that:

(1− ϵ)ÃÃT − ϵ
∥A− Ak∥2F

k I ⪯ AAT ⪯ (1+ ϵ)ÃÃT + ϵ
∥A− Ak∥2F

k I

Multiplicative error of a subspace embedding.

Additive error of a Frequent Directions sketch [Ghashami,
Liberty, Phillips, Woodruff].

Both are known to give projection cost preserving sketches.
Handling both errors simultaneously is tedious, but not hard.
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mixed error bound→ projection cost preserving sketch

(1− ϵ)ÃÃT−ϵ
∥A− Ak∥2F

k I ⪯ AAT ⪯ (1+ ϵ)ÃÃT+ϵ
∥A− Ak∥2F

k I

∥Ã− QQTÃ∥2F = (1± ϵ)∥A− QQTA∥2F

Sum of vector products with Ã. Each preserved to within a
(1± ϵ) factor, so the entire sum is as well.
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∥A− Ak∥2F

k I ⪯ AAT ⪯ (1+ ϵ)ÃÃT + ϵ
∥A− Ak∥2F

k I

Intuition:

Dealing with rank k operators (Q is rank k), so we only pay the
additive error k times.

total additive error = k · ϵ∥A− Ak∥2F
k

= ϵ∥A− Ak∥2F
≤ ϵ∥A− QQTA∥2F

Since Ak is a better low-rank approximation than any QQTA.
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mixed error proof

(1− ϵ)ÃÃT − ϵ
∥A− Ak∥2F

k I ⪯ AAT ⪯ (1+ ϵ)ÃÃT + ϵ
∥A− Ak∥2F

k I

Proof follows directly from our “appending an identity” view!
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mixed error proof

A
√λ

√λ

√λ
√λ
√λ
√λ

Proof:

1. Leverage score sampling clearly works if we set pi > log n
ϵ τi.

2. Take identity columns with probability one, everything else
with leverage score probabilities.

3. Obtain a sketch B = [Ã,
√
λI] satisfying:

(1− ϵ)BBT ⪯ AAT + λI ⪯ (1+ ϵ)BBT

4. (1− ϵ)(ÃÃT + λI) ⪯ AAT + λI ⪯ (1+ ϵ)(ÃÃT + λI)
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3. Obtain a sketch B = [Ã,
√
λI] satisfying:

(1− ϵ)BBT ⪯ AAT + λI ⪯ (1+ ϵ)BBT
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mixed error proof

A
√λ

√λ

√λ
√λ
√λ
√λ

Number of columns sampled to form Ã depends on sum of
leverage scores, outside of the identity columns.

d∑
i=1

τ̃(ai) = tr
(
AT
(
ATA+

∥A− Ak∥2F
k I

)−1
A
)

=
d∑
i=1

σi

(
AT
(
ATA+

∥A− Ak∥2F
k I

)−1
A
)

≤ k+
d∑

i=k+1

σi(A)
σi(A) +

∥A−Ak∥2F
k

= k+ k = O(k).
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additional results

Proving the column subset selection result requires a bit of
additional work, but otherwise the rest of our paper focus on
two main applications of monotonicity:

1. The first nnz(A) time low-rank approximation algorithm
based on iterative column sampling.

2. Single pass algorithms for ridge leverage score sampling
whose memory requirements do not increase with d.

Please checkout the arXiv preprint!
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