

Cameron Musco, Christopher Musco \blacklozenge

ND	The Kernel Method			How?
GROU	Adapt any linear data analysis method			These methods only depend
	(regression, principal component			Information in the Gr
	analysis, support vector machines, etc.)			$\mathbf{K}_{i,j} = \langle \mathbf{X}_i, \mathbf{X}_j \rangle$
	to work with nonlinear similarity function			(n data vectors, $\mathbf{x}_i = \{x_i^1, \dots, x_i^n\}$
THE PROBLEM	Pro: Learn nonlinear function classes			Con: Limited S
			Just writing down K t	
				% of NIPS 10 Pre Kernels Medium data age
				titles 6
	Linear SVM	Kern	el SVM	containing 4
	Theoretically sound, effective in practice.			"kernel" 2
	1 1			Kernel methods can hand data. but not large
JUR APPROACH	Kernel Approximations	Speed	Accuracy	Nyström Met
	Incomplete Cholesky / explicit low-rank approximation	O(n³)	High	Low-rank approximation from of the "landmark" da
	Random Sketching	O(n²)	High	
	Random Fourier features	O(n)	Variable	Sample
	Standard Nyström method	O(n)	Variable	
	Our Recursive Nyström	O(n)	High	Time linear in n. Does no
RESULTS	Fast "leverage score" sampling			Strongest theoretica
	All good importance sam	approximate ker		
	require a good approximation to K to compute!			# of samples
	$ \mathbf{W}_{i}^{T}(\mathbf{K} + \lambda \mathbf{I})^{T} \mathbf{K}_{i} = \mathbf{K}_{i}^{T} (\mathbf{K} + \lambda \mathbf{I})^{T} \mathbf{K}_{i} $			O(statistical dimension)
	\mathbf{man} economic sampling gives good approximation with many landmarks – e.g. n/2.			/2.
	Approximate recursively!			Ο(k/ε)
	log(n) geometrically shrinking levels O(ms ²) time for level with m points			els O(k/ε) Its
			- ~/. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	

Final runtime = $O(ns^2)$

RECURSIVE SAMPLING FOR THE NYSTRÖM METHOD

Massachusetts Institute of Technology

d on inner product ram matrix:

Replace Gram matrix and use as usual*

 $\mathbf{K}_{i,j} = \langle \mathbf{X}_i, \mathbf{X}_j \rangle$ linear inner product

*kernel function needs to be PSD

The Nyström method is like "triangulation with noise". For data in s dimensions, we need s landmark points to determine all distances in **K**. If data nearly lies in s dimensions we need O(s) "well conditioned" points spread throughout data.

Many more experiments available in the paper.

Simple MATLAB code available at chrismusco.com

No tuning required! Works for any kernel.