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THE LANCZOS METHOD

The Lanczos Method is a single algorithm that underlies state
of the art iterative methods for:

• solving linear systems,
• approximating eigenvectors and eigenvalues,
• approximating matrix functions,
• and much more.

Introduced in 1950, developed through the 70s, ubiquitous in
well-developed scientific computing libraries.
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THE LANCZOS METHOD

Meta-observation: Despite decades of very good theoretical
work, for a wide range of problems, the Lanczos method often
performs far better than our best theory predicts.

1. Converges faster than expected.
2. Is more robust to round-off error on finite precision

computers than expected.

[Musco, Musco, Sidford, SODA 2018]
[Chen, Greenbaum, Musco, Musco, SIMAX 2022]
[Amsel, Chen, Musco, Musco, Greenbaum, 2023]

[Meyer, Musco, Musco, SODA 2024]
[Bhattacharjee, Jayaram, Musco, Musco, Ray, 2024]

Today: focus on Lanczos for matrix function approximation.
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WHAT IS A MATRIX FUNCTION?
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WHAT IS A MATRIX FUNCTION?

For today, just consider symmetric matrices A ∈ Rd×d, which
always have an eigendecomposition:

where V is orthogonal and λ1, . . . , λn are real.
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WHAT IS A MATRIX FUNCTION?

For any scalar function f : R → R define f(A):
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APPLICATIONS OF MATRIX FUNCTIONS

• When f(x) = 1
x , f(A) = A−1. f(A)b solves the system, Ax = b.

• When A has non-negative eigenvalues and f(x) =
√
x, f(A)

is the matrix square root. f(A)g samples a multivariate
Gaussian vector with covariance A.

• The matrix exponential, f(x) = ex, finds applications in
differential equations, control theory, computational
chemistry, combinatorial optimization, and more.
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APPLICATIONS OF MATRIX FUNCTIONS

Other important matrix functions: log, absolute value, sign
function, window functions, inverse square root, etc.

In many cases, tr(f(A)) is a meaningful quantity. E.g., tr(Aq) can
be used to count cycles in a graph adjacency matrix. tr(log(A))
is the log determinant. The trace of a window function applied
to A counts the number of eigenvalues in a given interval.

7



COMPUTING MATRIX FUNCTIONS

Cost to compute f (A):

O(n3)︸ ︷︷ ︸
eigendecompose A = VΛVT

+ O(n)︸︷︷︸
compute f(Λ)

+ O(n3)︸ ︷︷ ︸
form Vf (Λ) VT

= O(n3).

In theory, can be improved to O(nω) ≈ O(n2.371866).
(but this is still slow)
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FASTER MATRIX FUNCTIONS

Typically only interested in computing f(A)b for some b ∈ Rn.

Even for tr(f(A)), this is true, since we can estimate trace via
the identity tr(f(A)) = E[gTf(A)g] (Hutchinson’s estimator).

f


 A


 ·

b


Often much cheaper than computing f(A) explicitly!

Krylov subspace methods are the dominant approach for
approximating f(A)b in less than O(n3) time.
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KRYLOV SUBSPACE METHODS

Key observation: Low degree matrix polynomials can be
computed efficiently.

p
([

A
])

·

b


VΛkVTb = VΛVTVΛVT · · · VΛVTb = Akb

Total time to compute p(A)b = c0b+ c1Ab+ c2A2b+ . . .+ ckAkb:

O(k · n2) ≪ O(n3).

10



KRYLOV SUBSPACE METHODS

Key observation: Low degree matrix polynomials can be
computed efficiently.

p
([

A
])

·

b


VΛkVTb = VΛVTVΛVT · · · VΛVTb = Akb

Total time to compute p(A)b = c0b+ c1Ab+ c2A2b+ . . .+ ckAkb:

O(k · n2) ≪ O(n3).

10



KRYLOV SUBSPACE METHODS

Key observation: Low degree matrix polynomials can be
computed efficiently.

p
([

A
])

·

b


VΛkVTb = VΛVTVΛVT · · · VΛVTb = Akb

Total time to compute p(A)b = c0b+ c1Ab+ c2A2b+ . . .+ ckAkb:

O(k · n2) ≪ O(n3). 10



POLYNOMIAL APPROXIMATION

For general matrix functions: approximate f(x) with
low-degree polynomial p(x) so f(A)b ≈ p(A)b.
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The Lanczos method gives one particular way of doing this
that works for any function f. When A is positive definite, and
f(x) = 1/x, it is equivalent to the Conjugate Gradient method.

Other Krylov subspace methods: MINRES, Richardson iteration
/ gradient descent, accelerated gradient descent, etc. 11



POLYNOMIAL APPROXIMATION

∥f(A)b− p(A)b∥ ≤ ∥f(A)− p(A)∥ · ∥b∥≤ ϵ · ∥b∥

where

ϵ = max
i=1,...,n

|f(λi)− p(λi)|.
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FINDING GOOD APPROXIMATING POLYNOMIALS

If we know λmin(A) and λmax(A) we can explicitly compute an
optimal polynomial p for uniformly approximating f.

δk = min
degree k poly p

(
max

x∈[λmin(A),λmax(A)]
|f(x)− p(x)|

)

Final bound: Return p(A)b such that

∥f(A)b− p(A)b∥ ≤ δk · ∥b∥.
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APPLICATIONS

Example bounds:

• Linear systems in k = O
(√

λmax / λmin log(1/ϵ)
)
iterations.

• Matrix sign function in k = O (1/ϵ) iterations.
• Top eigenvector in k = O (log(n)/

√
ϵ) iterations.

But, we need to know λmin and λmax, and finding/representing
an optimal p can be challenging.

The Lanczos method avoids these issues and performs much
better in practice.
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LANCZOS METHOD FOR MATRIX FUNCTIONS

Step 1: Form orthogonal matrix Q = [q0,q1, . . . ,qk] that spans
the Krylov subspace

K = {b,Ab,A2b, . . .Akb}.

Step 2: Compute (tridiagonal)
T = QTAQ

Step 3: Approximate f(A)b by

Qf(T)QTb
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LANCZOS METHOD FOR MATRIX FUNCTIONS

Runtime: O(n2k+ nk+ k2 log k)

Reduce the problem to the cost of computing a matrix
function for a k× k matrix.
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LANCZOS THEOREM

Current state-of-the-art convergence result for Lanczos:
Theorem (Implicit in Saad, ‘92)
Let Qf(T)QT be the output of Lanczos run on A,b for k
iterations with function f. Then, for any f:

∥Qf(T)QTb− f(A)b∥ ≤ 2 · δk · ∥b∥,

where

δk = min
degree k poly p

(
max

x∈[λmin(A),λmax(A)]
|f(x)− p(x)|

)
.

Takeaway: Lanczos matches the best uniform polynomial
approximation up to a factor of two! And we didn’t even need
to do any computation involving polynomials. 17



QUICK ANALYSIS

Very powerful result with straightforward proof!

Claim 1: Lanczos applies degree k polynomials exactly.

Proof:

b,Ab,A2b all lie in the span of Q (the degree k Krylov
subspace).
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QUICK ANALYSIS

For general functions f(x) we use triangle inequality to show
that Lanczos automatically applies the polynomial “part” of f.

Let p be the optimal degree k polynomial approximation to f
on [λmin(A), λmax(A)]:

∥f(A)b− Qf(T)QTb∥ ≤ ∥f(A)b− p(A)b∥
+ ∥p(A)b− Qp(T)QTb∥
+ ∥Qp(T)QTb− Qf(T)QTb∥

≤ δk∥b∥

+ 0+ ∥p(T)− f(T)∥ · ∥QTb∥

Since T = QTAQ, [λmin(T), λmax(T)] ⊆ [λmin(A), λmax(A)].
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CURRENT STATE-OF-THE-ART

Theorem (Implicit in Saad, ‘92)
Let Qf(T)QT be the output of Lanczos run on A,b for k
iterations with function f. Then, for any f:

∥Qf(T)QTb− f(A)b∥ ≤ 2 · δk · ∥b∥,

where

δk = min
degree k poly p

(
max

x∈[λmin(A),λmax(A)]
|f(x)− p(x)|

)
.

Really great bound, but is this the end of the story?

20



EMPIRICAL OBSERVATION

Lanczos almost always performs even better than the uniform
convergence bound predicts. Often by orders of magnitude.

What is the right bound?
21



EMPIRICAL OBSERVATION

Conjecture (Instance Optimality of Lanczos)
For a wide-variety of matrix functions, the Lanczos method
performs nearly as well as the best solution in the Krylov
subspace. I.e., for some approximation factor C,

∥Qf(T)QT − f(A)b∥ ≤ C · min
degree k poly p

∥f(A)− p(A)∥.

22



EMPIRICAL OBSERVATION

I.e., we believe Lanczos is competitive with polynomials that
are only accurate at A’s eigenvalues, instead of on the entires
interval [λmin(A), λmax(A)]. Despite the fact that it doesn’t have

enough information to compute A’s eigenvalues. 23



EMPIRICAL EVIDENCE

24



EXISTING THEORETICAL EVIDENCE

Conjecture is known to hold for the special case of f(x) = 1/x when
A is positive definite.

Claim (Optimality of Lanczos/CG for Linear Systems)
For any positive definite A,

∥QT−1QT − f(A)b∥A = min
degree k poly p

∥f(A)− p(A)∥A

As a consequence, letting κ(A) = λmin(A)/ λmax(A) be the condition
number of A,

∥QT−1QT − f(A)b∥ ≤
√

κ(A) · min
degree k poly p

∥f(A)− p(A)∥.

A related but weaker guarantee was shown for the matrix exponential
by [Druskin, Greenbaum, Knizhnerman ‘98], but otherwise no
near-optimality guarantees are known for any other functions. 25



OUR RESULT

Lanczos is near-optimal for rational functions more broadly!

Setting:

• Let r(x) = (x−w1)(x−w2)...(x−wm)
(x−z1)(x−z2)...(x−zq) be a degree-(m,q) rational

function with real poles lying outside A’s spectral range. I.e.,
z1, . . . , zq /∈ [λmin(A), λmax(A)].

Theorem (Main result)
Lanczos is near-instance optimal for a such a rational function with
C = q ·

∏q
i=1 κ(A− ziI). Specifically, for k ≥ max{m,q− 1},

∥f(A)b− Qf(T)QTb∥ ≤ C · min
degree (k − q + 1) poly. p

∥f(A)b− p(A)b∥.
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REMARKS ON THE MAIN RESULT

• Our approximation factor C = q ·
∏q

i=1 κ(A− ziI) is really bad.
Grows exponentially in q. We believe it can be significantly
improved.

• The worst case empirical value we observed for C when all poles
are at 0 is roughly

√
q · κ(A).

• The requirement that z1, . . . , zq /∈ [λmin(A), λmax(A)] is necessary
for a true near-optimality bound, but we might hope to prove
slightly weaker results. More on this later.
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EMPIRICAL PERFORMANCE

Despite the seeming looseness in our bound, it often more
accurately reflects the performance of Lanczos in practice than the
classic uniform approximation bound does.
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WHY DO WE CARE ABOUT RATIONAL FUNCTIONS?

• Rational functions are interesting in their own right. They
include e.g. 1/x, 1/xq, etc.

• More importantly, rational functions often give very
accurate approximations to other functions, so their
behavior can tell use about other functions.

• For example, a uniform polynomial approximation to
√
x

on [λmin, λmax] requires O(
√
λmax / λmin) degree. A uniform

rational approximation requires just O(log(λmax / λmin))

degree. Similar improvements are possible to for xα for
other choices of α, exp(−x), etc.
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WHY DO WE CARE ABOUT RATIONAL FUNCTIONS?

Convergence for f(A) = A−0.4.

Behavior of Lanczos for f(A) closely tracks behavior for rational
approximations of f.
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WHY DO WE CARE ABOUT RATIONAL FUNCTIONS?

Formally, if we have a C-factor near-optimality result for
rational functions of degree (m,q), a simple application of
triangle inequality shows that:

∥Qf(T)QTb− f(A)b∥ ≤ C · min
degree k poly p

∥f(A)b− p(A)b∥

+ (C+ 2) · γm,q · ∥b∥2,

where γm,q is error of the optimal degree-(m,q) rational
approximation to f on [λmin, λmax].

So, Lanczos is near optimal for f, up to a term depending on
the error of the best uniform rational approximation. Typically
far smaller than the error of the best uniform polynomial
approximation that appears in current bounds for Lanczos.
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PROOF SKETCH

Our proof starts with the instance optimality of Lanczos (equivalently
CG) for applying f(x) = 1/x. I.e., f(A)b = A−1b.

∥A−1b− QT−1QTb∥ ≤
√
κ(A) · min

degree k poly p
∥A−1b− p(A)b∥

Follows from the fact that Lanczos computes the A-norm optimal
approximation to A−1b in the Krylov subspace.

In particular, the Krylov subspace is spanned by Q. To project a
vector y onto Q in the A-norm, ∥ · ∥A, we apply the projector:

Q(QTAQ)−1QTAy.

32



PROOF SKETCH

To get a sense of how to generalize this to rational functions, let’s
consider the special case of r(x) = 1/x2. I.e., r(A) = A−2.

∥A−2b− QT−2QTb∥ = ∥A−2b− QT−1QTA−1b∥+ ∥QT−2QTb− QT−1QTA−1b∥.

Term 1: ∥A−2b− QT−1QTA−1b∥.

• By previous slide, QT−1QTA−1b is the best approximation to A−2b
in the span of the Krylov subspace in the A-norm. So we have:

∥A−2b− QT−1QTA−1b∥ ≤
√
κ(A) · min

degree k poly p
∥A−2b− p(A)b∥.
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Term 1: ∥A−2b− QT−1QTA−1b∥.

• By previous slide, QT−1QTA−1b is the best approximation to A−2b
in the span of the Krylov subspace in the A-norm. So we have:

∥A−2b− QT−1QTA−1b∥ ≤
√
κ(A) · min

degree k poly p
∥A−2b− p(A)b∥.
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PROOF SKETCH

Putting it together, we have:

∥A−2b− QT−2QTb∥ = ∥A−2b− QT−1QTA−1b∥+ ∥QT−2QTb− QT−1QTA−1b∥
≤
√
κ(A) · min

degree k poly p
∥A−2b− p(A)b∥

+ κ(A)3/2 · min
degree k − 1 poly p

∥A−2b− p(A)b∥

≤ 2κ(A)3/2 · min
degree k − 1 poly p

∥A−2b− p(A)b∥.

• This gives our main result in the special case of r(x) = 1/x2.

• The general result follows by iterating these types of ideas to
bound the error on higher degree rational functions.
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OPEN QUESTIONS

• Tighten our bounds. Our worst numerical example for A−q has
C =

√qκ. Our best theoretical upper bound is C = qκq.

• Extend our results to the case when r(x) has poles in A’s
spectral range. In this case, Lanczos seems to be oscillate
between very bad and near optimal solutions.

• We can explain this when A is not PSD and r(x) = 1/x by relating
the convergence of CG to that of MINRES. Lack a general result.
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OPEN QUESTIONS

• Prove a direct instance optimality bound for the matrix
exponential. Some progress in [Druskin, Greenbaum,
Knizhnerman ‘98].

• Prove instance optimality bounds for the matrix square root,
inverse square root, or other central functions.

• Understand the role of finite precision. We know that it matters
a lot: uniform approximation bounds are much more stable
than instance optimal ones.
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FINITE PRECISION

Theorem (Musco, Musco, Sidford, 2018)
For any bounded function f, if Lanczos is run on a finite
precision computer with log(poly(n, κ, δk)) bits of precision,

∥Qf(T)QTb− f(A)b∥ ≤ 7k · δk · ∥b∥,

where

δk = min
degree k poly p

(
max

x∈[λmin(A),λmax(A)]
|f(x)− p(x)|

)
.

I.e., the uniform approximation bound basically goes through
with a small additional constant factor.
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FINITE PRECISION

The story is much more complicated for near-optimality
bounds, and we know relative error guarantees do not hold.

In particular, there is always a degree n polynomial with zero
error in approximating f at A’s eigenvalues. So a
finite-precision near optimality bound would e.g. imply that
A−1b can be computed in:

O(nnz(A)n) time ,

independent of the condition number.

In finite precision, Lanczos/CG do no achieve this, but there is
some really cool recent progress on faster solvers for sparse
systems using Krylov methods [Peng, Vempala ‘21, Nie ‘22].
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LINEAR SYSTEMS IN FINITE PRECISION

Greenbaum (1989): Finite precision Lanczos and conjugate
gradient match the best polynomial approximating 1/x in tiny
intervals around A’s eigenvalues:
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THANK YOU!
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