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implicit trace estimation

Basic problem in linear algebra:
• Given access to a n× n matrix A through a matrix-vector
multiplication oracle.

• Goal is to (approximately) compute tr(A) =
∑n

i=1 Aii.

Main question: How many matrix-vector multiplication
“queries” Ax1, . . . ,Axm are required to compute tr(A)?1

1xi can be chosen adaptively, based on result of Ax1, . . . ,Axi−1.
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implicit trace estimation

Algorithms in this model are called matrix-free,
or implicit matrix methods.

Typically useful when A is not stored explicitly, but we have an
efficient algorithm for multiplying A by a vector.

Example: Hessian matrix-vector products.

Suppose we have some function f(y) and we can efficiently
compute gradients ∇f(y) for any y. Let A = ∇2f(y). Then:

Ax ≈ ∇f(y+ ηx)−∇f(y)
η

for sufficiently small η.
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implicit trace estimation

Also important when A is a function of another matrix B:

A = f(B)
Common examples:

A = BTB A = B3 A = 2B3 − 3B2 − I

Cost to compute A and tr(A) explicitly:

O(n3) O(n3) O(n3)

Cost to compute matrix-vector multiplication Ax:

O(n2) O(n2) O(n2)

All cheaper by a factor of n! Even more savings if A is sparse
or structured.
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implicit trace estimation

For more complex matrix functions, we can often compute
Ax = f(B)x efficiently using iterative methods:

• Conjugate gradient, or any other system solver: A = B−1.
• Lanczos method: A = exp(B), A =

√
B, A = log(B), etc.

All run in O(n2 · C) time, where C depends on properties of B.
For example, for A = B−1, C =

√
κ · log(1/ϵ).

In practice, we typically have O(n2 · C) ≪ O(n3).

6



example applications

• Log-likelihood computation in Bayesian optimization,
experimental design. tr(log(B)) = logdet(B).

• Estrada index, network connectivity. tr(exp(B)).
• Triangle counting in graphs. tr(exp(B3)).
• Counting number of eigenvalues in an interval.
• Spectral density estimation.
• Matrix norms.
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naive exact algorithm

Naive approach:

• Set xi = ei for i = 1, . . . ,n.
• Return tr(A) =

∑n
i=1 xTi Axi

Returns exact solution, but requires n matrix-vector multiplies.
We want≪ n multiplies, and will do so by allowing for
approximation.
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hutchinson’s stochastic trace estimator

Simple, powerful, and widely used method for trace
estimation.

Hutchinson 1991, Girard 1987:

• Draw x1, . . . , xm ∈ Rn i.i.d. with random {+1,−1} entries.
• Return T̃ = 1

m
∑m

i=1 xTi Axi as approximation to tr(A).
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hutchinson’s stochastic trace estimator

Let T̃ be the trace estimate returned by Hutchinson’s method.

Claim (Avron, Toledo 2011, Roosta, Ascher 2015)

If m = O
(
log(1/δ)

ϵ2

)
, then with probability (1− δ),∣∣∣T̃− tr(A)

∣∣∣ ≤ ϵ∥A∥F.

If A is symmetric positive semidefinite (PSD) with eigenvalues
λ1, . . . , λn, then

∥A∥F =

√√√√ n∑
i=1

λ2i ≤
n∑
i=1

λi = tr(A).

Corollary: For PSD A: (1− ϵ) tr(A) ≤ T̃ ≤ (1+ ϵ) tr(A).
10



expected value analysis

Hutchinson’s Estimator:
• Draw x1, . . . , xm ∈ Rn i.i.d. with random {+1,−1} entries.
• Return T̃ = 1

m
∑m

i=1 xTi Axi as approximation to tr(A).

Expected value analysis:

For a single random ±1 vector x,

E[ T̃ ] = E[xTAx] = E
n∑
i=1

n∑
j=1

xixjAij =
n∑
i=1

n∑
j=1

E[xixjAij] =
n∑
i=1

Aii

So the estimator is correct in expectation:

E[T̃] = tr(A).
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variance analysis

Hutchinson’s Estimator:
• Draw x1, . . . , xm ∈ Rn i.i.d. with random {+1,−1} entries.
• Return T̃ = 1

m
∑m

i=1 xTi Axi as approximation to tr(A).

Variance analysis:

Var[ T̃ ] = 1
m Var[xTAx] = 1

m Var

 n∑
i=1

n∑
j=1

xixjAij


=

1
m

n∑
i=1

n∑
j=1

Var[xixjAij] =
1
m

n∑
i ̸=j

A2ij ≤
1
m∥A∥2F

(We used that xixj and xjxk are pairwise independent.)
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final analysis

Hutchinson’s Estimator:
• Draw x1, . . . , xm ∈ Rn i.i.d. with random {+1,−1} entries.
• Return T̃ = 1

m
∑m

i=1 xTi Axi as approximation to tr(A).

Final analysis: Chebyshev’s inequality implies that, with
probability 9/10, ∣∣∣T̃− tr(A)

∣∣∣ ≤ 1√
m/10

∥A∥F.

Setting m = O
(
1/ϵ2

)
gives

∣∣∣T̃− tr(A)
∣∣∣ ≤ ϵ∥A∥F.

Getting correct log(1/δ) dependence requires a bit more work
(Hanson-Wright inequality).
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research question

Result: O
(
1/ϵ2

)
matrix-vector multiplies suffice to return, with

prob. 9/10, a trace estimate for a PSD matrix with relative error:

(1− ϵ) tr(A) ≤ T̃ ≤ (1± ϵ) tr(A).

Research Question: Is this tight?
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research question

Broader line of work: Tight upper bounds and lower bounds
on complexity of basic linear algebra problems in
“matrix-vector query” model.

• Top eigenvector: Simchowitz, Alaoui, Recht, 2018.
• Least squares regression: Braverman, Hazan, Simchowitz,
Woodworth, 2020.

• Rank, symmetry test, and more: Sun, Woodruff, Yang, and
Zhang, 2019.
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matrix-vector query model

The matrix-vector query model generalizes the most common
models of computations in linear algebra.

Krylov subpace model:

• Compute Ax,A2x, . . . ,Amx for chosen vector x.
• Lower bounds typically via approximation theoretic
arguments (understanding the limits of polynomials).

Matrix sketching model:

• Compute Ax1, . . . ,Axm where x1 . . . , xm are chosen
non-adaptivity (usually chosen to be random vectors).

• Lower bounds typically via one-round communication
complexity.
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matrix-vector query model

Merits of this model:

• Captures most algorithms that are used in practice, where
matrix-vector multiplies often dominate computation cost.

• Allowing arbitrary adaptivity makes the model quite a bit
richer. Proving lower bounds seems harder but doable.

• Appears to be a “sweet spot” for understanding problem
complexity in linear algebra.

Limitation:

• Does not capture methods like stochastic gradient or
coordinate descent.
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our results

Upper bound: O (1/ϵ) matrix-vector multiplies suffice to
return, with prob. 9/10, a trace estimate for a PSD matrix with
relative error:

(1− ϵ) tr(A) ≤ T̃ ≤ (1+ ϵ) tr(A).

• Quadratic improvement over Hutchinson’s O
(
1/ϵ2

)
.

• Algorithm achieving bound is nearly as simple.
• Performs much better experimentally.

Lower bound: Ω(1/ϵ) matrix-vector multiplies are necessary to
obtain a relative error approximation with probability > 2/3.

• Two different approaches: reduction from multi-round
communication complexity, and from hypothesis testing
for negatively spiked covariance matrices.
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spectrum dependent bound

Observation: Hutchinson’s method performs much better
when A has a “flatter” spectrum.

We proved that: |T̃− tr(A)| ≤ ϵ∥A∥F ≤ ϵ tr(A), but when the
spectrum is decaying ∥A∥F ≪ tr(A).

In the extreme case when λ1 = λ2 = . . . = λn, we have:

∥A∥F =

√√√√ n∑
i=1

λ2i =
1√
n

n∑
i=1

λi =
1√
n
tr(A).
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steep spectrum

On the other hand, when A’s spectrum is decaying, we get a
good approximation by simply computing its top eigenvectors.

tr(A) =
n∑
i=1

λi ≈
k∑
i=1

λk = tr(AQQT)

where Q ∈ Rn×m is an orthonormal span A’s top k eigenvalues.
.
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steep spectrum

• Q itself can be computed with ∼ O(k) matrix-vector
multiplication queries using block power method or a
Krlyov method (Saibaba, Alexanderian, Ipsen, 2018).

• Then tr(AQQT) = tr(QT (AQ)) can be computed with k
additional matrix-vector multiplies.

Main observation: Every spectrum is either “flat enough” or
“decaying enough” to prove a better bound than O(1/ϵ2).
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our method: hutch++

1. Find approximate span for top k eigenvectors Q.
2. Observe that tr(A) = tr(AQQT) + tr(A(I− QQT))
3. Approximate P̃ = tr(A(I− QQT)) using Hutchinson’s with ℓ

vectors.
4. Return T̃ = tr(AQQT) + P̃.

The only error is from the estimator for tr(A(I− QQT)), which
will have much lower variance if ∥A(I− QQT)∥F ≪ ∥A∥F.
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sketching based low-rank approximation

Standard result in Randomized Numerical Linear Algebra:
Lemma (Sarlos 2006, Woodruff 2014)
If S ∈ Rn×m is chosen with i.i.d. ±1 entries, then Q = orth(AS)
satisfies with probability (1− δ),

∥A− AQQT∥F ≤ 2∥A− Ak∥F,

as long as S has m = O (k+ log(1/δ)) columns.

Here Ak is the best k-rank approximation to A, obtained by
projecting onto A’s top k eigenvectors.

Note that Q can be view as the result of running a single step
of power method on A.
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final bound

For any PSD matrix A:

∥A− Ak∥2F =
n∑

i=k+1
λ2i ≤ λk+1

n∑
i=k+1

λi ≤
1
k tr(A) · tr(A).

So if
∥∥A(I− QQT)

∥∥
F ≤ 2 ∥A− Ak∥F, then with high probability,∣∣∣tr(A(I− QQT)− P̃

∣∣∣ ≤ 1√
ℓ

∥∥A(I− QQT)
∥∥
F ≤

1√
ℓ
· 2√

k
tr(A).

Setting ℓ = k = O(1/ϵ) gives error ϵ tr(A) and thus:∣∣∣tr(A)− T̃
∣∣∣ = ∣∣∣tr(A(I− QQT)− P̃

∣∣∣ ≤ ϵ tr(A).
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final algorithm

Theorem (Final Result)

If m = O
(
log(1/δ)

ϵ

)
and A is PSD then with probability (1− δ),

Hutch++ returns T̃ satisfying:

(1− ϵ) tr(A) ≤ T̃ ≤ (1+ ϵ) tr(A)

This algorithm is adaptive, meaning that the choice of xi
depends on Ax1 . . . ,Axi−1. We also have a non-adaptive
method, NA-Hutch++ that achieves the same bound.
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experimental results

Results on synthetic matrix A with spectrum λi = i−c for
different values of c.
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applications

If B is symmetric with eigendeposition VΛVT, we let f(B) denote
Vf(Λ)VT, which means that f is applied entrywise to the
diagonal matrix of eigenvalues, Λ. Note that tr(B) =

∑n
i=1 f(λi).

A = exp(B) for graph adjacency matrix B from linguistics application.
tr(A) is the well known Estrada Index or “natural connectivity”.
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applications

A = log(B+ λI) for kernel matrix B from Gaussian process regression.
tr(A) = log det(B), which is used in loglikelihood calculations.

Takeaway: For matrix functions that flatten B’s spectrum,
Hutchinson’s estimator performs far better than the O(1/ϵ2)
bound predicts. Hutch++ will never perform much worse.
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applications

Hutch++ works well empirically for many non-PSD matrices.

Let B is the (indefinite) adjacency matrix of an undirected
graph G, tr(B3) is exactly equal to the number of triangles in G.

A = B3 for arXiv.org citation network and Wikipedia voting network.
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real applications

For non-PSD A, the projection step, A(I− QQT) approximately
removes A’s largest magnitude eigenvalues, which can still
reduces variance substantially.

Spectrum of A = B3 for arXiv.org citation network.
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a lower bound

Theorem
Any algorithm that accesses a PSD matrix A via matrix-vector
multiplication queries Ax1, . . . ,Axm, where x1, . . . , xm are
possibly adaptively chosen vectors with integer entries in
{−2b, ..., 2b}, needs

m = Ω

(
1

ϵ · [b+ log(1/ϵ)]

)
queries

to approximate tr(A) to multiplicative error (1± ϵ).

Reduction to 2-party multi-round communication problem.
“Hard” input distribution will involve A with integer entries,
which is why we need the bit complexity bound b.
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gap hamming problem

Problem (Gap Hamming)

Let Alice and Bob be communicating parties who hold vectors
s, t ∈ {−1, 1}n, respectively. Must decide with few bits of
communication if:

⟨s, t⟩ ≥
√
n or ⟨s, t⟩ ≤ −

√
n

Theorem (Chakrabarti, Regev 2012)
The randomized communication complexity for solving
Problem 1 with probability ≥ 2/3 is Ω(n) bits.
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reduction to trace estimation

Let Z = S+ T and A = ZTZ.
tr(A) = ∥Z∥2F = ∥s+ t∥22 = 2n− 2⟨s, t⟩.

So if Alice and Bob and estimate tr(A) up to error (1± 1/
√
n),

then they will solve the Gap Hamming problem. 33



reduction to trace estimation

Claim: Alice and Bob can simulate any m query algorithm for
estimating the trace of A = (S+ T)T(S+ T) with
O
(
m
√
n(logn+ b)

)
bits of communication.

• Alice decides on x1, sends to Bob with
√
n · log(2b) bits.

• Bob computes Tx1, sends to Alice with
√
n · log(

√
n2b) bits.

• Alice computes (S+ T)x1.
• Repeat to multiply (S+ T)x1 by (S+ T)T

• Alice decides on x2, process repeats m times.

So, by Ω(n) lower bound for Gap Hamming, we can’t have m
less than

√
n

log n+b . Setting ϵ = 1/
√
n gives the result.
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open questions

• In progress: Lower bounds for e.g. tr(A3), tr(exp(A)), tr(A−1).

• What about (coarse) approximate matrix vector multiplications?
We have some upcoming work on this related to spectral
density estimation problems, but there’s a lot to think about.

• Relates to model where we sample rows or columns of A (and
implement things like SGD/SCD).

• Can we get conditional lower bounds for simple problems like
triangle counting in a completely general computational model?
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