
Optimal Stochastic Trace Estimation

Christopher Musco
New York University, Tandon School of Engineering

1

collaborators

Raphael Meyer
(NYU)

Cameron Musco
(UMass. Amherst)

David Woodruff
(CMU)

Paper available at: https://arxiv.org/pdf/2010.09649.pdf.

Recently accepted to the Symposium on Simplicity in
Algorithms (SOSA 2021).

2

https://arxiv.org/pdf/2010.09649.pdf

implicit trace estimation

Basic problem in linear algebra:
• Given access to a n× n matrix A through a matrix-vector
multiplication oracle.

• Goal is to (approximately) compute tr(A) =
∑n

i=1 Aii.

Main question: How many matrix-vector multiplication
“queries” Ax1, . . . ,Axm are required to compute tr(A)?1

1xi can be chosen adaptively, based on result of Ax1, . . . ,Axi−1.

3

implicit trace estimation

Algorithms in this model are called matrix-free,
or implicit matrix methods.

Typically useful when A is not stored explicitly, but we have an
efficient algorithm for multiplying A by a vector.

Example: Hessian matrix-vector products.

Suppose we have some function f(y) and we can efficiently
compute gradients ∇f(y) for any y. Let A = ∇2f(y). Then:

Ax ≈ ∇f(y+ ηx)−∇f(y)
η

for sufficiently small η.

4

implicit trace estimation

Also important when A is a function of another matrix B:

A = f(B)
Common examples:

A = BTB A = B3 A = 2B3 − 3B2 − I

Cost to compute A and tr(A) explicitly:

O(n3) O(n3) O(n3)

Cost to compute matrix-vector multiplication Ax:

O(n2) O(n2) O(n2)

All cheaper by a factor of n! Even more savings if A is sparse
or structured.

5

implicit trace estimation

For more complex matrix functions, we can often compute
Ax = f(B)x efficiently using iterative methods:

• Conjugate gradient, or any other system solver: A = B−1.
• Lanczos method: A = exp(B), A =

√
B, A = log(B), etc.

All run in O(n2 · C) time, where C depends on properties of B.
For example, for A = B−1, C =

√
κ · log(1/ϵ).

In practice, we typically have O(n2 · C) ≪ O(n3).

6

example applications

• Log-likelihood computation in Bayesian optimization,
experimental design. tr(log(B)) = logdet(B).

• Estrada index, network connectivity. tr(exp(B)).
• Triangle counting in graphs. tr(exp(B3)).
• Counting number of eigenvalues in an interval.
• Spectral density estimation.
• Matrix norms.

7

naive exact algorithm

Naive approach:

• Set xi = ei for i = 1, . . . ,n.
• Return tr(A) =

∑n
i=1 xTi Axi

Returns exact solution, but requires n matrix-vector multiplies.
We want≪ n multiplies, and will do so by allowing for
approximation.

8

hutchinson’s stochastic trace estimator

Simple, powerful, and widely used method for trace
estimation.

Hutchinson 1991, Girard 1987:

• Draw x1, . . . , xm ∈ Rn i.i.d. with random {+1,−1} entries.
• Return T̃ = 1

m
∑m

i=1 xTi Axi as approximation to tr(A).

9

hutchinson’s stochastic trace estimator

Let T̃ be the trace estimate returned by Hutchinson’s method.

Claim (Avron, Toledo 2011, Roosta, Ascher 2015)

If m = O
(
log(1/δ)

ϵ2

)
, then with probability (1− δ),∣∣∣T̃− tr(A)

∣∣∣ ≤ ϵ∥A∥F.

If A is symmetric positive semidefinite (PSD) with eigenvalues
λ1, . . . , λn, then

∥A∥F =

√√√√ n∑
i=1

λ2i ≤
n∑
i=1

λi = tr(A).

Corollary: For PSD A: (1− ϵ) tr(A) ≤ T̃ ≤ (1+ ϵ) tr(A).
10

expected value analysis

Hutchinson’s Estimator:
• Draw x1, . . . , xm ∈ Rn i.i.d. with random {+1,−1} entries.
• Return T̃ = 1

m
∑m

i=1 xTi Axi as approximation to tr(A).

Expected value analysis:

For a single random ±1 vector x,

E[T̃] = E[xTAx] = E
n∑
i=1

n∑
j=1

xixjAij =
n∑
i=1

n∑
j=1

E[xixjAij] =
n∑
i=1

Aii

So the estimator is correct in expectation:

E[T̃] = tr(A).

11

variance analysis

Hutchinson’s Estimator:
• Draw x1, . . . , xm ∈ Rn i.i.d. with random {+1,−1} entries.
• Return T̃ = 1

m
∑m

i=1 xTi Axi as approximation to tr(A).

Variance analysis:

Var[T̃] = 1
m Var[xTAx] = 1

m Var

 n∑
i=1

n∑
j=1

xixjAij

=

1
m

n∑
i=1

n∑
j=1

Var[xixjAij] =
1
m

n∑
i ̸=j

A2ij ≤
1
m∥A∥2F

(We used that xixj and xjxk are pairwise independent.)
12

final analysis

Hutchinson’s Estimator:
• Draw x1, . . . , xm ∈ Rn i.i.d. with random {+1,−1} entries.
• Return T̃ = 1

m
∑m

i=1 xTi Axi as approximation to tr(A).

Final analysis: Chebyshev’s inequality implies that, with
probability 9/10, ∣∣∣T̃− tr(A)

∣∣∣ ≤ 1√
m/10

∥A∥F.

Setting m = O
(
1/ϵ2

)
gives

∣∣∣T̃− tr(A)
∣∣∣ ≤ ϵ∥A∥F.

Getting correct log(1/δ) dependence requires a bit more work
(Hanson-Wright inequality).

13

research question

Result: O
(
1/ϵ2

)
matrix-vector multiplies suffice to return, with

prob. 9/10, a trace estimate for a PSD matrix with relative error:

(1− ϵ) tr(A) ≤ T̃ ≤ (1± ϵ) tr(A).

Research Question: Is this tight?

14

research question

Broader line of work: Tight upper bounds and lower bounds
on complexity of basic linear algebra problems in
“matrix-vector query” model.

• Top eigenvector: Simchowitz, Alaoui, Recht, 2018.
• Least squares regression: Braverman, Hazan, Simchowitz,
Woodworth, 2020.

• Rank, symmetry test, and more: Sun, Woodruff, Yang, and
Zhang, 2019.

15

matrix-vector query model

The matrix-vector query model generalizes the most common
models of computations in linear algebra.

Krylov subpace model:

• Compute Ax,A2x, . . . ,Amx for chosen vector x.
• Lower bounds typically via approximation theoretic
arguments (understanding the limits of polynomials).

Matrix sketching model:

• Compute Ax1, . . . ,Axm where x1 . . . , xm are chosen
non-adaptivity (usually chosen to be random vectors).

• Lower bounds typically via one-round communication
complexity.

16

matrix-vector query model

Merits of this model:

• Captures most algorithms that are used in practice, where
matrix-vector multiplies often dominate computation cost.

• Allowing arbitrary adaptivity makes the model quite a bit
richer. Proving lower bounds seems harder but doable.

• Appears to be a “sweet spot” for understanding problem
complexity in linear algebra.

Limitation:

• Does not capture methods like stochastic gradient or
coordinate descent.

17

our results

Upper bound: O (1/ϵ) matrix-vector multiplies suffice to
return, with prob. 9/10, a trace estimate for a PSD matrix with
relative error:

(1− ϵ) tr(A) ≤ T̃ ≤ (1+ ϵ) tr(A).

• Quadratic improvement over Hutchinson’s O
(
1/ϵ2

)
.

• Algorithm achieving bound is nearly as simple.
• Performs much better experimentally.

Lower bound: Ω(1/ϵ) matrix-vector multiplies are necessary to
obtain a relative error approximation with probability > 2/3.

• Two different approaches: reduction from multi-round
communication complexity, and from hypothesis testing
for negatively spiked covariance matrices.

18

spectrum dependent bound

Observation: Hutchinson’s method performs much better
when A has a “flatter” spectrum.

We proved that: |T̃− tr(A)| ≤ ϵ∥A∥F ≤ ϵ tr(A), but when the
spectrum is decaying ∥A∥F ≪ tr(A).

In the extreme case when λ1 = λ2 = . . . = λn, we have:

∥A∥F =

√√√√ n∑
i=1

λ2i =
1√
n

n∑
i=1

λi =
1√
n
tr(A).

19

steep spectrum

On the other hand, when A’s spectrum is decaying, we get a
good approximation by simply computing its top eigenvectors.

tr(A) =
n∑
i=1

λi ≈
k∑
i=1

λk = tr(AQQT)

where Q ∈ Rn×m is an orthonormal span A’s top k eigenvalues.
.

20

steep spectrum

• Q itself can be computed with ∼ O(k) matrix-vector
multiplication queries using block power method or a
Krlyov method (Saibaba, Alexanderian, Ipsen, 2018).

• Then tr(AQQT) = tr(QT (AQ)) can be computed with k
additional matrix-vector multiplies.

Main observation: Every spectrum is either “flat enough” or
“decaying enough” to prove a better bound than O(1/ϵ2).

21

our method: hutch++

1. Find approximate span for top k eigenvectors Q.
2. Observe that tr(A) = tr(AQQT) + tr(A(I− QQT))
3. Approximate P̃ = tr(A(I− QQT)) using Hutchinson’s with ℓ

vectors.
4. Return T̃ = tr(AQQT) + P̃.

The only error is from the estimator for tr(A(I− QQT)), which
will have much lower variance if ∥A(I− QQT)∥F ≪ ∥A∥F.

22

sketching based low-rank approximation

Standard result in Randomized Numerical Linear Algebra:
Lemma (Sarlos 2006, Woodruff 2014)
If S ∈ Rn×m is chosen with i.i.d. ±1 entries, then Q = orth(AS)
satisfies with probability (1− δ),

∥A− AQQT∥F ≤ 2∥A− Ak∥F,

as long as S has m = O (k+ log(1/δ)) columns.

Here Ak is the best k-rank approximation to A, obtained by
projecting onto A’s top k eigenvectors.

Note that Q can be view as the result of running a single step
of power method on A.

23

final bound

For any PSD matrix A:

∥A− Ak∥2F =
n∑

i=k+1
λ2i ≤ λk+1

n∑
i=k+1

λi ≤
1
k tr(A) · tr(A).

So if
∥∥A(I− QQT)

∥∥
F ≤ 2 ∥A− Ak∥F, then with high probability,∣∣∣tr(A(I− QQT)− P̃

∣∣∣ ≤ 1√
ℓ

∥∥A(I− QQT)
∥∥
F ≤

1√
ℓ
· 2√

k
tr(A).

Setting ℓ = k = O(1/ϵ) gives error ϵ tr(A) and thus:∣∣∣tr(A)− T̃
∣∣∣ = ∣∣∣tr(A(I− QQT)− P̃

∣∣∣ ≤ ϵ tr(A).

24

final algorithm

Theorem (Final Result)

If m = O
(
log(1/δ)

ϵ

)
and A is PSD then with probability (1− δ),

Hutch++ returns T̃ satisfying:

(1− ϵ) tr(A) ≤ T̃ ≤ (1+ ϵ) tr(A)

This algorithm is adaptive, meaning that the choice of xi
depends on Ax1 . . . ,Axi−1. We also have a non-adaptive
method, NA-Hutch++ that achieves the same bound.

25

experimental results

Results on synthetic matrix A with spectrum λi = i−c for
different values of c.

26

applications

If B is symmetric with eigendeposition VΛVT, we let f(B) denote
Vf(Λ)VT, which means that f is applied entrywise to the
diagonal matrix of eigenvalues, Λ. Note that tr(B) =

∑n
i=1 f(λi).

A = exp(B) for graph adjacency matrix B from linguistics application.
tr(A) is the well known Estrada Index or “natural connectivity”.

27

applications

A = log(B+ λI) for kernel matrix B from Gaussian process regression.
tr(A) = log det(B), which is used in loglikelihood calculations.

Takeaway: For matrix functions that flatten B’s spectrum,
Hutchinson’s estimator performs far better than the O(1/ϵ2)
bound predicts. Hutch++ will never perform much worse.

28

applications

Hutch++ works well empirically for many non-PSD matrices.

Let B is the (indefinite) adjacency matrix of an undirected
graph G, tr(B3) is exactly equal to the number of triangles in G.

A = B3 for arXiv.org citation network and Wikipedia voting network.

29

real applications

For non-PSD A, the projection step, A(I− QQT) approximately
removes A’s largest magnitude eigenvalues, which can still
reduces variance substantially.

Spectrum of A = B3 for arXiv.org citation network.

30

a lower bound

Theorem
Any algorithm that accesses a PSD matrix A via matrix-vector
multiplication queries Ax1, . . . ,Axm, where x1, . . . , xm are
possibly adaptively chosen vectors with integer entries in
{−2b, ..., 2b}, needs

m = Ω

(
1

ϵ · [b+ log(1/ϵ)]

)
queries

to approximate tr(A) to multiplicative error (1± ϵ).

Reduction to 2-party multi-round communication problem.
“Hard” input distribution will involve A with integer entries,
which is why we need the bit complexity bound b.

31

gap hamming problem

Problem (Gap Hamming)

Let Alice and Bob be communicating parties who hold vectors
s, t ∈ {−1, 1}n, respectively. Must decide with few bits of
communication if:

⟨s, t⟩ ≥
√
n or ⟨s, t⟩ ≤ −

√
n

Theorem (Chakrabarti, Regev 2012)
The randomized communication complexity for solving
Problem 1 with probability ≥ 2/3 is Ω(n) bits.

32

reduction to trace estimation

Let Z = S+ T and A = ZTZ.
tr(A) = ∥Z∥2F = ∥s+ t∥22 = 2n− 2⟨s, t⟩.

So if Alice and Bob and estimate tr(A) up to error (1± 1/
√
n),

then they will solve the Gap Hamming problem. 33

reduction to trace estimation

Claim: Alice and Bob can simulate any m query algorithm for
estimating the trace of A = (S+ T)T(S+ T) with
O
(
m
√
n(logn+ b)

)
bits of communication.

• Alice decides on x1, sends to Bob with
√
n · log(2b) bits.

• Bob computes Tx1, sends to Alice with
√
n · log(

√
n2b) bits.

• Alice computes (S+ T)x1.
• Repeat to multiply (S+ T)x1 by (S+ T)T

• Alice decides on x2, process repeats m times.

So, by Ω(n) lower bound for Gap Hamming, we can’t have m
less than

√
n

log n+b . Setting ϵ = 1/
√
n gives the result.

34

open questions

• In progress: Lower bounds for e.g. tr(A3), tr(exp(A)), tr(A−1).

• What about (coarse) approximate matrix vector multiplications?
We have some upcoming work on this related to spectral
density estimation problems, but there’s a lot to think about.

• Relates to model where we sample rows or columns of A (and
implement things like SGD/SCD).

• Can we get conditional lower bounds for simple problems like
triangle counting in a completely general computational model?

35

thanks! questions?

35

