Optimal Stochastic Trace Estimation

Christopher Musco

New York University, Tandon School of Engineering

COLLABORATORS

Raphael Meyer (NYU)

Cameron Musco (UMass. Amherst)

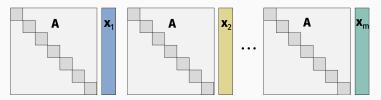
David Woodruff (CMU)

Paper available at: https://arxiv.org/pdf/2010.09649.pdf.

Recently accepted to the Symposium on Simplicity in Algorithms (SOSA 2021).

Basic problem in linear algebra:

- Given access to a *n* × *n* matrix **A** through a matrix-vector multiplication oracle.
- Goal is to (approximately) compute $tr(A) = \sum_{i=1}^{n} A_{ii}$.



Main question: How many matrix-vector multiplication "queries" Ax_1, \ldots, Ax_m are required to compute tr(A)?¹

 $^{{}^{1}}x_{i}$ can be chosen <u>adaptively</u>, based on result of Ax_{1}, \ldots, Ax_{i-1} .

Algorithms in this model are called <u>matrix-free</u>, or <u>implicit matrix</u> methods.

Typically useful when **A** is not stored explicitly, but we have an efficient algorithm for multiplying **A** by a vector.

Example: Hessian matrix-vector products.

Suppose we have some function $f(\mathbf{y})$ and we can efficiently compute gradients $\nabla f(\mathbf{y})$ for any \mathbf{y} . Let $\mathbf{A} = \nabla^2 f(\mathbf{y})$. Then:

$$A\mathbf{x} \approx rac{
abla f(\mathbf{y} + \eta \mathbf{x}) -
abla f(\mathbf{y})}{\eta}$$
 for sufficiently small η .

Also important when A is a function of another matrix B:

 $\mathsf{A} = f(\mathsf{B})$

Common examples:

 $\mathbf{A} = \mathbf{B}^{\mathsf{T}}\mathbf{B} \qquad \qquad \mathbf{A} = \mathbf{B}^{\mathsf{3}} \qquad \qquad \mathbf{A} = 2\mathbf{B}^{\mathsf{3}} - 3\mathbf{B}^{\mathsf{2}} - \mathbf{I}$

Cost to compute A and tr(A) explicitly:

 $O(n^3)$ $O(n^3)$ $O(n^3)$

Cost to compute matrix-vector multiplication Ax:

 $O(n^2)$ $O(n^2)$ $O(n^2)$

All cheaper by a factor of *n*! Even more savings if A is sparse or structured.

For more complex matrix functions, we can often compute Ax = f(B)x efficiently using iterative methods:

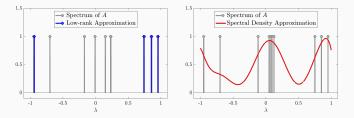
- Conjugate gradient, or any other system solver: $A = B^{-1}$.
- Lanczos method: $A = \exp(B)$, $A = \sqrt{B}$, $A = \log(B)$, etc.

All run in $O(n^2 \cdot C)$ time, where C depends on properties of **B**. For example, for $\mathbf{A} = \mathbf{B}^{-1}$, $C = \sqrt{\kappa} \cdot \log(1/\epsilon)$.

In practice, we typically have $O(n^2 \cdot C) \ll O(n^3)$.

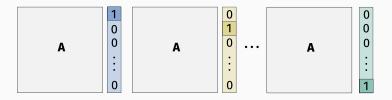
EXAMPLE APPLICATIONS

- Log-likelihood computation in Bayesian optimization, experimental design. tr(log(B)) = logdet(B).
- Estrada index, network connectivity. tr(exp(B)).
- Triangle counting in graphs. tr(exp(B³)).
- Counting number of eigenvalues in an interval.
- Spectral density estimation.
- Matrix norms.



Naive approach:

- Set $\mathbf{x}_i = \mathbf{e}_i$ for $i = 1, \ldots, n$.
- Return tr(A) = $\sum_{i=1}^{n} \mathbf{x}_{i}^{T} \mathbf{A} \mathbf{x}_{i}$



Returns exact solution, but requires n matrix-vector multiplies. We want $\ll n$ multiplies, and will do so by allowing for <u>approximation</u>.

Simple, powerful, and widely used method for trace estimation.

Hutchinson 1991, Girard 1987:

- Draw $\mathbf{x}_1, \ldots, \mathbf{x}_m \in \mathbb{R}^n$ i.i.d. with random $\{+1, -1\}$ entries.
- Return $\tilde{T} = \frac{1}{m} \sum_{i=1}^{m} \mathbf{x}_{i}^{T} \mathbf{A} \mathbf{x}_{i}$ as approximation to tr(A).

Let \tilde{T} be the trace estimate returned by Hutchinson's method.

Claim (Avron, Toledo 2011, Roosta, Ascher 2015) If $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then with probability $(1 - \delta)$, $\left|\tilde{T} - \operatorname{tr}(\mathbf{A})\right| \le \epsilon \|\mathbf{A}\|_{F}$.

If **A** is symmetric positive semidefinite (PSD) with eigenvalues $\lambda_1, \ldots, \lambda_n$, then $\|\mathbf{A}\|_F = \sqrt{\sum_{i=1}^n \lambda_i^2} \le \sum_{i=1}^n \lambda_i = tr(\mathbf{A}).$

Corollary: For PSD A: $(1 - \epsilon) \operatorname{tr}(\mathbf{A}) \leq \tilde{T} \leq (1 + \epsilon) \operatorname{tr}(\mathbf{A}).$

EXPECTED VALUE ANALYSIS

Hutchinson's Estimator:

- Draw $\mathbf{x}_1, \ldots, \mathbf{x}_m \in \mathbb{R}^n$ i.i.d. with random $\{+1, -1\}$ entries.
- Return $\tilde{T} = \frac{1}{m} \sum_{i=1}^{m} \mathbf{x}_{i}^{T} \mathbf{A} \mathbf{x}_{i}$ as approximation to tr(A).

Expected value analysis:

For a single random ± 1 vector **x**,

$$\mathbb{E}[\tilde{T}] = \mathbb{E}[\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x}] = \mathbb{E}\sum_{i=1}^{n}\sum_{j=1}^{n}x_{i}x_{j}\mathbf{A}_{ij} = \sum_{i=1}^{n}\sum_{j=1}^{n}\mathbb{E}[x_{i}x_{j}\mathbf{A}_{ij}] = \sum_{i=1}^{n}\mathbf{A}_{ii}$$

So the estimator is correct in expectation:

$$\mathbb{E}[\widetilde{T}] = tr(A).$$

VARIANCE ANALYSIS

Hutchinson's Estimator:

- Draw $\mathbf{x}_1, \ldots, \mathbf{x}_m \in \mathbb{R}^n$ i.i.d. with random $\{+1, -1\}$ entries.
- Return $\tilde{T} = \frac{1}{m} \sum_{i=1}^{m} \mathbf{x}_{i}^{T} \mathbf{A} \mathbf{x}_{i}$ as approximation to tr(A).

Variance analysis:

$$\operatorname{Var}[\tilde{T}] = \frac{1}{m} \operatorname{Var}[\mathbf{x}^{T} \mathbf{A} \mathbf{x}] = \frac{1}{m} \operatorname{Var}\left[\sum_{i=1}^{n} \sum_{j=1}^{n} x_{j} x_{j} \mathbf{A}_{ij}\right]$$
$$= \frac{1}{m} \sum_{i=1}^{n} \sum_{j=1}^{n} \operatorname{Var}[x_{i} x_{j} \mathbf{A}_{ij}] = \frac{1}{m} \sum_{i \neq j}^{n} \mathbf{A}_{ij}^{2} \le \frac{1}{m} \|\mathbf{A}\|_{F}^{2}$$

(We used that $x_i x_j$ and $x_j x_k$ are pairwise independent.)

FINAL ANALYSIS

Hutchinson's Estimator:

- Draw $\mathbf{x}_1, \ldots, \mathbf{x}_m \in \mathbb{R}^n$ i.i.d. with random $\{+1, -1\}$ entries.
- Return $\tilde{T} = \frac{1}{m} \sum_{i=1}^{m} \mathbf{x}_{i}^{T} \mathbf{A} \mathbf{x}_{i}$ as approximation to tr(A).

Final analysis: Chebyshev's inequality implies that, with probability 9/10,

$$\left| \tilde{T} - \operatorname{tr}(\mathbf{A}) \right| \le \frac{1}{\sqrt{m/10}} \|\mathbf{A}\|_{F}.$$

Setting $m = O(1/\epsilon^2)$ gives $|\tilde{T} - tr(A)| \le \epsilon ||A||_F$.

Getting correct $log(1/\delta)$ dependence requires a bit more work (Hanson-Wright inequality). **Result:** $O(1/\epsilon^2)$ matrix-vector multiplies suffice to return, with prob. 9/10, a trace estimate for a PSD matrix with relative error:

$$(1-\epsilon)\operatorname{tr}(\mathsf{A}) \leq \tilde{\mathcal{T}} \leq (1\pm\epsilon)\operatorname{tr}(\mathsf{A}).$$

Research Question: Is this tight?

Broader line of work: Tight upper bounds <u>and lower bounds</u> on complexity of basic linear algebra problems in "matrix-vector query" model.

- Top eigenvector: Simchowitz, Alaoui, Recht, 2018.
- Least squares regression: Braverman, Hazan, Simchowitz, Woodworth, 2020.
- Rank, symmetry test, and more: Sun, Woodruff, Yang, and Zhang, 2019.

The matrix-vector query model generalizes the most common models of computations in linear algebra.

Krylov subpace model:

- Compute Ax, A^2x, \dots, A^mx for chosen vector x.
- Lower bounds typically via approximation theoretic arguments (understanding the limits of polynomials).

Matrix sketching model:

- Compute Ax₁,..., Ax_m where x₁..., x_m are chosen <u>non-adaptivity</u> (usually chosen to be random vectors).
- Lower bounds typically via one-round communication complexity.

Merits of this model:

- Captures most algorithms that are used in practice, where matrix-vector multiplies often dominate computation cost.
- Allowing arbitrary adaptivity makes the model quite a bit richer. Proving lower bounds seems <u>harder but doable</u>.
- Appears to be a "sweet spot" for understanding problem complexity in linear algebra.

Limitation:

• Does not capture methods like stochastic gradient or coordinate descent.

OUR RESULTS

Upper bound: $O(1/\epsilon)$ matrix-vector multiplies suffice to return, with prob. 9/10, a trace estimate for a PSD matrix with relative error:

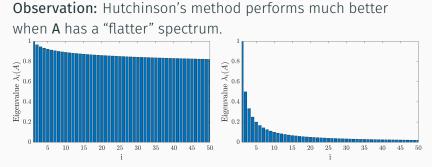
$$(1-\epsilon)\operatorname{tr}(A) \leq \tilde{T} \leq (1+\epsilon)\operatorname{tr}(A).$$

- Quadratic improvement over Hutchinson's $O(1/\epsilon^2)$.
- Algorithm achieving bound is nearly as simple.
- Performs much better experimentally.

Lower bound: $\Omega(1/\epsilon)$ matrix-vector multiplies are necessary to obtain a relative error approximation with probability > 2/3.

• Two different approaches: reduction from multi-round communication complexity, and from hypothesis testing for negatively spiked covariance matrices.

SPECTRUM DEPENDENT BOUND



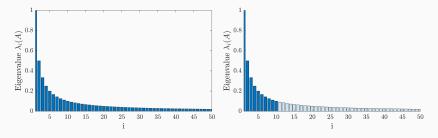
We proved that: $|\tilde{T} - tr(A)| \le \epsilon ||A||_F \le \epsilon tr(A)$, but when the spectrum is decaying $||A||_F \ll tr(A)$.

In the extreme case when $\lambda_1 = \lambda_2 = \ldots = \lambda_n$, we have:

$$\|\mathbf{A}\|_F = \sqrt{\sum_{i=1}^n \lambda_i^2} = \frac{1}{\sqrt{n}} \sum_{i=1}^n \lambda_i = \frac{1}{\sqrt{n}} \operatorname{tr}(\mathbf{A}).$$

STEEP SPECTRUM

On the other hand, when **A**'s spectrum is decaying, we get a good approximation by simply computing its top eigenvectors.



$$\operatorname{tr}(\mathbf{A}) = \sum_{i=1}^{n} \lambda_{i} \approx \sum_{i=1}^{k} \lambda_{k} = \operatorname{tr}(\mathbf{A}\mathbf{Q}\mathbf{Q}^{\mathsf{T}})$$

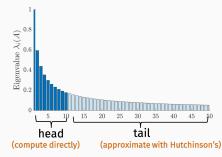
where $\mathbf{Q} \in \mathbb{R}^{n \times m}$ is an orthonormal span **A**'s top *k* eigenvalues.

- Q itself can be computed with ~ O(k) matrix-vector multiplication queries using block power method or a Krlyov method (Saibaba, Alexanderian, Ipsen, 2018).
- Then $tr(AQQ^T) = tr(Q^T(AQ))$ can be computed with k additional matrix-vector multiplies.

Main observation: Every spectrum is either "flat enough" or "decaying enough" to prove a better bound than $O(1/\epsilon^2)$.

OUR METHOD: HUTCH++

- 1. Find approximate span for top k eigenvectors Q.
- 2. Observe that $tr(A) = tr(AQQ^{T}) + tr(A(I QQ^{T}))$
- Approximate P
 = tr(A(I − QQ^T)) using Hutchinson's with ℓ vectors.
- 4. Return $\tilde{T} = tr(AQQ^T) + \tilde{P}$.



The only error is from the estimator for tr(A(I – QQ^T)), which will have much lower variance if $||A(I – QQ^T)||_F \ll ||A||_F$.

Standard result in Randomized Numerical Linear Algebra:

Lemma (Sarlos 2006, Woodruff 2014)

If $S \in \mathbb{R}^{n \times m}$ is chosen with i.i.d. ± 1 entries, then Q = orth(AS) satisfies with probability $(1 - \delta)$,

$$\|\mathbf{A} - \mathbf{A}\mathbf{Q}\mathbf{Q}^T\|_F \le 2\|\mathbf{A} - \mathbf{A}_k\|_F,$$

as long as **S** has $m = O(k + \log(1/\delta))$ columns.

Here A_k is the <u>best</u> k-rank approximation to A, obtained by projecting onto A's top k eigenvectors.

Note that **Q** can be view as the result of running <u>a single</u> step of power method on **A**.

FINAL BOUND

For any PSD matrix A:

$$\|\mathbf{A}-\mathbf{A}_k\|_F^2 = \sum_{i=k+1}^n \lambda_i^2 \le \lambda_{k+1} \sum_{i=k+1}^n \lambda_i \le \frac{1}{k} \operatorname{tr}(\mathbf{A}) \cdot \operatorname{tr}(\mathbf{A}).$$

So if $\|\mathbf{A}(\mathbf{I} - \mathbf{Q}\mathbf{Q}^T)\|_F \le 2 \|\mathbf{A} - \mathbf{A}_k\|_F$, then with high probability,

$$\left| \operatorname{tr}(\mathbf{A}(\mathbf{I} - \mathbf{Q}\mathbf{Q}^{\mathsf{T}}) - \tilde{P} \right| \leq \frac{1}{\sqrt{\ell}} \left\| \mathbf{A}(\mathbf{I} - \mathbf{Q}\mathbf{Q}^{\mathsf{T}}) \right\|_{F} \leq \frac{1}{\sqrt{\ell}} \cdot \frac{2}{\sqrt{k}} \operatorname{tr}(\mathbf{A}).$$

Setting $\ell = k = O(1/\epsilon)$ gives error $\epsilon \operatorname{tr}(A)$ and thus:

$$\left|\operatorname{tr}(\mathsf{A}) - \widetilde{\mathsf{T}}\right| = \left|\operatorname{tr}(\mathsf{A}(\mathsf{I} - \mathsf{Q}\mathsf{Q}^{\mathsf{T}}) - \widetilde{\mathsf{P}}\right| \le \epsilon \operatorname{tr}(\mathsf{A}).$$

FINAL ALGORITHM

Theorem (Final Result)

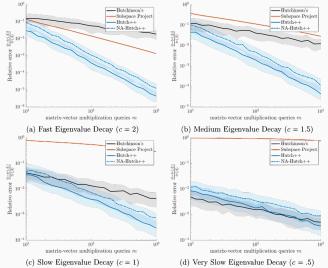
If $m = O\left(\frac{\log(1/\delta)}{\epsilon}\right)$ and **A** is PSD then with probability $(1 - \delta)$, Hutch++ returns \tilde{T} satisfying:

$$(1-\epsilon)\operatorname{tr}(\mathsf{A}) \leq \tilde{\mathsf{T}} \leq (1+\epsilon)\operatorname{tr}(\mathsf{A})$$

This algorithm is <u>adaptive</u>, meaning that the choice of \mathbf{x}_i depends on $A\mathbf{x}_1 \dots A\mathbf{x}_{i-1}$. We also have a non-adaptive method, NA-Hutch++ that achieves the same bound.

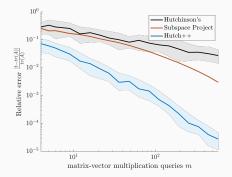
EXPERIMENTAL RESULTS

Results on synthetic matrix **A** with spectrum $\lambda_i = i^{-c}$ for different values of *c*.



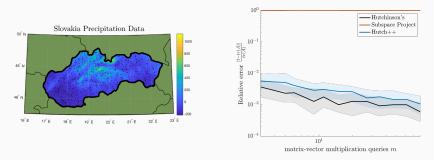
APPLICATIONS

If **B** is symmetric with eigendeposition $V\Lambda V^T$, we let f(B) denote $Vf(\Lambda)V^T$, which means that f is applied entrywise to the diagonal matrix of eigenvalues, Λ . Note that $tr(B) = \sum_{i=1}^{n} f(\lambda_i)$.



A = exp(B) for graph adjacency matrix B from linguistics application. tr(A) is the well known Estrada Index or "natural connectivity".

APPLICATIONS

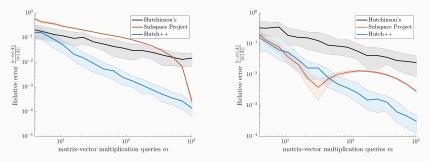


 $A = log(B + \lambda I)$ for kernel matrix B from Gaussian process regression. tr(A) = log det(B), which is used in loglikelihood calculations.

Takeaway: For matrix functions that <u>flatten</u> **B**'s spectrum, Hutchinson's estimator performs far better than the $O(1/\epsilon^2)$ bound predicts. Hutch++ will never perform much worse.

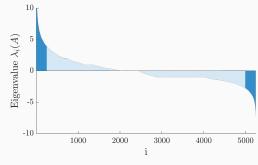
Hutch++ works well empirically for many non-PSD matrices.

Let **B** is the (indefinite) adjacency matrix of an undirected graph *G*, tr(**B**³) is exactly equal to the number of <u>triangles</u> in *G*.



 $A = B^3$ for arXiv.org citation network and Wikipedia voting network.

For non-PSD **A**, the projection step, $A(I - QQ^T)$ approximately removes **A**'s <u>largest magnitude</u> eigenvalues, which can still reduces variance substantially.



Spectrum of $A = B^3$ for arXiv.org citation network.

Theorem

Any algorithm that accesses a PSD matrix **A** via matrix-vector multiplication queries Ax_1, \ldots, Ax_m , where x_1, \ldots, x_m are possibly adaptively chosen vectors with integer entries in $\{-2^b, ..., 2^b\}$, needs

$$m = \Omega\left(\frac{1}{\epsilon \cdot [b + \log(1/\epsilon)]}\right)$$
 queries

to approximate tr(A) to multiplicative error $(1 \pm \epsilon)$.

Reduction to 2-party multi-round communication problem. "Hard" input distribution will involve **A** with integer entries, which is why we need the bit complexity bound *b*.

Problem (Gap Hamming)

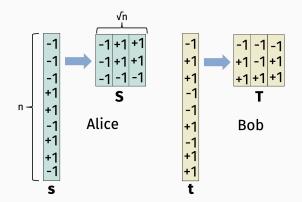
Let Alice and Bob be communicating parties who hold vectors $s, t \in \{-1, 1\}^n$, respectively. Must decide with few bits of communication if:

$$\langle {f s},{f t}
angle \geq \sqrt{n}$$
 or $\langle {f s},{f t}
angle \leq -\sqrt{n}$

Theorem (Chakrabarti, Regev 2012)

The randomized communication complexity for solving Problem 1 with probability $\geq 2/3$ is $\Omega(n)$ bits.

REDUCTION TO TRACE ESTIMATION



Let Z = S + T and $A = Z^T Z$.

$$tr(\mathbf{A}) = \|\mathbf{Z}\|_F^2 = \|\mathbf{s} + \mathbf{t}\|_2^2 = 2n - 2\langle \mathbf{s}, \mathbf{t} \rangle.$$

So if Alice and Bob and estimate tr(A) up to error $(1 \pm 1/\sqrt{n})$, then they will solve the Gap Hamming problem.

Claim: Alice and Bob can simulate any *m* query algorithm for estimating the trace of $\mathbf{A} = (\mathbf{S} + \mathbf{T})^T (\mathbf{S} + \mathbf{T})$ with $O(m\sqrt{n}(\log n + b))$ bits of communication.

- Alice decides on \mathbf{x}_1 , sends to Bob with $\sqrt{n} \cdot \log(2^b)$ bits.
- Bob computes Tx_1 , sends to Alice with $\sqrt{n} \cdot \log(\sqrt{n}2^b)$ bits.
- \cdot Alice computes $(S + T)x_1$.
- + Repeat to multiply $(S+T)x_1$ by $(S+T)^{\text{T}}$
- Alice decides on x₂, process repeats *m* times.

So, by $\Omega(n)$ lower bound for Gap Hamming, we can't have *m* less than $\frac{\sqrt{n}}{\log n+b}$. Setting $\epsilon = 1/\sqrt{n}$ gives the result.

- In progress: Lower bounds for e.g. $tr(A^3)$, tr(exp(A)), $tr(A^{-1})$.
- What about (coarse) approximate matrix vector multiplications? We have some upcoming work on this related to spectral density estimation problems, but there's a lot to think about.
- Relates to model where we sample rows or columns of **A** (and implement things like SGD/SCD).
- Can we get <u>conditional</u> lower bounds for simple problems like triangle counting in a completely general computational model?

THANKS! QUESTIONS?