
Structured Matrix Approximation from
Matrix-Vector Products

New York University, Christopher Musco

1

COLLABORATORS

Noah Amsel, Tyler Chen, Feyza Duman Keles, Diana Halikias,
David Persson, Cameron Musco

Paper to appear at SODA 2025. Available at:
https://arxiv.org/abs/2407.04686. 2

https://arxiv.org/abs/2407.04686

PROBLEM WE ARE STUDYING

Starting point:

Task: Let S ⊂ Rn×n be a class of structured matrices. Recover
A ∈ S given access to black-box matrix-vector products:

Ax ATx

Example classes: Low-rank, banded, Toeplitz, sparse, etc.

3

MATRIX RECOVERY

Task: Let S ⊂ Rn×n be a class of structured matrices. Recover
A ∈ S given access to Ax1,Ax2, . . . ,Axq or ATx1,ATx2, . . . ,ATxq for
adaptively chosen “query vectors” x1, . . . , xq.

Quiz: How many matrix-vector products are needed if S is the
class of diagonal matrices?

4

MATRIX RECOVERY

Halikias and Townsend, 2024:

Structure # of matvecs
Diagonal 1
Toeplitz 2

Tridiagonal 3
k-banded k
rank k k

k-sparse rows k
k-sparse columns k

...
...

Intuition: Richer classes (e.g., with more parameters) require
more matrix-vector products to recover.

5

MOTIVATION

Physical processes often map a function f to a function µ. I.e.,
implement some operator L(f) → µ.

Operator learning: Learn mapping from input-output pairs. 6

MOTIVATION

Physical processes often map a function f to a function µ. I.e.,
implement some operator L(f) → µ.

Operator learning: Learn mapping from input-output pairs.
Concretely, given pairs (f1,u1), . . . , (fq,uq), the goal is to learn L.

Central task is Scientific Machine Learning (SciML). Often L is
parameterized by a neural network (e.g., as in DeepONet)

7

OPERATOR LEARNING

Two main reasons for interest in SciML:

1. Constructing efficient surrogate models. Given f, we can
solve for u using simulation, a PDE solver, etc. but doing
so is expensive. Goal is to learn a representation of L that
is cheaper to apply to future values of f.

2. Learning physics. We do not understand the mapping
from f to u, but can obtain pairs via physical
experimentation.

In both of these settings, we typically have freedom in how
each fi is chosen. This differs from a typically ML setup, where
inputs are drawn randomly from a distribution.

8

OPERATOR LEARNING

In the important special case when L is linear, operator
learning corresponds to matrix learning (after discretization).

Input:
u1 = Lf1 u2 = Lf2 . . . uq = Lfq,

where fi,ui ∈ Rn, L ∈ Rn×n.

Goal is to learn the matrix L.

Can only hope to do so efficiently (i.e., with < n queries) if L
has some structure:

9

MATRIX RECOVERY VS. MATRIX APPROXIMATION

Let S ⊂ Rn×n be a class of structured matrices.

Matrix recovery: Given access to black-box matrix-vector
products with A, recover the matrix if A ∈ S .

10

MATRIX RECOVERY VS. MATRIX APPROXIMATION

Let S ⊂ Rn×n be a class of structured matrices.

Matrix recovery: Given access to black-box matrix-vector
products, recover A ∈ S .

• Optimal or near optimal methods known for many
problems.

Matrix approximation: For tolerance parameter ϵ > 0, find
near-optimal approximation B̃ ∈ S satisfying:

∥A− B̃∥F ≤ (1+ ϵ)min
B∈S

∥A− B∥F.

• More relevant in actual applications.
• Harder problem. Fewer results.

11

MATRIX APPROXIMATION

Matrix approximation: For tolerance parameter ϵ > 0, find
near-optimal approximation B̃ ∈ S satisfying:

∥A− B̃∥F ≤ (1+ ϵ)min
B∈S

∥A− B∥F.

12

OTHER MOTIVATIONS

Applications beyond operator learning:

• Diagonal approximation to Hessian used, e.g., for
approximate second order optimization (AdaGrad, ADAM
optimizer, etc.). Matvecs with AutoDiff.

• Low-rank approximation used to compress matrices
throughout computational science, data science, machine
learning, etc.

• Toeplitz approximation used to approximation nearly
shift-invariance covariance matrices.

In many of these applications, we only have access to
matrix-vector products with A, or organizing our operations
into matrix-vector products makes sense computationally.

13

DIFFERENCE BETWEEN RECOVERY AND APPROXIMATION

Approximation often requires very different algorithms!

Goal is to ensure:

∥A− B̃∥F ≤ (1+ ϵ)min
B∈S

∥A− B∥F ≈ .1 · n.

Error of naive algorithm:

≲
√

.12 · n2 + n · (.1 · n)2 ≈ .1 · n1.5.

14

BETTER APPROACH

Pick random sign vector r ∈ {−1, 1}n. Return r ◦ (Ar).

Error of randomized algorithm:

≈
√

.12 · n2 + n · (.1 ·
√
n)2 ≈ .2 · n.

Can improve error by repeating and averaging.

15

OPTIMAL DIAGONAL APPROXIMATION

Theorem (Dharangutte, Musco, 2023)
Let r1, . . . , rq be random sign vectors and let:

B̃ = diag

(
1
q

q∑
i=1

ri ◦ (Ari)
)

If q = O
(1
ϵ

)
, then with high probability,

∥A− B̃∥F ≤ (1+ ϵ) min
diagonal B

∥A− B∥F.

Computing B̃ requires O
(1
ϵ

)
matrix-vector products with A.

This method is called Hutchinson’s estimator. It is possible to
show that the result is tight: no algorithm can get away with
q ≤ .5

ϵ matrix-vector products [Amsel et al. 2024].
16

OPTIMAL DIAGONAL APPROXIMATION

Lesson: Need query vectors that both extract information from
“signal” in A, but have small inner product with “noise”.

Randomness in queries is usually essential! 17

WHAT IS KNOWN?

Best known matrix-vector query complexity for recovery vs.
(1+ ϵ) approximation.

Structure # for recovery # for approx.
Diagonal 1 O(1/ϵ)
Toeplitz 2 O(log n/ϵ)

Tridiagonal 3 O(1/ϵ)
k-banded k O(k/ϵ)
rank k k O(k/ϵ1/3)

k-sparse rows k O(k/ϵ)
k-sparse columns k O(k/ϵ)

k-sized linear family O(
√
nk) ??

...
...

...

Tons of interesting open questions here.
18

HIERARCHICAL LOW-RANK APPROXIMATION

One of the most important structures in SciML / scientific
computing applications is hierarchical low-rank structure.

19

HIERARCHICAL LOW-RANK APPROXIMATION

One of the most important structures in SciML / scientific
computing applications is hierarchical low-rank structure.

Classic example: Hierarchical off-diagonal low-rank (HODLR). 20

HODLR MATRICES

Properties of HODLR matrices:

• O(nk log(n/k)) space to store.
• Matrix-vector multiplication in O(nk log(n/k)) time.
• Linear system solving in O(nk3 log(n/k)) time.

Many variants exist. Examples include e.g. Hierarchical
Semi-separable (HSS) matrices, variants tailored to higher
dimensional problems, different splits, etc.

21

HODLR MATRICES

Applications of HODLR matrices:

• Underly ubiquitous algorithms for structured matrices like
the Fast Multipole Method. Near-optiomal HOLDR
approximation yields even faster solvers.

• At the core of recent progress on operator learning: can be
used to approximate the solution operator of elliptic PDEs
(2024 SIAM Linear Algebra Best Paper Prize winner).

22

HODLR MATRICES

Lots of prior work on HODLR matrices:

Several algorithms that solve the recovery problem with
O(k log n) matrix-vector products.

No prior methods for the approximation problem. 23

MAIN RESULT

Theorem (Chen, Duman Keles, Halikias, Musco, Musco,
Persson, to appear at SODA 2025)
There is an algorithm that, based on O(k log4(n/k)/ϵ3)
black-box matrix-vector products with A ∈ Rn×n, computes a
rank-k HODLR matrix B̃ satisfying:

∥A− B̃∥F ≤ (1+ ϵ) min
HODLR B

∥A− B∥F.

For an nc approximation for any constant c, complexity can be
improved to O(k log(n/k)) matvecs to obtain an nc

approximation for any constant c.

Resolves main open question of [Boullé, Townsend, FoCM
2022].

24

APPROACH

Three major ingredients:

1. Randomized low-rank approximation. Specifically, the
Generalized Nyström method.

2. The peeling algorithm of Lin, Lu, Ying.
3. Perforated Gaussian sketches based on CountSketch.

25

RANDOMIZED LOW-RANK APPROXIMATION

What if we want to solve the approximation problem for the
simpler class of (non-hierarchical) low-rank matrices? I.e., find
rank-k matrix B̃ satisfying:

∥A− B̃∥F ≤ (1+ ϵ) min
rank k B

∥A− B∥F

This can be done using O(k/ϵ) matrix-vector products using
the Randomized SVD (RandSVD) method [Sarlós, 2006, Halko,
Martinsson, Tropp, 2011, many others].

This is a sketching algorithm. We compute products with A and
a set of random vectors.

26

RANDOMIZED SVD

27

RANDOMIZED LOW-RANK APPROXIMATION

Theorem (Halko, Martinsson, Tropp, 2011)
If the sketch Ω is chosen to have i.i.d. Gaussian or
Rademacher entries and q = O(k/ϵ) columns, then with high
probability,

∥A− B̃∥F ≤ (1+ ϵ)∥A− Ak∥F,

where Ak is the optimal rank k approximation to A.

Overall, we requires 2q matrix vector products:

• q to compute AΩ.
• q to compute ATQ, where Q = orth(AΩ)

28

PEELING ALGORITHM

Second ingredient: Peeling Algorithm of Lin, Lu, Ying.

29

PEELING ALGORITHM

Second ingredient: Peeling Algorithm of Lin, Lu, Ying.

30

PEELING ALGORITHM

Second ingredient: Peeling Algorithm of Lin, Lu, Ying.

31

PEELING ALGORITHM

Second ingredient: Peeling Algorithm of Lin, Lu, Ying.

32

PEELING ALGORITHM

Second ingredient: Peeling Algorithm of Lin, Lu, Ying.

33

PEELING ALGORITHM

Second ingredient: Peeling Algorithm of Lin, Lu, Ying.

For a matrix with L = log(n/k) levels, require:

L · 2 · O(k) = O(k log(n/k)) matrix-vector products.

Works perfectly well for recovery. Fails in worse case for
approximation.

Issue: Error can propagate across levels.

34

ERROR PROPAGATION

Issue arises in second step of Randomized SVD. Here, Q1,2
aligns with top subspace of A1,2. Could have noise E1,2 with
rows that point in the same direction.

35

ERROR PROPAGATION

Here, Q2,2 aligns with top subspace of A22,2. Could have noise
E2,2 with rows that point in the same direction.

36

ERROR PROPAGATION

In the paper we give an example which shows that the
standard Peeling + RandSVD method cannot give better than
an O(n) approximation.

37

SOLUTION

Generalized Nyström Method:

1. Sketch A on both left and right.

2. Let Q = orth(AΩ).
3. Return low-rank approximation B̃ = Q

[
(ΨTQ)+ΨA

]
k.

In RandSVD, we project A onto span of Q and return best
low-rank approximation.

Generalized Nyström can be viewed as performing an an
approximate projection using sketching. 38

GENERALIZED NYSTRÖM ANALYSIS

Theorem (Clarkson, Woodruff, 2009)
If Ω is chosen to have O(k/ϵ) columns and Ψ is chosen to
have O(k/ϵ3) columns, then with high probability,

∥A− B̃∥F ≤ (1+ ϵ)∥A− Ak∥F,

where Ak is the optimal rank k approximation to A.

Cost: Higher matrix-vector product complexity than standard
RandSVD.

Benefit: The method is far more robust to error in the
matrix-vector products.

39

GENERALIZED NYSTRÖM ANALYSIS

Formalized in paper with a complete stability analysis of the
Generalized Nyström method.

Takes advantage of fact that any noise in matrix vector
products is of the form ER, where R is a random matrix that is
independent from E. 40

MAIN RESULT

Theorem
There is an algorithm that, based on O(k log5(n/k)/ϵ4)
black-box matrix-vector products with A ∈ Rn×n, computes a
rank-k HODLR matrix B̃ satisfying:

∥A− B̃∥F ≤ (1+ ϵ) min
HODLR B

∥A− B∥F.

We are able to get an improvement to O(k log4(n/k)/ϵ3) using a
third ingredient: randomized perforation.

41

SKETCH PERFORATION

Basic idea: Randomly zero our portions of the peeling
sketches. If we perforate to c fraction of original blocks, reduce
expected noise by a factor of c.

42

EXPERIMENTAL RESULTS

Takeaway: Simply replacing RandSVD with Generalized
Nyström immediately yields improved results.

43

CONCLUSION

Lots of open questions:

• Can we improve complexity to O(k log(n)/ϵ)? We prove a
lower bound of Ω(k log(n) + k/ϵ) in the paper.

• Generalized Nyström often performs far better in practice
than theoretical bounds suggest. Can we show that it
requires < O(k/ϵ3) matvecs for near-optimal k-rank
approximation?

• Develop algorithms + analysis for related classes of
hierarchical matrices like HSS matrices. Challenge: for
some classes, obtained a near optimal approximation is
hard even if we know A explicitly.

• Understand the gap between the approximation +
recovery problems for general matrix family S?

44

QUESTIONS?

44

