
Nonlinear Dimensionality Reduction for Faster
Kernel Methods in Machine Learning

Christopher Musco, Massachusetts Institute of Technology
February 27, 2018

1



relevant paper

ICML 2017:
“Random Fourier Features for Kernel Ridge Regression:
Approximation Bounds and Statistical Guarantees”

Joint work with:
Haim Avron (TAU)

Michael Kapralov (EPFL)
Cameron Musco (MIT)
Ameya Velingker (EPFL)
Amir Zandieh (EPFL)

2



outline

Main idea:

Study Fourier kernel approximation methods from a matrix
sampling point of view.

Specifics:
• Analyze Random Fourier Features method (Rahimi, Recht
NIPS ’07) using techniques based on leverage scores.

• Develop an improved Random Fourier Features method
based on this analysis (better in theory and experiments).

Lots of open questions and directions for future work.
Opportunities to combine techniques from randomized linear

algebra and Fourier methods.

3



outline

Main idea:

Study Fourier kernel approximation methods from a matrix
sampling point of view.

Specifics:
• Analyze Random Fourier Features method (Rahimi, Recht
NIPS ’07) using techniques based on leverage scores.

• Develop an improved Random Fourier Features method
based on this analysis (better in theory and experiments).

Lots of open questions and directions for future work.
Opportunities to combine techniques from randomized linear

algebra and Fourier methods.

3



outline

Main idea:

Study Fourier kernel approximation methods from a matrix
sampling point of view.

Specifics:
• Analyze Random Fourier Features method (Rahimi, Recht
NIPS ’07) using techniques based on leverage scores.

• Develop an improved Random Fourier Features method
based on this analysis (better in theory and experiments).

Lots of open questions and directions for future work.
Opportunities to combine techniques from randomized linear

algebra and Fourier methods.

3



outline

Main idea:

Study Fourier kernel approximation methods from a matrix
sampling point of view.

Specifics:
• Analyze Random Fourier Features method (Rahimi, Recht
NIPS ’07) using techniques based on leverage scores.

• Develop an improved Random Fourier Features method
based on this analysis (better in theory and experiments).

Lots of open questions and directions for future work.
Opportunities to combine techniques from randomized linear

algebra and Fourier methods.
3



quick refresher on kernel methods

3



kernel methods in machine learning

Adapt standard linear learning methods (least squares
regression, support vector machines, PCA, k-means clustering)

to learn nonlinear relationships.

(theoretically well-understood, multipurpose, widely used)

4



kernel methods in machine learning

Adapt standard linear learning methods (least squares
regression, support vector machines, PCA, k-means clustering)

to learn nonlinear relationships.

(theoretically well-understood, multipurpose, widely used)

4



kernel methods in machine learning

“Lift” data points to a higher dimensional feature space. E.g.

x =


x1
x2
...
xd



=⇒ ϕ(x) =



x1
...
xd
x1x1
x1x2
...

xdxd



5



kernel methods in machine learning

“Lift” data points to a higher dimensional feature space. E.g.

x =


x1
x2
...
xd

 =⇒ ϕ(x) =



x1
...
xd
x1x1
x1x2
...

xdxd



5



kernel methods in machine learning

Linear Classifier

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

x1 + 2x2 ≥ 6

Kernel Classifier

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

x21 + x22 ≥ 10

ϕ(x)3 + ϕ(x)4 ≥ 10

6



kernel methods in machine learning

Linear Classifier

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

x1 + 2x2 ≥ 6

Kernel Classifier

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

x21 + x22 ≥ 10
ϕ(x)3 + ϕ(x)4 ≥ 10

6



the cost of kernel methods

Main computational issue: Forming ϕ(x) is intractable even
for moderately complex kernels.

E.g. degree q polynomials =⇒ O(dq) dimensional vectors.

Fix: For common linear learning methods, we only need the
kernel dot product for each pair of data points x, y:

k(xi, xj) =
⟨
ϕ(xi),ϕ(xj)

⟩
.

Can often be computed much more quickly that ϕ(xi), ϕ(xj).

7



the cost of kernel methods

Main computational issue: Forming ϕ(x) is intractable even
for moderately complex kernels.

E.g. degree q polynomials =⇒ O(dq) dimensional vectors.

Fix: For common linear learning methods, we only need the
kernel dot product for each pair of data points x, y:

k(xi, xj) =
⟨
ϕ(xi),ϕ(xj)

⟩
.

Can often be computed much more quickly that ϕ(xi), ϕ(xj).

7



the cost of kernel methods

Main computational issue: Forming ϕ(x) is intractable even
for moderately complex kernels.

E.g. degree q polynomials =⇒ O(dq) dimensional vectors.

Fix: For common linear learning methods, we only need the
kernel dot product for each pair of data points x, y:

k(xi, xj) =
⟨
ϕ(xi),ϕ(xj)

⟩
.

Can often be computed much more quickly that ϕ(xi), ϕ(xj).

7



example: least squares regression

Input: Data X = [x1, . . . , xn]T, responses b = [b1, . . . ,bn]T.

Solve:
w∗ = argmin

w
∥Xw− b∥22 + λ∥w∥22

y∗ = argmin
y

∥XXTy− b∥22 + λ∥XTy∥22

Predict:
bnew = w∗Txnew

bnew = y∗TXxnew

8



example: least squares regression

Input: Data X = [x1, . . . , xn]T, responses b = [b1, . . . ,bn]T.

Solve:
w∗ = argmin

w
∥Xw− b∥22 + λ∥w∥22

y∗ = argmin
y

∥XXTy− b∥22 + λ∥XTy∥22

Predict:
bnew = w∗Txnew

bnew = y∗TXxnew

8



example: least squares regression

Input: Data X = [x1, . . . , xn]T, responses b = [b1, . . . ,bn]T.

Solve:
w∗ = argmin

w
∥Xw− b∥22 + λ∥w∥22

y∗ = argmin
y

∥XXTy− b∥22 + λ∥XTy∥22

Predict:
bnew = w∗Txnew
bnew = y∗TXxnew

8



example: least squares regression

For training, we compute (K+ λI)−1 for the kernel matrix K:

If we replace each xi with ϕ(xi) for nonlinear learning, we just
need to alternatively compute:

Ki,j =
⟨
ϕ(xi),ϕ(xj)

⟩
= k(xi, xj).

9



example: least squares regression

For training, we compute (K+ λI)−1 for the kernel matrix K:

If we replace each xi with ϕ(xi) for nonlinear learning, we just
need to alternatively compute:

Ki,j =
⟨
ϕ(xi),ϕ(xj)

⟩
= k(xi, xj).

9



the “kernel trick”

Kernel dot product can often be computed implicitly without
forming ϕ(x) and ϕ(y). For example:

(1+ ⟨x, y⟩)2 = (1+ x1y1 + . . .+ xdyd)2

= (1+ x1y1 + x21y21 + 2x1y1x2y2 + . . .)

=
⟨
[1, x1, x21 ,

√
2x1x2, . . .], [1, y1, y21 ,

√
2y1y2, . . .]

⟩
= ⟨ϕ(x),ϕ(y)⟩

The kernel function k(x, y) =
(
1+ xTy

)2 provides an alternative
similarity metric to the standard dot product.

10



the “kernel trick”

Kernel dot product can often be computed implicitly without
forming ϕ(x) and ϕ(y). For example:

(1+ ⟨x, y⟩)2 = (1+ x1y1 + . . .+ xdyd)2

= (1+ x1y1 + x21y21 + 2x1y1x2y2 + . . .)

=
⟨
[1, x1, x21 ,

√
2x1x2, . . .], [1, y1, y21 ,

√
2y1y2, . . .]

⟩
= ⟨ϕ(x),ϕ(y)⟩

The kernel function k(x, y) =
(
1+ xTy

)2 provides an alternative
similarity metric to the standard dot product.

10



the “kernel trick”

Kernel learning pipeline for data points x1, . . . xn:

1. Choose kernel function k(xi, xj):

(1+ xTi xj)q, e−∥xi−xj∥2 , e−∥xi−xj∥1 , etc.

2. Form n× n kernel matrix K with:

Ki,j = k(xi, xj)

3. Compute model using K: compute (K+ λI)−1b for kernel
regression, eigendecomposition of K for kernel PCA, etc.

11



algorithmic challenge

Even if we avoid explicit feature expansion, kernel methods are
slow. Quadratic dependence on the number of data points.

• n = 100,000⇒ 10 billion entries⇒ 80 GB to store K.
• Just writing down K requires Ω(n2) time.
• Other operations require even more. A single iteration for
a linear system solver takes Ω(n2) time.

12



algorithmic challenge

Even if we avoid explicit feature expansion, kernel methods are
slow. Quadratic dependence on the number of data points.

• n = 100,000⇒ 10 billion entries⇒ 80 GB to store K.

• Just writing down K requires Ω(n2) time.
• Other operations require even more. A single iteration for
a linear system solver takes Ω(n2) time.

12



algorithmic challenge

Even if we avoid explicit feature expansion, kernel methods are
slow. Quadratic dependence on the number of data points.

• n = 100,000⇒ 10 billion entries⇒ 80 GB to store K.
• Just writing down K requires Ω(n2) time.

• Other operations require even more. A single iteration for
a linear system solver takes Ω(n2) time.

12



algorithmic challenge

Even if we avoid explicit feature expansion, kernel methods are
slow. Quadratic dependence on the number of data points.

• n = 100,000⇒ 10 billion entries⇒ 80 GB to store K.
• Just writing down K requires Ω(n2) time.
• Other operations require even more. A single iteration for
a linear system solver takes Ω(n2) time.

12



algorithmic challenge

New algorithmic ideas are needed to scale kernel methods.
Even for moderately large datasets.

13



standard approach: low-rank approximation

Find approximation K̃ = ZZT for K (which is symmetric and
positive semidefinite):

We can typically set s≪ n.

• Z takes O(ns) space to store.
• Orthogonalization, eigendecomposition, and inversion of
ZZT all take just O(ns2) time.

• ZZTx can be computed in O(ns) time.

14



standard approach: low-rank approximation

Find approximation K̃ = ZZT for K (which is symmetric and
positive semidefinite):

We can typically set s≪ n.

• Z takes O(ns) space to store.
• Orthogonalization, eigendecomposition, and inversion of
ZZT all take just O(ns2) time.

• ZZTx can be computed in O(ns) time.

14



standard approach: low-rank approximation

Find approximation K̃ = ZZT for K (which is symmetric and
positive semidefinite):

We can typically set s≪ n.

• Z takes O(ns) space to store.
• Orthogonalization, eigendecomposition, and inversion of
ZZT all take just O(ns2) time.

• ZZTx can be computed in O(ns) time.
14



implicit low-rank approximation

All standard low-rank approximation algorithms take Ω(n2)
time for kernel matrices: we at least need to compute K.

Goal: Find methods that avoid explicit access to the K.

15



implicit low-rank approximation

All standard low-rank approximation algorithms take Ω(n2)
time for kernel matrices: we at least need to compute K.

Goal: Find methods that avoid explicit access to the K.

15



kernel methods

Goal: Find a compact nonlinear function f(·) such that

⟨f(x), f(y)⟩ ≈ k(x, y)

16



kernel methods

Goal: Find a compact nonlinear function f(·) such that

⟨f(x), f(y)⟩ ≈ k(x, y)

16



implicit low-rank approximation

Example: Nyström approximation.

Construct K̃ from subsample of K’s columns and rows.

Can match optimal k-rank approximation to (1+ ϵ) factor with
O(nk/ϵ) total samples [Musco, Musco, NIPS 2017].

17



implicit low-rank approximation

Example: Nyström approximation.

Construct K̃ from subsample of K’s columns and rows.

Can match optimal k-rank approximation to (1+ ϵ) factor with
O(nk/ϵ) total samples [Musco, Musco, NIPS 2017].

17



implicit low-rank approximation

Example: Nyström approximation.

Construct K̃ from subsample of K’s columns and rows.

Can match optimal k-rank approximation to (1+ ϵ) factor with
O(nk/ϵ) total samples [Musco, Musco, NIPS 2017].

17



rahimi recht random fourier features, nips 2007

Suppose k(x, y) is shift invariant.

I.e.

k(x, y) = k(∆) where ∆ = x− y.

• Gaussian (RBF) kernel: k(x, y) = e−∥x−y∥2

• Laplace kernel: k(x, y) = e−∥x−y∥1

• Matern kernel, Cauchy kernel, rational quadratic, etc.

18



rahimi recht random fourier features, nips 2007

Suppose k(x, y) is shift invariant. I.e.

k(x, y) = k(∆) where ∆ = x− y.

• Gaussian (RBF) kernel: k(x, y) = e−∥x−y∥2

• Laplace kernel: k(x, y) = e−∥x−y∥1

• Matern kernel, Cauchy kernel, rational quadratic, etc.

18



rahimi recht random fourier features, nips 2007

Suppose k(x, y) is shift invariant. I.e.

k(x, y) = k(∆) where ∆ = x− y.

• Gaussian (RBF) kernel: k(x, y) = e−∥x−y∥2

• Laplace kernel: k(x, y) = e−∥x−y∥1

• Matern kernel, Cauchy kernel, rational quadratic, etc.

18



rahimi recht random fourier features, nips 2007

Suppose k(x, y) is shift invariant. I.e.

k(x, y) = k(∆) where ∆ = x− y.

• Gaussian (RBF) kernel: k(x, y) = e−∥x−y∥2

• Laplace kernel: k(x, y) = e−∥x−y∥1

• Matern kernel, Cauchy kernel, rational quadratic, etc.

18



rahimi recht random fourier features, nips 2007

Suppose k(x, y) is shift invariant. I.e.

k(x, y) = k(∆) where ∆ = x− y.

• Gaussian (RBF) kernel: k(x, y) = e−∥x−y∥2

• Laplace kernel: k(x, y) = e−∥x−y∥1

• Matern kernel, Cauchy kernel, rational quadratic, etc.

18



rahimi recht random fourier features, nips 2007

Suppose k(x, y) is shift invariant. I.e.

k(x, y) = k(∆) where ∆ = x− y.

• Gaussian (RBF) kernel: k(x, y) = e−∥x−y∥2

• Laplace kernel: k(x, y) = e−∥x−y∥1

• Matern kernel, Cauchy kernel, rational quadratic, etc.

18



rahimi recht random fourier features, nips 2007

Suppose k(x, y) is shift invariant. I.e.

k(x, y) = k(∆) where ∆ = x− y.

• Gaussian (RBF) kernel: k(x, y) = e−∥x−y∥2

• Laplace kernel: k(x, y) = e−∥x−y∥1

• Matern kernel, Cauchy kernel, rational quadratic, etc.

18



random fourier features (rff) algorithm

Write k(∆) using its inverse Fourier transform,

p(η) =F−1k(∆) k(∆) =

∫
η∈Rd

p(η)e−iπηT∆dη

Approximate with finite sum for any∆:

k(∆) ≈ 1
s

s∑
j=1

cje
−iπηTj∆

Immediately gives low-rank approximation:

Z(x)Z(y)∗ =
∑
j

cj
s e

−iπηTj (x−y)

≈ k(x− y)

19



random fourier features (rff) algorithm

Write k(∆) using its inverse Fourier transform,

p(η) =F−1k(∆) k(∆) =

∫
η∈Rd

p(η)e−iπηT∆dη

Approximate with finite sum for any∆:

k(∆) ≈ 1
s

s∑
j=1

cje
−iπηTj∆

Immediately gives low-rank approximation:

Z(x)Z(y)∗ =
∑
j

cj
s e

−iπηTj (x−y)

≈ k(x− y)

19



random fourier features (rff) algorithm

Write k(∆) using its inverse Fourier transform,

p(η) =F−1k(∆) k(∆) =

∫
η∈Rd

p(η)e−iπηT∆dη

Approximate with finite sum for any∆:

k(∆) ≈ 1
s

s∑
j=1

cje
−iπηTj∆

Immediately gives low-rank approximation:

Z(x)Z(y)∗ =
∑
j

cj
s e

−iπηTj (x−y)

≈ k(x− y)

19



random fourier features (rff) algorithm

Write k(∆) using its inverse Fourier transform,

p(η) =F−1k(∆) k(∆) =

∫
η∈Rd

p(η)e−iπηT∆dη

Approximate with finite sum for any∆:

k(∆) ≈ 1
s

s∑
j=1

cje
−iπηTj∆

Immediately gives low-rank approximation:

Z(x)Z(y)∗ =
∑
j

cj
s e

−iπηTj (x−y)

≈ k(x− y)

19



random fourier features (rff) algorithm

How do we choose the frequencies in the finite sum?∫
η∈Rd

p(η)e−iπηT∆dη ≈ 1
s

s∑
j=1

cje
−iπηTj∆

Bochner’s Theorem: For shift-invariant, positive semidefinite
kernel functions, p(η) ≥ 0 for all η.

20



random fourier features (rff) algorithm

How do we choose the frequencies in the finite sum?∫
η∈Rd

p(η)e−iπηT∆dη ≈ 1
s

s∑
j=1

cje
−iπηTj∆

Bochner’s Theorem: For shift-invariant, positive semidefinite
kernel functions, p(η) ≥ 0 for all η.

20



random fourier features (rff) algorithm

Bochner’s Theorem: For shift-invariant, positive semidefinite
kernel functions, p(η) ≥ 0 for all η.

Example (Gaussian kernel):

21



random fourier features (rff) algorithm

Bochner’s Theorem: For shift-invariant, positive semidefinite
kernel functions, p(η) ≥ 0 for all η.

Example (Gaussian kernel):

21



random fourier features (rff) algorithm

Sample frequencies from distribution p(η).

E

 1
s

s∑
j=1

e−iπη
T
j ∆

 = E
[
e−iπηT∆

]

=

∫
η∈Rd

p(η)e−iπηT∆dη

22



random fourier features (rff) algorithm

Sample frequencies from distribution p(η).

E

 1
s

s∑
j=1

e−iπη
T
j ∆

 = E
[
e−iπηT∆

]

=

∫
η∈Rd

p(η)e−iπηT∆dη

22



random fourier features (rff) algorithm

Sample frequencies from distribution p(η).

E

 1
s

s∑
j=1

e−iπη
T
j ∆

 = E
[
e−iπηT∆

]
=

∫
η∈Rd

p(η)e−iπηT∆dη

22



random fourier features (rff) algorithm

• Sampling frequencies by p(η) is correct in expectation.

• Final sum 1
s
∑s

j=1 e
−iπηTj ∆ ≈ k(∆) only has terms with

magnitude |e−iπη
T
j ∆| = 1. Real part ≤ 1. Imaginary part ≤ 1.

• By Chernoff bound, if we take O
(
log n
ϵ2

)
samples, we

approximate every entry in K to error ±ϵ w.h.p.

23



random fourier features (rff) algorithm

• Sampling frequencies by p(η) is correct in expectation.
• Final sum 1

s
∑s

j=1 e
−iπηTj ∆ ≈ k(∆) only has terms with

magnitude |e−iπη
T
j ∆| = 1. Real part ≤ 1. Imaginary part ≤ 1.

• By Chernoff bound, if we take O
(
log n
ϵ2

)
samples, we

approximate every entry in K to error ±ϵ w.h.p.

23



random fourier features (rff) algorithm

• Sampling frequencies by p(η) is correct in expectation.
• Final sum 1

s
∑s

j=1 e
−iπηTj ∆ ≈ k(∆) only has terms with

magnitude |e−iπη
T
j ∆| = 1. Real part ≤ 1. Imaginary part ≤ 1.

• By Chernoff bound, if we take O
(
log n
ϵ2

)
samples, we

approximate every entry in K to error ±ϵ w.h.p.

23



random fourier features (rff) algorithm

Super simple algorithm. For Gaussian kernel k(x, y) = e−∥x−y∥22 :

Zx,j = e−iπxTηj for ηj ∼ N

G = randn(d, s);
Z = exp(-sqrt(-1)*pi*X*G)/sqrt(s);

This is a so-called oblivious sketch.

24



random fourier features (rff) algorithm

Super simple algorithm. For Gaussian kernel k(x, y) = e−∥x−y∥22 :

Zx,j = e−iπxTηj for ηj ∼ N

G = randn(d, s);
Z = exp(-sqrt(-1)*pi*X*G)/sqrt(s);

This is a so-called oblivious sketch.

24



random fourier features (rff) algorithm

Super simple algorithm. For Gaussian kernel k(x, y) = e−∥x−y∥22 :

Zx,j = e−iπxTηj for ηj ∼ N

G = randn(d, s);
Z = exp(-sqrt(-1)*pi*X*G)/sqrt(s);

This is a so-called oblivious sketch.

24



starting point

Want to improve the approximation guarantee:

• Does not give bounds on ∥ZZ∗ − K∥ unless we take Ω(n2)
samples.

• No clear implications for downstream learning tasks. E.g.,
does (ZZ∗ + λI)−1 approximate (K+ λI)−1?

• Faster but less accurate than a Nyström approximation
with the same number of samples in practice.

25



starting point

Want to improve the approximation guarantee:

• Does not give bounds on ∥ZZ∗ − K∥ unless we take Ω(n2)
samples.

• No clear implications for downstream learning tasks. E.g.,
does (ZZ∗ + λI)−1 approximate (K+ λI)−1?

• Faster but less accurate than a Nyström approximation
with the same number of samples in practice.

25



starting point

Want to improve the approximation guarantee:

• Does not give bounds on ∥ZZ∗ − K∥ unless we take Ω(n2)
samples.

• No clear implications for downstream learning tasks. E.g.,
does (ZZ∗ + λI)−1 approximate (K+ λI)−1?

• Faster but less accurate than a Nyström approximation
with the same number of samples in practice.

25



starting point

Want to improve the approximation guarantee:

• Does not give bounds on ∥ZZ∗ − K∥ unless we take Ω(n2)
samples.

• No clear implications for downstream learning tasks. E.g.,
does (ZZ∗ + λI)−1 approximate (K+ λI)−1?

• Faster but less accurate than a Nyström approximation
with the same number of samples in practice.

25



starting point

We want matrix-like error bounds, not entrywise bounds.

Key Idea: Analyze the random Fourier features algorithm as a
matrix sampling process.

26



starting point

We want matrix-like error bounds, not entrywise bounds.

Key Idea: Analyze the random Fourier features algorithm as a
matrix sampling process.

26



high level approach

k(xu − xv) =
∫
η∈Rd

p(η)e−iπηT(xu−xv)dη

Kernel Fourier Transform

27



high level approach

k(xu − xv) =
∫
η∈Rd

p(η)e−iπηT(xu−xv)dη

Kernel Fourier Transform

27



high level approach

k(xu − xv) =
∫
η∈Rd

p(η)e−iπηT(xu−xv)dη

Kernel Fourier Transform

27



standard rff = column norm sampling

Standard RFF selects column Φ̄(η) with probability ∝ p(η).

(with probability proportional to the column’s squared norm)

.

Simple matrix Chernoff already gives better bounds:
∥K− ZZ∗∥2 ≤ ϵ with Õ(n/ϵ2) samples.

28



standard rff = column norm sampling

Standard RFF selects column Φ̄(η) with probability ∝ p(η).

(with probability proportional to the column’s squared norm)

.

Simple matrix Chernoff already gives better bounds:
∥K− ZZ∗∥2 ≤ ϵ with Õ(n/ϵ2) samples.

28



standard rff = column norm sampling

Standard RFF selects column Φ̄(η) with probability ∝ p(η).

(with probability proportional to the column’s squared norm).

Simple matrix Chernoff already gives better bounds:
∥K− ZZ∗∥2 ≤ ϵ with Õ(n/ϵ2) samples.

28



standard rff = column norm sampling

Standard RFF selects column Φ̄(η) with probability ∝ p(η).

(with probability proportional to the column’s squared norm).

Simple matrix Chernoff already gives better bounds:
∥K− ZZ∗∥2 ≤ ϵ with Õ(n/ϵ2) samples.

28



leverage score sampling

For matrix approximation, norm based sampling probabilities
are known to be suboptimal!

We can obtain better theoretical bounds and empirical
performance if we sample by column leverage scores.

[Spielman, Srivastava, et al. 2008 and on]

(see work on effective resistances for spectral graph sparsification,
randomized linear algebra, etc.)

29



leverage score sampling

For matrix approximation, norm based sampling probabilities
are known to be suboptimal!

We can obtain better theoretical bounds and empirical
performance if we sample by column leverage scores.

[Spielman, Srivastava, et al. 2008 and on]

(see work on effective resistances for spectral graph sparsification,
randomized linear algebra, etc.)

29



leverage score sampling

For matrix approximation, norm based sampling probabilities
are known to be suboptimal!

We can obtain better theoretical bounds and empirical
performance if we sample by column leverage scores.

[Spielman, Srivastava, et al. 2008 and on]

(see work on effective resistances for spectral graph sparsification,
randomized linear algebra, etc.)

29



better approximation guarantees

λ-Ridge Leverage Score Sampling:

(1− ϵ)(ZZ∗ + λI) ⪯ K+ λI ⪯ (1+ ϵ)(ZZ∗ + λI).

• Since A ⪯ B⇒ B−1 ⪯ A−1, (ZZ∗ + λI)−1 ≈ (K+ λI)−1

• Spectral approximation also gives bounds for kernel PCA,
k-means, CCA, etc. (Cohen, Musco, Musco ‘16,‘17)

Need Õ(sλ/ϵ2) samples where sλ is the statistical dimension:

sλ = tr(K(K+ λI)−1)

=
n∑
i=1

σi(K)
σi(K) + λ

Roughly the number of singular values ≥ λ plus a term
depending on the tail singular values.

30



better approximation guarantees

λ-Ridge Leverage Score Sampling:

(1− ϵ)(ZZ∗ + λI) ⪯ K+ λI ⪯ (1+ ϵ)(ZZ∗ + λI).

• Since A ⪯ B⇒ B−1 ⪯ A−1, (ZZ∗ + λI)−1 ≈ (K+ λI)−1

• Spectral approximation also gives bounds for kernel PCA,
k-means, CCA, etc. (Cohen, Musco, Musco ‘16,‘17)

Need Õ(sλ/ϵ2) samples where sλ is the statistical dimension:

sλ = tr(K(K+ λI)−1)

=
n∑
i=1

σi(K)
σi(K) + λ

Roughly the number of singular values ≥ λ plus a term
depending on the tail singular values.

30



better approximation guarantees

λ-Ridge Leverage Score Sampling:

(1− ϵ)(ZZ∗ + λI) ⪯ K+ λI ⪯ (1+ ϵ)(ZZ∗ + λI).

• Since A ⪯ B⇒ B−1 ⪯ A−1, (ZZ∗ + λI)−1 ≈ (K+ λI)−1

• Spectral approximation also gives bounds for kernel PCA,
k-means, CCA, etc. (Cohen, Musco, Musco ‘16,‘17)

Need Õ(sλ/ϵ2) samples where sλ is the statistical dimension:

sλ = tr(K(K+ λI)−1)

=
n∑
i=1

σi(K)
σi(K) + λ

Roughly the number of singular values ≥ λ plus a term
depending on the tail singular values.

30



better approximation guarantees

λ-Ridge Leverage Score Sampling:

(1− ϵ)(ZZ∗ + λI) ⪯ K+ λI ⪯ (1+ ϵ)(ZZ∗ + λI).

• Since A ⪯ B⇒ B−1 ⪯ A−1, (ZZ∗ + λI)−1 ≈ (K+ λI)−1

• Spectral approximation also gives bounds for kernel PCA,
k-means, CCA, etc. (Cohen, Musco, Musco ‘16,‘17)

Need Õ(sλ/ϵ2) samples where sλ is the statistical dimension:

sλ = tr(K(K+ λI)−1)

=
n∑
i=1

σi(K)
σi(K) + λ

Roughly the number of singular values ≥ λ plus a term
depending on the tail singular values.

30



better approximation guarantees

λ-Ridge Leverage Score Sampling:

(1− ϵ)(ZZ∗ + λI) ⪯ K+ λI ⪯ (1+ ϵ)(ZZ∗ + λI).

• Since A ⪯ B⇒ B−1 ⪯ A−1, (ZZ∗ + λI)−1 ≈ (K+ λI)−1

• Spectral approximation also gives bounds for kernel PCA,
k-means, CCA, etc. (Cohen, Musco, Musco ‘16,‘17)

Need Õ(sλ/ϵ2) samples where sλ is the statistical dimension:

sλ = tr(K(K+ λI)−1) =
n∑
i=1

σi(K)
σi(K) + λ

Roughly the number of singular values ≥ λ plus a term
depending on the tail singular values.

30



better approximation guarantees

λ-Ridge Leverage Score Sampling:

(1− ϵ)(ZZ∗ + λI) ⪯ K+ λI ⪯ (1+ ϵ)(ZZ∗ + λI).

• Since A ⪯ B⇒ B−1 ⪯ A−1, (ZZ∗ + λI)−1 ≈ (K+ λI)−1

• Spectral approximation also gives bounds for kernel PCA,
k-means, CCA, etc. (Cohen, Musco, Musco ‘16,‘17)

Need Õ(sλ/ϵ2) samples where sλ is the statistical dimension:

sλ = tr(K(K+ λI)−1) =
n∑
i=1

σi(K)
σi(K) + λ

Roughly the number of singular values ≥ λ plus a term
depending on the tail singular values.

30



computing ridge leverage scores

What are the ridge leverage scores?

τλ(η) = Φ̄(η)∗(K+ λI)−1Φ̄(η).

Expensive to invert K+ λI. Even if you could, not at all clear
how to efficiently sample from the leverage score distribution.

31



computing ridge leverage scores

What are the ridge leverage scores?

τλ(η) = Φ̄(η)∗(K+ λI)−1Φ̄(η).

Expensive to invert K+ λI. Even if you could, not at all clear
how to efficiently sample from the leverage score distribution.

31



bounding the fourier leverage scores

Goal: Upper bound Fourier ridge leverage scores for common
kernels with simple distributions.

More closely match leverage score sampling to improve
random Fourier features.

32



bounding the fourier leverage scores

Goal: Upper bound Fourier ridge leverage scores for common
kernels with simple distributions.

More closely match leverage score sampling to improve
random Fourier features.

32



bounding the fourier leverage scores

Goal: Upper bound Fourier ridge leverage scores for common
kernels with simple distributions.

More closely match leverage score sampling to improve
random Fourier features.

32



bounding the fourier leverage scores

First observation: Scaled by n
λ , the standard Rahimi Recht

distribution upper bounds the λ-ridge leverage scores.

Basic Result: Sampling O(nλ · 1
ϵ2
) frequencies with RFF gives

spectral guarantees.

33



bounding the fourier leverage scores

First observation: Scaled by n
λ , the standard Rahimi Recht

distribution upper bounds the λ-ridge leverage scores.

Basic Result: Sampling O(nλ · 1
ϵ2
) frequencies with RFF gives

spectral guarantees.

33



alternative characterization of leverage scores

Ridge leverage score Φ̄(η)∗(K+ λI)−1Φ̄(η) solves:

τλ(η) = min
y

[
1
λ
∥Φ̄y− Φ̄(η)∥22 + ∥y∥22

]
.

Intuition:

y reconstructs frequency η from other frequencies.
If η is “easy” to reconstruct, it is less important to sample.

34



alternative characterization of leverage scores

Ridge leverage score Φ̄(η)∗(K+ λI)−1Φ̄(η) solves:

τλ(η) = min
y

[
1
λ
∥Φ̄y− Φ̄(η)∥22 + ∥y∥22

]
.

Intuition:

y reconstructs frequency η from other frequencies.
If η is “easy” to reconstruct, it is less important to sample.

34



alternative characterization of leverage scores

Ridge leverage score Φ̄(η)∗(K+ λI)−1Φ̄(η) solves:

τλ(η) = min
y

[
1
λ
∥Φ̄y− Φ̄(η)∥22 + ∥y∥22

]
.

Intuition: y reconstructs frequency η from other frequencies.
If η is “easy” to reconstruct, it is less important to sample.

34



bounding the fourier leverage scores

Approach: Obtain closed form upper bound on leverage
scores by exhibiting simple candidate vector ỹ and noting that:

τλ(η) ≤
1
λ
∥Φ̄ỹ− Φ̄(η)∥22 + ∥ỹ∥22.

35



alternative characterization of leverage scores

Φ̄y is just the Fourier transform of
√
Py evaluated at x1, . . . , xn!

36



alternative characterization of leverage scores

Φ̄y is just the Fourier transform of
√
Py evaluated at x1, . . . , xn!

36



Simplifying Assumption

For remainder of talk: Assume Gaussian kernel, n points in
1-dimension, bounded between [−δ, δ].

We want a function whose Fourier transform matches
frequency η on these data points.

37



Simplifying Assumption

For remainder of talk: Assume Gaussian kernel, n points in
1-dimension, bounded between [−δ, δ].

We want a function whose Fourier transform matches
frequency η on these data points.

37



first attempt

Need to bound: 1
λ∥Φ̄ỹ− Φ̄(η)∥22 + ∥ỹ∥22.

Set
√
Pỹ to be a shifted sinc function.

1
λ∥Φ̄ỹ− Φ̄(η)∥22 = 0! ∥

√
Pỹ∥22 = O(δ).

∥ỹ∥22 is much larger!

38



first attempt

Need to bound: 1
λ∥Φ̄ỹ− Φ̄(η)∥22 + ∥ỹ∥22.

Set
√
Pỹ to be a shifted sinc function.

1
λ∥Φ̄ỹ− Φ̄(η)∥22 = 0! ∥

√
Pỹ∥22 = O(δ).

∥ỹ∥22 is much larger!

38



first attempt

Need to bound: 1
λ∥Φ̄ỹ− Φ̄(η)∥22 + ∥ỹ∥22.

Set
√
Pỹ to be a shifted sinc function.

1
λ∥Φ̄ỹ− Φ̄(η)∥22 = 0! ∥

√
Pỹ∥22 = O(δ).

∥ỹ∥22 is much larger!

38



first attempt

Need to bound: 1
λ∥Φ̄ỹ− Φ̄(η)∥22 + ∥ỹ∥22.

Set
√
Pỹ to be a shifted sinc function.

1
λ∥Φ̄ỹ− Φ̄(η)∥22 = 0!

∥
√
Pỹ∥22 = O(δ).

∥ỹ∥22 is much larger!

38



first attempt

Need to bound: 1
λ∥Φ̄ỹ− Φ̄(η)∥22 + ∥ỹ∥22.

Set
√
Pỹ to be a shifted sinc function.

1
λ∥Φ̄ỹ− Φ̄(η)∥22 = 0! ∥

√
Pỹ∥22 = O(δ).

∥ỹ∥22 is much larger!

38



first attempt

Need to bound: 1
λ∥Φ̄ỹ− Φ̄(η)∥22 + ∥ỹ∥22.

Set
√
Pỹ to be a shifted sinc function.

1
λ∥Φ̄ỹ− Φ̄(η)∥22 = 0! ∥

√
Pỹ∥22 = O(δ).

∥ỹ∥22 is much larger! 38



first attempt

ỹ = P−1/2P1/2ỹ = P−1/2 · sinc function

Sinc falls off as O(1/f), but 1√
p(f)

grows as eO(f2),

so ∥y∥22 explodes.

39



final test function

Solution: Dampen sinc with a narrow Gaussian.

1
λ∥Φ̄ỹ− Φ̄(η)∥22 remains very small, ∥y∥22 ≈ O(δ).

(as long as η is not too large)

40



final test function

Solution: Dampen sinc with a narrow Gaussian.

1
λ∥Φ̄ỹ− Φ̄(η)∥22 remains very small, ∥y∥22 ≈ O(δ).

(as long as η is not too large)

40



final test function

Solution: Dampen sinc with a narrow Gaussian.

1
λ∥Φ̄ỹ− Φ̄(η)∥22 remains very small, ∥y∥22 ≈ O(δ).

(as long as η is not too large)

40



final test function

Easy to sample from approximate leverage distribution for the
Gaussian kernel with x1, ..., xn ∈ [−δ, δ]d:

τ̄λ(η) =

Õ(δ) when η ≤
√
logn/λ

p(η) = e−∥η∥22/2 otherwise.

Requires O(δ
√
log(n/λ)) · 1

ϵ2
samples for spectral guarantee.

(vs. O(n/λ) · 1
ϵ2
for standard random Fourier features.)

41



final test function

Easy to sample from approximate leverage distribution for the
Gaussian kernel with x1, ..., xn ∈ [−δ, δ]d:

τ̄λ(η) =

Õ(δ) when η ≤
√
logn/λ

p(η) = e−∥η∥22/2 otherwise.

Requires O(δ
√
log(n/λ)) · 1

ϵ2
samples for spectral guarantee.

(vs. O(n/λ) · 1
ϵ2
for standard random Fourier features.)

41



final test function

Easy to sample from approximate leverage distribution for the
Gaussian kernel with x1, ..., xn ∈ [−δ, δ]d:

τ̄λ(η) =

Õ(δ) when η ≤
√
logn/λ

p(η) = e−∥η∥22/2 otherwise.

Requires O(δ
√
log(n/λ)) · 1

ϵ2
samples for spectral guarantee.

(vs. O(n/λ) · 1
ϵ2
for standard random Fourier features.)

41



intuition

Gaussian kernel for two clusters:

200 400 600 800 1000 1200 1400 1600 1800 2000

200

400

600

800

1000

1200

1400

1600

1800

2000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

200 400 600 800 1000 1200 1400 1600 1800 2000

200

400

600

800

1000

1200

1400

1600

1800

2000 0

0.05

0.1

0.15

0.2

0.25

Standard RFF element error.
200 400 600 800 1000 1200 1400 1600 1800 2000

200

400

600

800

1000

1200

1400

1600

1800

2000 0

0.05

0.1

0.15

0.2

0.25

Modified RFF element error.

(1− ϵ)(ZZ∗ + λI) ⪯ K+ λI ⪯ (1+ ϵ)(ZZ∗ + λI).

Sampling low frequencies relatively less biases error to align
with large eigenvectors.

42



intuition

Gaussian kernel for two clusters:

200 400 600 800 1000 1200 1400 1600 1800 2000

200

400

600

800

1000

1200

1400

1600

1800

2000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

200 400 600 800 1000 1200 1400 1600 1800 2000

200

400

600

800

1000

1200

1400

1600

1800

2000 0

0.05

0.1

0.15

0.2

0.25

Standard RFF element error.
200 400 600 800 1000 1200 1400 1600 1800 2000

200

400

600

800

1000

1200

1400

1600

1800

2000 0

0.05

0.1

0.15

0.2

0.25

Modified RFF element error.

(1− ϵ)(ZZ∗ + λI) ⪯ K+ λI ⪯ (1+ ϵ)(ZZ∗ + λI).

Sampling low frequencies relatively less biases error to align
with large eigenvectors.

42



intuition

Gaussian kernel for two clusters:

200 400 600 800 1000 1200 1400 1600 1800 2000

200

400

600

800

1000

1200

1400

1600

1800

2000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

200 400 600 800 1000 1200 1400 1600 1800 2000

200

400

600

800

1000

1200

1400

1600

1800

2000 0

0.05

0.1

0.15

0.2

0.25

Standard RFF element error.
200 400 600 800 1000 1200 1400 1600 1800 2000

200

400

600

800

1000

1200

1400

1600

1800

2000 0

0.05

0.1

0.15

0.2

0.25

Modified RFF element error.

(1− ϵ)(ZZ∗ + λI) ⪯ K+ λI ⪯ (1+ ϵ)(ZZ∗ + λI).

Sampling low frequencies relatively less biases error to align
with large eigenvectors. 42



experimental results

Example of approximate kernel ridge regression to interpolate
a synthetic function:

CRF = classic random Fourier features ‘column norm’ sampling,
MRF = our modified sampling distribution.

43



experimental results

In higher dimensions:

CRF = classic random Fourier features ‘column norm’ sampling,
MRF = our modified sampling distribution. 44



summary

1. Viewed random Fourier features methods as a matrix
sampling problem.

2. Used optimization perspective on leverage scores to
certify upper bounds on these scores. Reduced score
computation to Fourier approximation problem.

3. New sampling distribution under-samples lower
frequencies to obtain better kernel approximations.

45



summary

1. Viewed random Fourier features methods as a matrix
sampling problem.

2. Used optimization perspective on leverage scores to
certify upper bounds on these scores. Reduced score
computation to Fourier approximation problem.

3. New sampling distribution under-samples lower
frequencies to obtain better kernel approximations.

45



summary

1. Viewed random Fourier features methods as a matrix
sampling problem.

2. Used optimization perspective on leverage scores to
certify upper bounds on these scores. Reduced score
computation to Fourier approximation problem.

3. New sampling distribution under-samples lower
frequencies to obtain better kernel approximations.

45



summary

1. Viewed random Fourier features methods as a matrix
sampling problem.

2. Used optimization perspective on leverage scores to
certify upper bounds on these scores. Reduced score
computation to Fourier approximation problem.

3. New sampling distribution under-samples lower
frequencies to obtain better kernel approximations.

45



open questions

Major open question: Can we achieve our spectral guarantee
with O(sλ) samples in high dimensions for any data set.

Conjecture: Yes, although maybe with polynomial loss (i.e.
poly(sλ) samples).

I.e. can we match data-adaptive methods like Nyström
obliviously?

46



open questions

Major open question: Can we achieve our spectral guarantee
with O(sλ) samples in high dimensions for any data set.

Conjecture: Yes, although maybe with polynomial loss (i.e.
poly(sλ) samples).

I.e. can we match data-adaptive methods like Nyström
obliviously?

46



open questions

Major open question: Can we achieve our spectral guarantee
with O(sλ) samples in high dimensions for any data set.

Conjecture: Yes, although maybe with polynomial loss (i.e.
poly(sλ) samples).

I.e. can we match data-adaptive methods like Nyström
obliviously?

46



open questions

Duel view of leverage scores:

τλ(η) = max
a

(
aTΦ̄(η)

)2
∥aTΦ̄∥22 + λ∥a∥22

.

aTΦ̄ is an n sparse Fourier function weighted by a Gaussian.

Immediately get leverage score bounds from bounds on smoothness
of sparse Fourier functions, e.g. [Chen, Kane, Price, Song FOCS 2016].

47



open questions

Duel view of leverage scores:

τλ(η) = max
a

(
aTΦ̄(η)

)2
∥aTΦ̄∥22 + λ∥a∥22

.

aTΦ̄ is an n sparse Fourier function weighted by a Gaussian.

Immediately get leverage score bounds from bounds on smoothness
of sparse Fourier functions, e.g. [Chen, Kane, Price, Song FOCS 2016].

47



open questions

Duel view of leverage scores:

τλ(η) = max
a

(
aTΦ̄(η)

)2
∥aTΦ̄∥22 + λ∥a∥22

.

aTΦ̄ is an n sparse Fourier function weighted by a Gaussian.

Immediately get leverage score bounds from bounds on smoothness
of sparse Fourier functions, e.g. [Chen, Kane, Price, Song FOCS 2016].

47



open questions

Vague open question: Why does this all actually matter for
function fitting?

We were surprised to beat random Fourier features on a
kernel regression task.

48



open questions

Vague open question: Why does this all actually matter for
function fitting?

We were surprised to beat random Fourier features on a
kernel regression task.

48



thank you!

48


