Algorithms for Determining Tournament Payout Structures

Christopher Musco, Maxim Sviridenko, and Justin Thaler
January 18, 2017

Massachusetts Institute of Technology, Yahoo Research, Georgetown University
There are a lot of interesting algorithmic challenges involved in managing massive online games and contests.
There are a lot of interesting algorithmic challenges involved in managing massive online games and contests.

- online poker tournaments
There are a lot of interesting algorithmic challenges involved in managing massive online games and contests.

- online poker tournaments
- video game (eSports) tournaments
There are a lot of interesting algorithmic challenges involved in managing massive online games and contests.

- online poker tournaments
- video game (eSports) tournaments
- fantasy sports contests
There are a lot of interesting algorithmic challenges involved in managing massive online games and contests.

- online poker tournaments
- video game (eSports) tournaments
- fantasy sports contests

100,000s of players, complex tournament structures, real money on the line.
What are fantasy sports?
Fantasy Sports: A Quick Review

Users “draft” a group of real-world athletes and earn points depending on how well those players perform in games.

<table>
<thead>
<tr>
<th>Pos</th>
<th>Name</th>
<th>FPPG</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>QB</td>
<td>Tom Brady</td>
<td>21.7</td>
<td>$37</td>
</tr>
<tr>
<td></td>
<td>QB Hou @ NE, Sat 8:15 PM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RB</td>
<td>Le’Veon Bell</td>
<td>23.9</td>
<td>$41</td>
</tr>
<tr>
<td></td>
<td>RB Pit @ KC, Sun 1:05 PM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RB</td>
<td>Lamar Miller</td>
<td>12.6</td>
<td>$20</td>
</tr>
<tr>
<td></td>
<td>RB Hou @ NE, Sat 8:15 PM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Budget: $52
Average Salary Remaining: $17 (3 Players)
Average FPPG: 14.2
Fantasy Sports: A Quick Review

Users “draft” a group of real-world athletes and earn points depending on how well those players perform in games.

Team Musco Box Score

<table>
<thead>
<tr>
<th>SLOT</th>
<th>PLAYER, TEAM POS</th>
<th>OPP</th>
<th>STATUS ET</th>
<th>PTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>QB</td>
<td>Tyrod Taylor, Buf QB</td>
<td>@Mia</td>
<td>L 25-26</td>
<td>24.3</td>
</tr>
<tr>
<td>QB</td>
<td>Jameis Winston, TB QB</td>
<td>@SF</td>
<td>W 34-17</td>
<td>20.7</td>
</tr>
<tr>
<td>RB</td>
<td>C.J. Anderson*, Den RB</td>
<td>Hou</td>
<td>W 27-9</td>
<td>16.7</td>
</tr>
<tr>
<td>RB</td>
<td>Melvin Gordon, SD RB</td>
<td>@Ati</td>
<td>W 33-30</td>
<td>30.1</td>
</tr>
<tr>
<td>WR</td>
<td>Brandon Marshall, NYJ WR</td>
<td>Bal</td>
<td>W 24-16</td>
<td>3.9</td>
</tr>
<tr>
<td>WR</td>
<td>Jarvis Landry, Mia WR</td>
<td>Buf</td>
<td>W 28-25</td>
<td>10.5</td>
</tr>
<tr>
<td>TE</td>
<td>Jimmy Graham, Sea TE</td>
<td>@Ari</td>
<td>T 6-6</td>
<td>5.3</td>
</tr>
<tr>
<td>FLEX</td>
<td>Mark Ingram, NO RB</td>
<td>@KC</td>
<td>L 21-27</td>
<td>12.2</td>
</tr>
</tbody>
</table>

TOTAL POINTS: 123.7

It’s a Rebuilding Year Box Score

<table>
<thead>
<tr>
<th>SLOT</th>
<th>PLAYER, TEAM POS</th>
<th>OPP</th>
<th>STATUS ET</th>
<th>PTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>QB</td>
<td>Andrew Luck, Ind QB</td>
<td>@Ten</td>
<td>W 34-26</td>
<td>27.8</td>
</tr>
<tr>
<td>QB</td>
<td>Marcus Mariota*, Ten QB</td>
<td>Ind</td>
<td>L 26-34</td>
<td>16.7</td>
</tr>
<tr>
<td>RB</td>
<td>Frank Gore, Ind RB</td>
<td>@Ten</td>
<td>W 34-26</td>
<td>14.3</td>
</tr>
<tr>
<td>RB</td>
<td>Christine Michael, GB RB</td>
<td>Chi</td>
<td>W 26-10</td>
<td>5.5</td>
</tr>
<tr>
<td>WR</td>
<td>Jeremy Maclin, KC WR</td>
<td>NO</td>
<td>W 27-21</td>
<td>4</td>
</tr>
<tr>
<td>WR</td>
<td>Sammie Coates, Pit WR</td>
<td>NE</td>
<td>L 16-27</td>
<td>0.4</td>
</tr>
<tr>
<td>TE</td>
<td>Martellus Bennett, NE TE</td>
<td>@Pit</td>
<td>W 27-16</td>
<td>0.5</td>
</tr>
<tr>
<td>FLEX</td>
<td>Spencer Ware, KC RB</td>
<td>NO</td>
<td>W 27-21</td>
<td>19.1</td>
</tr>
</tbody>
</table>

TOTAL POINTS: 88.3
Sports covered: American football, baseball, soccer, basketball, hockey, golf, auto racing, mixed martial arts ...
Sports covered: American football, baseball, soccer, basketball, hockey, golf, auto racing, mixed martial arts ...

- 57.4 million users in the US and Canada alone
 + huge international growth
Sports covered: American football, baseball, soccer, basketball, hockey, golf, auto racing, mixed martial arts ...

- 57.4 million users in the US and Canada alone
 + huge international growth
- large platforms run by ESPN, NFL, Yahoo, CBS etc.
The Business of Fantasy Sports

Sports covered: American football, baseball, soccer, basketball, hockey, golf, auto racing, mixed martial arts ...

- 57.4 million users in the US and Canada alone
 + huge international growth
- large platforms run by ESPN, NFL, Yahoo, CBS etc.
- > 60% of participants report watching more games and reading more about sports
And now you can legally \textit{gamble} on fantasy sports in the US.
And now you can legally **gamble** on fantasy sports in the US.

Led to emergence of **Daily Fantasy Sports**.
And now you can legally **gamble** on fantasy sports in the US.

Led to emergence of **Daily Fantasy Sports**.

(Over $1.7 billion dollars in seed funding for DraftKings and FanDuel alone)
And now you can legally **gamble** on fantasy sports in the US.

Led to emergence of **Daily Fantasy Sports**.

(Over $1.7 billion dollars in seed funding for DraftKings and FanDuel alone)

Running contests with 10,000s - 100,000s of players.
Daily Fantasy Sports: Computational Challenges

• How to evaluate and price athletes? (Anagnostopoulos, Cavallo, Leonardi, Sviridenko, WINE 2016)
• How to structure scoring to manage competition variance?
• How to ensure fairness and effectively separate new players from “sharks”? (see NY Times article)
• How to distribute prize money amongst top contestants?
• How to evaluate and price athletes? (Anagnostopoulos, Cavallo, Leonardi, Sviridenko, WINE 2016)
Daily Fantasy Sports: Computational Challenges

• How to evaluate and price athletes? (Anagnostopoulos, Cavallo, Leonardi, Sviridenko, WINE 2016)
• How to structure scoring to manage competition variance?
• How to evaluate and price athletes? (Anagnostopoulos, Cavallo, Leonardi, Sviridenko, WINE 2016)
• How to structure scoring to manage competition variance?
• How to ensure fairness and effectively separate new players from “sharks”? (see NY Times article)
Daily Fantasy Sports: Computational Challenges

• How to evaluate and price athletes? (Anagnostopoulos, Cavallo, Leonardi, Sviridenko, WINE 2016)
• How to structure scoring to manage competition variance?
• How to ensure fairness and effectively separate new players from “sharks”? (see NY Times article)

How to distribute prize money amongst top contestants?
Tournament Payout Structures

<table>
<thead>
<tr>
<th>Position</th>
<th>Prize Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>$250,000.00</td>
</tr>
<tr>
<td>2nd</td>
<td>$100,000.00</td>
</tr>
<tr>
<td>3rd</td>
<td>$50,000.00</td>
</tr>
<tr>
<td>4th</td>
<td>$25,000.00</td>
</tr>
<tr>
<td>5th</td>
<td>$15,000.00</td>
</tr>
<tr>
<td>6th</td>
<td>$10,000.00</td>
</tr>
<tr>
<td>7th - 8th</td>
<td>$5,000.00</td>
</tr>
<tr>
<td>9th - 10th</td>
<td>$4,000.00</td>
</tr>
<tr>
<td>11th - 15th</td>
<td>$3,000.00</td>
</tr>
<tr>
<td>16th - 20th</td>
<td>$2,000.00</td>
</tr>
<tr>
<td>21st - 30th</td>
<td>$1,500.00</td>
</tr>
<tr>
<td>31st - 50th</td>
<td>$1,000.00</td>
</tr>
<tr>
<td>101st - 150th</td>
<td>$500.00</td>
</tr>
<tr>
<td>151st - 200th</td>
<td>$400.00</td>
</tr>
<tr>
<td>201st - 300th</td>
<td>$300.00</td>
</tr>
<tr>
<td>301st - 400th</td>
<td>$250.00</td>
</tr>
<tr>
<td>401st - 500th</td>
<td>$200.00</td>
</tr>
<tr>
<td>501st - 800th</td>
<td>$150.00</td>
</tr>
<tr>
<td>801st - 1500th</td>
<td>$100.00</td>
</tr>
<tr>
<td>1501st - 2500th</td>
<td>$75.00</td>
</tr>
<tr>
<td>2501st - 4000th</td>
<td>$60.00</td>
</tr>
<tr>
<td>4001st - 6250th</td>
<td>$50.00</td>
</tr>
<tr>
<td>6251st - 10000th</td>
<td>$45.00</td>
</tr>
<tr>
<td>10001st - 16425th</td>
<td>$40.00</td>
</tr>
</tbody>
</table>

100,000 players → $1,000,000 in prizes → 10,000 prize winners
Tournament payout structures

Payouts should:

1. Strongly incentivize players to enter contests.
2. Obey basic aesthetic properties.
Payouts should:

1. Strongly incentivize players to enter contests.
Tournament payout structures

Payouts should:

1. Strongly incentivize players to enter contests.
Payouts should:

1. Strongly incentivize players to enter contests.
2. Obey basic aesthetic properties.
2. Prizes obey basic aesthetic properties.
2. Prizes obey basic aesthetic properties.
 • Are “nice numbers” ($1000 is preferable to $1012.15)
2. Prizes obey basic aesthetic properties.
 • Are “nice numbers” ($1000 is preferable to $1012.15)
 \{10, 15, \ldots, 95,100,125, 150, \ldots, 225, 250, 300, 350, \ldots, 950, 1000\}
2. Prizes obey basic aesthetic properties.
 • Are “nice numbers” ($1000 is preferable to $1012.15)
 \{10, 15, ..., 95, 100, 125, 150, ..., 225, 250, 300, 350, ..., 950, 1000\}
 • Fall into manageable number of buckets (i.e. 25 – 40)
2. Prizes obey basic aesthetic properties.
 • Are “nice numbers” ($1000 is preferable to $1012.15)
 \{10, 15, \ldots, 95, 100, 125, 150, \ldots, 225, 250, 300, 350, \ldots, 950, 1000\}
 • Fall into manageable number of buckets (i.e. 25 – 40)
 • Ideally buckets increase in size for lower places
2. Prizes obey basic aesthetic properties.
 • Are “nice numbers” ($1000 is preferable to $1012.15)
 \{10, 15, ..., 95,100,125, 150, ..., 225, 250, 300, 350, ..., 950, 1000\}
 • Fall into manageable number of buckets (i.e. 25 – 40)
 • Ideally buckets increase in size for lower places
2. Prizes obey basic **aesthetic** properties.
 - Are “nice numbers” ($1000 is preferable to $1012.15)
 \{10, 15, ..., 95, 100, 125, 150, ..., 225, 250, 300, 350, ..., 950, 1000\}
 - Fall into manageable number of buckets (i.e. 25 – 40)
 - Ideally buckets increase in size for lower places

(Bassmaster fishing tournament)
2. Prizes obey basic aesthetic properties.
 • Are “nice numbers” ($1000 is preferable to $1012.15)
 \{10, 15, ..., 95,100,125, 150, ..., 225, 250, 300, 350, ..., 950, 1000\}
 • Fall into manageable number of buckets (i.e. 25 – 40)
 • Ideally buckets increase in size for lower places

Prizes need to sum to the total allocated prize pool.
In Daily Fantasy Sports and other large tournaments this is often a strict requirement.
How hard is it to construct payout structures by hand?
How hard is it to construct payout structures by hand?

Very difficult! Even for just a single contest.
How hard is it to construct payout structures by hand?

Very difficult! Even for just a single contest.

World Series of Poker organizers apparently struggled with the problem for years before commissioning their own algorithm.
How hard is it to construct payout structures by hand?

Very difficult! Even for just a single contest.

World Series of Poker organizers apparently struggled with the problem for years before commissioning their own algorithm.

Daily Fantasy sites run 100s of contests a week, with widely varying entry numbers and prize pools.
Two Step Approach

Payouts should:

1. Strongly incentivize players to enter contests.
2. Obey basic aesthetic properties.
Payouts should:

1. Strongly incentivize players to enter contests.
2. Obey basic aesthetic properties.

Two step approach:

1. Choose “ideal payouts” that don’t satisfy aesthetics.
2. Round to a payout structure that does.
TWO STEP APPROACH

Ideal vs. Rounded payoff structure.
Ideal vs. Rounded payoff structure.
Payouts should:

1. Strongly incentivize players to enter contests.
2. Obey basic aesthetic properties.

Two step approach:

1. Choose “ideal payouts” that don’t satisfy aesthetics.
2. Round to a payout structure that does.
Payouts should:

1. Strongly incentivize players to enter contests.
2. Obey basic aesthetic properties.

Two step approach:

1. Choose “ideal payouts” that don’t satisfy aesthetics.
2. Round to a payout structure that does.
Step 1: Ideal Payouts

Fix top prize, minimum prize, and number of prize winners.
Fix top prize, minimum prize, and number of prize winners.

- Top prize = “marketing number” (i.e. $100,000 grand prize) or around 10% - 15% of prize pool
Step 1: Ideal Payouts

Fix **top prize, minimum prize, and number of prize winners.**

- Top prize = “marketing number” (i.e. $100,000 grand prize) or around 10% - 15% of prize pool
- Minimum prize = 2x entry fee
Fix top prize, minimum prize, and number of prize winners.

- Top prize = “marketing number” (i.e. $100,000 grand prize) or around 10% - 15% of prize pool
- Minimum prize = 2x entry fee
- Number of winners = fixed percentage of entries (i.e. 25%)
Fix top prize, minimum prize, and number of prize winners.

- Top prize = “marketing number” (i.e. $100,000 grand prize) or around 10% - 15% of prize pool
- Minimum prize = 2x entry fee
- Number of winners = fixed percentage of entries (i.e. 25%)

Intermediate prizes defined by simple fall-off function.
We use a **power law** fall-off:

i^{th} prize proportional to $1/i^\alpha$, for constant α.
We use a **power law** fall-off:

\[i^{th} \text{ prize proportional to } 1/i^\alpha, \text{ for constant } \alpha. \]
We use a power law fall-off:

\(i^{\text{th}} \) prize proportional to \(1/i^\alpha \), for constant \(\alpha \).

Solve for \(\alpha \) such that:

\[
\sum_{i=1}^{\text{total winners}} \left(\text{minimum prize} + \frac{\text{top prize} - \text{minimum prize}}{i^\alpha} \right) = \text{total prize pool.}
\]
Why power law?

A power law richly rewards the best players, but ensures lower winners still receive substantial prizes.
A power law richly rewards the best players, but ensures lower winners still receive substantial prizes.

$1/i^\alpha$ power law fall-off. $1/\alpha^i$ exponential fall-off.
Why Power Law?

The Perfect Payout Structure for GPPs

By ganondorf (ganondorf), Last Updated 8 months ago

I feel the need to give a precursor to this post. It may feel like I am critical of some sites in DFS. While this is true, I do not want the impression to be that I am unhappy with them. Quite the contrary: I have been very impressed with the growth and advances in the DFS space in the last year. The big sites get A pluses from me. That said, I have some suggestions!

Al Smizzle recently had an insightful tweet:

Al Smizzle (@AlSmizzle)

My favorite GPP payout structure ever. 2nd is 75% of 1st, and 10th is 10% of 1st. Can we make this the standard? evernote.com/shard/s481/shv/

(Here's a link to the prize structure layout)

Al, who also discussed prize payout structures on the forums, was referencing DraftKings' Slam Dunk #2. It was a $100,000 prize pool tournament with a $100 buy-in. DraftKings released it on January 28th after their Slam Dunk #1, which had a $500,000 prize pool with a $100 buy-in, filled early. The two contests had a big contrast, which I'd like to demonstrate with a simple chart.

Because we're dealing with percentages, I've changed the scale to be logarithmic. This scale shows the difference between each order of magnitude, e.g. 1% vs. 10%.

Payout Structure for DraftKings Slam Dunks

Why power law?

Payout distributions for Daily Fantasy Sports and other large tournaments consistent with a power law fall-off.
Two Step Approach

Payouts should:

1. Strongly incentivize players to enter contests.
2. Obey basic aesthetic properties.

Two step approach:

1. Choose “ideal payouts” that don’t satisfy aesthetics.
2. Round to a payout structure that does.
Payouts should:

1. Strongly incentivize players to enter contests.
2. Obey basic aesthetic properties.

Two step approach:

1. Choose “ideal payouts” that don’t satisfy aesthetics.
2. Round to a payout structure that does.
Two Step Approach

Payouts should:

1. Strongly incentivize players to enter contests.
2. Obey basic aesthetic properties.

Two step approach:

1. Choose “ideal payouts” that don’t satisfy aesthetics.
2. Round to a payout structure that does.
Rounding Payouts

Optimization Problem

Input:
Ideal payouts, \(\{\pi_1, \ldots, \pi_n\} \).

Output:
Non-overlapping ranges of ranks, \(\{S_1, \ldots, S_k\} \).
Prizes \(\{P_1, \ldots, P_k\} \)
Optimization Problem

Input:
Ideal payouts, \(\{\pi_1, \ldots, \pi_n\} \).

Output:
Non-overlapping ranges of ranks, \(\{S_1, \ldots, S_k\} \).
Prizes \(\{P_1, \ldots, P_k\} \)

e.g

Input:
\(\{4610, 4138, 3792, 3531, 3327, 3165, 3034, 2925, 2834\} \).

Output:
\(\{\{1\}, \{2\}, \{3\}, \{4 - 5\},\{6 - 9\}\} \)
\(\{5000, 4500, 4000, 3500, 3000\} \)
Rounding Payouts

Optimization Problem

Input:
Ideal payouts, \(\{\pi_1, \ldots, \pi_n\} \).

Output:
Non-overlapping ranges of ranks, \(\{S_1, \ldots, S_k\} \).
Prizes \(\{P_1, \ldots, P_k\} \)

Objective:
minimize \(\sum_{i=1}^{k} \sum_{j \in S_i} (\pi_j - P_j)^2 \)
minimize $\sum_{i=1}^{k} \sum_{j \in S_i} (\pi_j - P_j)^2$
Rounding Constraints

\[\text{minimize } \sum_{i=1}^{k} \sum_{j \in S_i} (\pi_j - P_j)^2 \]

Such that:

- \(P_i \) is a nice number
minimize \[\sum_{i=1}^{k} \sum_{j \in S_i} (\pi_j - P_j)^2 \]

Such that:

- \(P_i \in \{100, 200, 300, 400, 500, 1000, \ldots, 10000, 15000, \ldots\} \)
Rounding Constraints

\[
\text{minimize } \sum_{i=1}^{k} \sum_{j \in S_i} (\pi_j - P_j)^2
\]

Such that:

- \(P_i \in \{100, 200, 300, 400, 500, 1000, \ldots, 10000, 15000, \ldots \} \)
- \(P_1 > P_2 > \ldots > P_k \geq \text{minimum prize} \)
minimize $\sum_{i=1}^{k} \sum_{j \in S_i} (\pi_j - P_j)^2$

Such that:

- $P_i \in \{100, 200, 300, 400, 500, 1000, \ldots, 10000, 15000, \ldots\}$
- $P_1 > P_2 > \ldots > P_k \geq$ minimum prize
- $\sum_{i=1}^{k} |S_i| = n$
minimize \(\sum_{i=1}^{k} \sum_{j \in S_i} (\pi_j - P_j)^2 \)

Such that:

- \(P_i \in \{100, 200, 300, 400, 500, 1000, \ldots, 10000, 15000, \ldots\} \)
- \(P_1 > P_2 > \ldots > P_k \geq \) minimum prize
- \(\sum_{i=1}^{k} |S_i| = n \)
- \(\sum_{i=1}^{k} |S_i| \cdot P_i = B \) (total prize pool)
Rounding Constraints

\[
\text{minimize } \sum_{i=1}^{k} \sum_{j \in S_i} (\pi_j - P_j)^2
\]

Such that:

- \(P_i \in \{100, 200, 300, 400, 500, 1000, \ldots, 10000, 15000, \ldots\} \)
- \(P_1 > P_2 > \ldots > P_k \geq \text{minimum prize} \)
- \(\sum_{i=1}^{k} |S_i| = n \)
- \(\sum_{i=1}^{k} |S_i| \cdot P_i = B \) (total prize pool)
- \(|S_1| \leq |S_2| \leq \ldots \leq |S_k| \)
How can we solve this optimization problem?

Option 1: Multi-dimensional dynamic programming $O(kn^2B\log B)$ time if there are $O(\log B)$ “nice numbers” B.

Option 2: Integer Program Off-the-shelf solver (GLPK) works well for relatively small contests.

Option 3: Engineered Heuristic Matches quality of exactly optimal solutions, scales to very large contests.
How can we solve this optimization problem?

Option 1: Multi-dimensional dynamic programming
How can we solve this optimization problem?

Option 1: Multi-dimensional dynamic programming

$O(kn^2B \log B)$ time if there are $O(\log B)$ “nice numbers” $\leq B$.
How can we solve this optimization problem?

Option 1: Multi-dimensional dynamic programming

$O(kn^2B \log B)$ time if there are $O(\log B)$ “nice numbers” $\leq B$.

Option 2: Integer Program
How can we solve this optimization problem?

Option 1: Multi-dimensional dynamic programming

$O(kn^2 B \log B)$ time if there are $O(\log B)$ “nice numbers” ≤ B.

Option 2: Integer Program

Off-the-shelf solver (GLPK) works well for relatively small contests.
How can we solve this optimization problem?

Option 1: Multi-dimensional dynamic programming

$O(kn^2B \log B)$ time if there are $O(\log B)$ “nice numbers” $\leq B$.

Option 2: Integer Program

Off-the-shelf solver (GLPK) works well for relatively small contests

Option 3: Engineered Heuristic
How can we solve this optimization problem?

Option 1: Multi-dimensional dynamic programming

$O(kn^2B \log B)$ time if there are $O(\log B)$ “nice numbers” $\leq B$.

Option 2: Integer Program

Off-the-shelf solver (GLPK) works well for relatively small contests

Option 3: Engineered Heuristic

Matches quality of exactly optimal solutions, scales to very large contests.
Outline of heuristic algorithm:
Outline of heuristic algorithm:

1. Set initial bucket sizes to increase according to a power law, distributing n places amongst k buckets.
Outline of heuristic algorithm:

1. Set initial bucket sizes to increase according to a power law, distributing \(n \) places amongst \(k \) buckets.
2. Choose initial prize \(P_i \) to be the largest nice number smaller than mean of ideal prizes in bucket \(S_i \).
Outline of heuristic algorithm:

1. Set initial bucket sizes to increase according to a power law, distributing n places amongst k buckets.
2. Choose initial prize P_i to be the largest nice number smaller than mean of ideal prizes in bucket S_i.
3. Merge any buckets with shared prizes and use local swaps to keep bucket sizes monotonic.
Outline of heuristic algorithm:

1. Set initial bucket sizes to increase according to a power law, distributing n places amongst k buckets.

2. Choose initial prize P_i to be the largest nice number smaller than mean of ideal prizes in bucket S_i.

3. Merge any buckets with shared prizes and use local swaps to keep bucket sizes monotonic.

4. Spend left-over budget on “singleton buckets”, by violating nice number constraint in a bucket, and as a last resort adding extra winners.
Runtime Results

Integer Program: Only scales to contests with < 100 winners.

Heuristic Algorithm: < 2 second runtimes on a laptop for contests with millions of dollars in prizes, > 10,000 winners.
Runtime Results

Integer Program: Only scales to contests with < 100 winners.

Heuristic Algorithm: < 2 second runtimes on a laptop for contests with millions of dollars in prizes, > 10,000 winners.

(Deployed in production at Yahoo.)
Quantitative Performance

<table>
<thead>
<tr>
<th>Source</th>
<th>Prize Pool</th>
<th>Top Prize</th>
<th>Min. Prize</th>
<th># of Winners</th>
<th># of Buckets</th>
<th>IP Cost</th>
<th>IP Time (ms)</th>
<th>Hour. Cost</th>
<th>Hour. Time (ms)</th>
<th>Heur. Extra Winners</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yahoo</td>
<td>90</td>
<td>25</td>
<td>2</td>
<td>30</td>
<td>7</td>
<td>.89</td>
<td>7.6k</td>
<td>2.35</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Yahoo</td>
<td>180</td>
<td>55</td>
<td>3</td>
<td>30</td>
<td>10</td>
<td>2.82</td>
<td>725k</td>
<td>3.44</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>DraftKings</td>
<td>500</td>
<td>100</td>
<td>8</td>
<td>20</td>
<td>10</td>
<td>6.15</td>
<td>2.1k</td>
<td>9.21</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Yahoo</td>
<td>2250</td>
<td>650</td>
<td>150</td>
<td>7</td>
<td>7</td>
<td>32.4</td>
<td>4.0k</td>
<td>187.4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Yahoo</td>
<td>3000</td>
<td>300</td>
<td>2</td>
<td>850</td>
<td>25</td>
<td>–</td>
<td>–</td>
<td>86.9</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>FanDuel</td>
<td>4000</td>
<td>900</td>
<td>50</td>
<td>40</td>
<td>12</td>
<td>20.7</td>
<td>3716k</td>
<td>58.2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>FanDuel</td>
<td>4000</td>
<td>800</td>
<td>75</td>
<td>16</td>
<td>7</td>
<td>46.6</td>
<td>2.9k</td>
<td>230.1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>DraftKings</td>
<td>5000</td>
<td>1250</td>
<td>150</td>
<td>11</td>
<td>8</td>
<td>52.5</td>
<td>6.8k</td>
<td>123.5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Yahoo</td>
<td>10000</td>
<td>1000</td>
<td>7</td>
<td>550</td>
<td>25</td>
<td>–</td>
<td>–</td>
<td>97.3</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>DraftKings</td>
<td>10000</td>
<td>1500</td>
<td>75</td>
<td>42</td>
<td>12</td>
<td>61.3</td>
<td>1291k</td>
<td>173.7</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>FanDuel</td>
<td>18000</td>
<td>4000</td>
<td>150</td>
<td>38</td>
<td>10</td>
<td>161.8</td>
<td>131k</td>
<td>347.0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>FanDuel</td>
<td>100000</td>
<td>10000</td>
<td>2</td>
<td>23000</td>
<td>25</td>
<td>–</td>
<td>–</td>
<td>3.1k</td>
<td>152</td>
<td>34</td>
</tr>
<tr>
<td>Bassmaster</td>
<td>190700</td>
<td>50000</td>
<td>2000</td>
<td>40</td>
<td>15</td>
<td>–</td>
<td>–</td>
<td>3.6k*</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Bassmaster</td>
<td>190000†</td>
<td>50000</td>
<td>2000</td>
<td>40</td>
<td>15</td>
<td>2.5k</td>
<td>3462k</td>
<td>2.8k*</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>FLW Fishing</td>
<td>751588</td>
<td>100000</td>
<td>9000</td>
<td>60</td>
<td>25</td>
<td>–</td>
<td>–</td>
<td>6.0k*</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>FLW Fishing</td>
<td>751500†</td>
<td>100000</td>
<td>9000</td>
<td>60</td>
<td>25</td>
<td>–</td>
<td>–</td>
<td>6.0k*</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>FanDuel</td>
<td>100000</td>
<td>10000</td>
<td>15</td>
<td>16000</td>
<td>25</td>
<td>–</td>
<td>–</td>
<td>5.3k</td>
<td>203</td>
<td>7</td>
</tr>
<tr>
<td>DraftKings</td>
<td>100000</td>
<td>10000</td>
<td>5</td>
<td>85000</td>
<td>40</td>
<td>–</td>
<td>–</td>
<td>25.9k</td>
<td>1.2k</td>
<td>0</td>
</tr>
<tr>
<td>Bassmaster</td>
<td>1031500</td>
<td>30000</td>
<td>10000</td>
<td>55</td>
<td>25</td>
<td>–</td>
<td>–</td>
<td>13.5k*</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>FanDuel</td>
<td>50000000</td>
<td>1000000</td>
<td>40</td>
<td>46000</td>
<td>30</td>
<td>–</td>
<td>–</td>
<td>44.3k</td>
<td>1.0k</td>
<td>0</td>
</tr>
<tr>
<td>PGA Golf</td>
<td>9715981</td>
<td>1800000</td>
<td>20000</td>
<td>69</td>
<td>69</td>
<td>–</td>
<td>–</td>
<td>254.5k*</td>
<td>24</td>
<td>0</td>
</tr>
<tr>
<td>PGA Golf</td>
<td>1000000†</td>
<td>1800000</td>
<td>20000</td>
<td>75</td>
<td>75</td>
<td>–</td>
<td>–</td>
<td>215.9k</td>
<td>23</td>
<td>9</td>
</tr>
<tr>
<td>DraftKings</td>
<td>10000000</td>
<td>20000000</td>
<td>25</td>
<td>125000</td>
<td>40</td>
<td>–</td>
<td>–</td>
<td>78.7k</td>
<td>1.7k</td>
<td>0</td>
</tr>
<tr>
<td>PokerStars</td>
<td>10393400</td>
<td>1750000</td>
<td>15000</td>
<td>160</td>
<td>25</td>
<td>–</td>
<td>–</td>
<td>133.0k</td>
<td>27</td>
<td>0</td>
</tr>
<tr>
<td>WSOP</td>
<td>60348000</td>
<td>8000000</td>
<td>15000</td>
<td>1000</td>
<td>30</td>
<td>–</td>
<td>–</td>
<td>462.3k</td>
<td>17</td>
<td>0</td>
</tr>
</tbody>
</table>
\[\ell_2 \text{ distance to ideal payouts within 2x-5x that of IP.} \]
Qualitative Performance

FanDuel fantasy football contest
DraftKings fantasy football contest
Easily patches “bad” payout structures!

(Bassmaster fishing tournament)
Easily patches “bad” payout structures!

(Bassmaster fishing tournament)
<table>
<thead>
<tr>
<th>Place</th>
<th>2015 WSOP Payouts</th>
<th>Place</th>
<th>Our Alternative Payouts</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$7,680,021</td>
<td>1</td>
<td>$8,000,000</td>
</tr>
<tr>
<td>2</td>
<td>$4,469,171</td>
<td>2</td>
<td>$4,000,000</td>
</tr>
<tr>
<td>3</td>
<td>$3,397,103</td>
<td>3</td>
<td>$2,250,000</td>
</tr>
<tr>
<td>4</td>
<td>$2,614,558</td>
<td>4</td>
<td>$1,750,000</td>
</tr>
<tr>
<td>5</td>
<td>$1,910,971</td>
<td>5</td>
<td>$1,250,000</td>
</tr>
<tr>
<td>6</td>
<td>$1,426,072</td>
<td>6</td>
<td>$1,000,000</td>
</tr>
<tr>
<td>7</td>
<td>$1,203,193</td>
<td>7</td>
<td>$950,000</td>
</tr>
<tr>
<td>8</td>
<td>$1,097,009</td>
<td>8</td>
<td>$850,000</td>
</tr>
<tr>
<td>9</td>
<td>$1,001,020</td>
<td>9</td>
<td>$700,000</td>
</tr>
<tr>
<td>10</td>
<td>$756,897</td>
<td>10 - 13</td>
<td>$650,000</td>
</tr>
<tr>
<td>11 - 12</td>
<td>$526,778</td>
<td>14 - 17</td>
<td>$500,000</td>
</tr>
<tr>
<td>13 - 15</td>
<td>$411,453</td>
<td>18 - 23</td>
<td>$300,000</td>
</tr>
<tr>
<td>16 - 18</td>
<td>$325,034</td>
<td>24 - 29</td>
<td>$225,000</td>
</tr>
<tr>
<td>19 - 27</td>
<td>$262,574</td>
<td>36 - 42</td>
<td>$150,000</td>
</tr>
<tr>
<td>28 - 36</td>
<td>$211,821</td>
<td>43 - 59</td>
<td>$125,000</td>
</tr>
<tr>
<td>36 - 45</td>
<td>$164,086</td>
<td>60 - 77</td>
<td>$95,000</td>
</tr>
<tr>
<td>46 - 54</td>
<td>$137,300</td>
<td>78 - 99</td>
<td>$75,000</td>
</tr>
<tr>
<td>55 - 63</td>
<td>$113,764</td>
<td>100 - 128</td>
<td>$60,000</td>
</tr>
<tr>
<td>64 - 72</td>
<td>$96,445</td>
<td>128 - 164</td>
<td>$55,000</td>
</tr>
<tr>
<td>73 - 81</td>
<td>$79,668</td>
<td>165 - 254</td>
<td>$45,000</td>
</tr>
<tr>
<td>82 - 90</td>
<td>$68,624</td>
<td>255 - 345</td>
<td>$35,000</td>
</tr>
<tr>
<td>91 - 99</td>
<td>$55,649</td>
<td>346 - 441</td>
<td>$25,000</td>
</tr>
<tr>
<td>100 - 162</td>
<td>$46,890</td>
<td>442 - 710</td>
<td>$22,500</td>
</tr>
<tr>
<td>163 - 225</td>
<td>$40,433</td>
<td>711 - 1000</td>
<td>$20,150</td>
</tr>
</tbody>
</table>
• Lots of interesting algorithmic problems involved in managing massive online tournaments.
• Theoretical formulation leads to provably algorithms as well as practical heuristics.

Thanks!
• Lots of interesting algorithmic problems involved in managing massive online tournaments.
• Lots of interesting algorithmic problems involved in managing massive online tournaments.
• Theoretical formulation leads to provably algorithms as well as practical heuristics.

Thanks!