New York University Tandon School of Engineering Computer Science and Engineering
 CS-GY 6763: Midterm Practice.

Logistics

- Exam will be held in class on Friday, 10/20 starting at 2:00pm sharp. Please arrive on time!
- Feyza will give a lecture for the second half of class after a short break.
- You will have 1 hour to answer a variety of short answer and longer form questions.
- You can bring a one page sheet of paper (two-sided if you want) with notes, theorems, etc. written down for reference.
- I will be in the room to answer any questions.

Concepts to Know

Random variables and concentration.

- Linearity of expectation and variance.
- Indicator random variables and how to use them.
- Markov's inequality, Chebyshev's inequality (ideally should know from memory so you can apply quickly).
- Union bound (should know from memory).
- Chernoff and Bernstein bounds (don't need to memorize the exact bounds, but can apply if given).
- General idea of law of large numbers and central limit theorem.
- The probability that a normal random variables $\mathcal{N}\left(0, \sigma^{2}\right)$ falls further than $k \sigma$ away from its expectation is $\leq O\left(e^{-k^{2} / 2}\right)$.

Hashing, Dimensionality Reduction, High Dimensional Vectors

- Random hash functions.
- Random hashing for frequency estimation.
- Random hashing for distinct elements estimation.
- MinHash for Jaccard similarity estimation.
- Locality sensitive hash functions.
- MinHash and SimHash for Jaccard Similarity and Cosine Similarity.
- Adjusting false positive rate and false negative rate in an LSH scheme.
- Statement of Johnson-Lindenstrauss lemma (know from memory).
- Statement of distributional JL lemma and how it can be used to prove JL.

High dimensional geometry

- How to draw a random unit vector from the sphere in d dimensions (draw \mathbf{x} with all entries i.i.d. $\mathcal{N}(0,1)$ and normalize it).
- How does $\|x-y\|_{2}^{2}$ relate to $\langle x, y\rangle$ if x and y are unit vectors?
- How many mutually orthogonal unit vectors are there in d dimensions?
- There are $2^{\theta\left(\epsilon^{2} d\right)}$ nearly orthogonal unit vectors in d dimensions (with $\langle x, y\rangle \leq \epsilon$). Know roughly how prove this fact using the probabilistic method, which required a an exponential concentration inequality + union bound.
- Know how to prove that all but an $2^{\theta(-\epsilon d)}$ fraction of a balls volume in d dimensions lies in a spherical shell of width ϵ near its surface.
- The surface area/volume ratio increases in high dimensions.
- The cube volume/ball volume ratio increases in high dimensions.

Practice Problems

Random variables and concentration.

1. Show that for any random variable $X, \mathbb{E}\left[X^{2}\right] \geq \mathbb{E}[X]^{2}$.
2. Show that for independent X and Y with $\mathbb{E}[X]=\mathbb{E}[Y]=0, \operatorname{var}[X \cdot Y]=\operatorname{var}[X] \cdot \operatorname{var}[Y]$.
3. Given a random variable X, can we conclude that $\mathbb{E}[1 / X]=1 / E[X]$? If so, prove this. If not, give an example where the equality does not hold.
4. Indicate whether each of the following statements is always true, sometimes true, or never true. Provide a short justification for your choice.
(a) $\operatorname{Pr}[X=s$ and $Y=t]>\operatorname{Pr}[X=s]$. ALWAYS SOMETIMES NEVER
(b) $\operatorname{Pr}[X=s$ or $Y=t] \leq \operatorname{Pr}[X=s]+\operatorname{Pr}[Y=t]$. ALWAYS SOMETIMES NEVER
(c) $\operatorname{Pr}[X=s$ and $Y=t]=\operatorname{Pr}[X=s] \cdot \operatorname{Pr}[Y=t]$. ALWAYS SOMETIMES NEVER
5. Assume there are 1000 registered users on your site u_{1}, \ldots, u_{1000}, and in a given day, each user visits the site with some probability p_{i}. The event that any user visits the site is independent of what the other users do. Assume that $\sum_{i=1}^{1000} p_{i}=500$.
(a) Let X be the number of users that visit the site on the given day. What is $E[X]$?
(b) Apply a Chernoff bound to show that $\operatorname{Pr}[X \geq 600] \leq .01$.
(c) Apply Markov's inequality and Chebyshev's inequality to bound the same probability. How do they compare?
6. Give an example of a random variable and a deviation t where Markov's inequality gives a tighter upper bound than Chebyshev's inequality.

Hashing, Dimensionality Reduction, High Dimensional Vectors

1. Suppose there is some unknown vector $\boldsymbol{\mu} \in \mathbb{R}^{d}$. We receive noise perturbed random samples of the form $\mathbf{Y}_{1}=\boldsymbol{\mu}+\mathbf{X}_{1}, \ldots, \mathbf{Y}_{k}=\boldsymbol{\mu}+\mathbf{X}_{k}$ where each \mathbf{X}_{i} is a random vector with each of its entries distributed as an independent random normal $\mathcal{N}(0,1)$. From our samples $\mathbf{Y}_{1}, \ldots, \mathbf{Y}_{k}$ we hope to estimate $\boldsymbol{\mu}$ by $\tilde{\boldsymbol{\mu}}=\frac{1}{k} \sum_{i=1}^{k} \mathbf{Y}_{i}$.
(a) How many samples k do we require so that $\max _{i=1, \ldots, d}\left|\boldsymbol{\mu}_{i}-\tilde{\boldsymbol{\mu}}_{\boldsymbol{i}}\right| \leq \epsilon$ with probability $9 / 10$?
(b) How many samples k do we require so that $\|\boldsymbol{\mu}-\tilde{\boldsymbol{\mu}}\|_{2} \leq \epsilon$ with probability $9 / 10$?
2. Let Π be a random Johnson-Lindenstrauss matrix (e.g. scaled random Gaussians) with $O\left(\log (1 / \delta) / \epsilon^{2}\right)$ rows. Prove that with probability $(1-\delta)$,

$$
\min _{\mathbf{x}}\|\boldsymbol{\Pi} \mathbf{A} \mathbf{x}-\boldsymbol{\Pi} \mathbf{b}\|_{2}^{2} \leq(1+\epsilon) \min _{\mathbf{x}}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{2}^{2}
$$

