
CS-GY 6763: Lecture 9
Online and Stochastic Gradient Descent,
Dimension Dependent Optimization

NYU Tandon School of Engineering, Prof. Christopher Musco



STANDARD OPTIMIZATION SETTING

Given a function f to minimize, assume we have:

• Function oracle: Evaluate f(x) for any x.
• Gradient oracle: Evaluate ∇f(x) for any x.

Goal: Minimize the number of oracle calls to find x̃ such that
f(x̃) ≤ minx f(x) + ε.

In machine learning applications, f(x) is typically a loss
function for a fixed training dataset.



ONLINE AND STOCHASTIC GRADIENT DESCENT

First part of class:

• Basics of an alternative setting: Online Learning +
Optimization.

• Introduction to Regret Analysis.
• Application to analyzing Stochastic Gradient Descent.



ONLINE LEARNING

Many machine learning problems are solved in an online
setting with constantly changing data.

• Spam filters are incrementally updated and adapt as they
see more examples of spam over time.

• Text recommendation engines (e.g. Github Copilot) need
to be kept up-to-date as software libraries/APIs change.

• Content recommendation systems adapt to user behavior
and clicks (which may not be a good thing...)



EXAMPLE

Machine learning based email spam filtering.

Markers for spam change overtime, so model might change.



EXAMPLE

Plant identification via iNaturalist app.

(California Academy of Science + National Geographic)

• When the app fails, image
is classified via
crowdsourcing (backed by
huge network of amateurs
and experts).

• Single model that is
updated constantly, not
retrained in batches.



ONLINE LEARNING FRAMEWORK

Choose some model Mx parameterized by parameters x and
some loss function ". At time steps , . . . , T, receive data
vectors a( ), . . . , a(T).

• At each time step, we pick (“play”) a parameter vector x(i).
• Make prediction ỹ(i) = Mx(i)(ai).
• Then told true value or label y(i). Possibly use this
information to choose a new x(i+ ).

• Goal is to minimize cumulative loss:

L =
n∑

i=

"(x(i), a(i), y(i))

For example, for a regression problem we might use the " loss:

"(x(i), a(i), y(i)) =
∣∣∣〈x(i), a(i)〉 − y(i)

∣∣∣ .

For classification, we could use logistic/cross-entropy loss.
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ONLINE OPTIMIZATION

Abstraction as optimization problem: Instead of a single
objective function f, we have a single (initially unknown)
function f , . . . , fT : Rd → R for each time step.

• For time step i ∈ , . . . , T, select vector x(i).
• Observe fi and pay cost fi(x(i))
• Goal is to minimize

∑T
i= fi(x(i)).

We make no assumptions that f , . . . , fT are related to each
other at all!
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REGRET BOUND

In offline optimization, we wanted to find x̂ satisfying
f(x̂) ≤ minx f(x). Ask for a similar thing here.

Objective: Choose x( ), . . . , x(T) so that:

T∑

i=

fi(x(i)) ≤
[
min
x

T∑

i=

fi(x)
]
+ ε.

Here ε is called the regret of our solution sequence
x( ), . . . , x(T). Regret compares to the best fixed solution in
hindsight.

We typically ε to be growing sublinearly in T.
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REGRET BOUND

Regret compares to the best fixed solution in hindsight.

T∑

i=

fi(x(i)) ≤
[
min
x

T∑

i=

fi(x)
]
+ ε.

It’s very possible that
∑T

i= fi(x(i)) <
[
minx

∑T
i= fi(x)

]
. Could we

hope for something stronger?

Exercise: Argue that the following is impossible to achieve:

T∑

i=

fi(x(i)) ≤
[ T∑

i=

min
x

fi(x)
]
+ ε.

I l

- -

'



HARD EXAMPLE FOR ONLINE OPTIMIZATION

Convex functions:

f (x) = |x− h |
...

fn(x) = |x− hT|

where h , . . . ,hT are i.i.d. uniform { , }.
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REGRET BOUNDS

T∑

i=

fi(x(i)) ≤
[
min
x

T∑

i=

fi(x)
]
+ ε.

Beautiful balance:

• Either f , . . . , fT are similar or changing slowly, so we can
learn predict fi from earlier functions.

• Or f , . . . , fT are very different, in which case minx
∑T

i= fi(x)
is large, so regret bound is easy to achieve.

• Or we live somewhere in the middle.
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FOLLOW-THE-LEADER

Follow-the-leader algorithm:

• Choose x( ).
• For i = , . . . , T:

• Let x(i) = argminx
∑i−

j= fj(x).
• Play x(i).
• Observe fi and incur cost fi(x(i)).

Simple and intuitive, but there are two issues with this
approach. One is computational, one is related to the accuracy.

f,,... fi-i
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FOLLOW-THE-LEADER

Hard case: "÷÷÷"
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ONLINE GRADIENT DESCENT

Online Gradient descent:

• Choose x( ) and η = R
G
√
T .

• For i = , . . . , T:
• Play x(i).
• Observe fi and incur cost fi(x(i)).
• x(i+ ) = x(i) − η∇fi(x(i))

If f , . . . , fT = f are all the same, this is the same as regular
gradient descent. We update parameters using the gradient ∇f
at each step.
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ONLINE GRADIENT DESCENT (OGD)

x∗ = argminx
∑T

i= fi(x) (the offline optimum)

Assume:

• f , . . . , fT are all convex.
• Each is G-Lipschitz: for all x, i, ‖∇fi(x)‖ ≤ G.
• Starting radius: ‖x∗ − x( )‖ ≤ R.

Online Gradient descent:

• Choose x( ) and η = R
G
√
T .

• For i = , . . . , T:
• Play x(i).
• Observe fi and incur cost fi(x(i)).
• x(i+ ) = x(i) − η∇fi(x(i))

-

Q -I



ONLINE GRADIENT DESCENT ANALYSIS

Let x∗ = argminx
∑T

i= fi(x) (the offline optimum)

Theorem (OGD Regret Bound)

After T steps, ε =
[∑T

i= fi(x(i))
]
−

[∑T
i= fi(x∗)

]
≤ RG

√
T.

Average regret overtime is bounded by ε
T ≤ RG√

T .

Goes → as T → ∞.

All this with no assumptions on how f , . . . , fT relate to each
other! They could have even been chosen adversarially – e.g.
with fi depending on our choice of xi and all previous choices.
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ONLINE GRADIENT DESCENT ANALYSIS

Theorem (OGD Regret Bound)

After T steps, ε =
[∑T

i= fi(x(i))
]
−

[∑T
i= fi(x∗)

]
≤ RG

√
T.

Claim 1: For all i = , . . . , T,

fi(x(i))− fi(x∗) ≤
‖x(i) − x∗‖ − ‖x(i+ ) − x∗‖

η
+

ηG

(Same proof for standard GD. Only uses convexity of fi.)

→ x"' - n of i(Xo)

D
- r



ONLINE GRADIENT DESCENT ANALYSIS

Theorem (OGD Regret Bound)

After T steps, ε =
[∑T

i= fi(x(i))
]
−

[∑T
i= fi(x∗)

]
≤ RG

√
T.

Claim 1: For all i = , . . . , T,

fi(x(i))− fi(x∗) ≤
‖x(i) − x∗‖ − ‖x(i+ ) − x∗‖

η
+

ηG

Telescoping Sum:
T∑

i=

[
fi(x(i))− fi(x∗)

]
≤ ‖x( ) − x∗‖ − ‖x(T) − x∗‖

η
+

TηG

≤ R
η
+

TηG
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STOCHASTIC GRADIENT DESCENT (SGD)

Efficient offline optimization method for functions f with finite
sum structure:

f(x) =
n∑

i=

fi(x).

Goal is to find x̂ such that f(x̂) ≤ f(x∗) + ε.

• The most widely use optimization algorithm in modern
machine learning.

• Easily analyzed as a special case of online gradient
descent!
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STOCHASTIC GRADIENT DESCENT

Recall the machine learning setup. In empirical risk
minimization, we can typically write:

f(x) =
n∑

i=

fi(x)

where fi is the loss function for a particular data example
(a(i), y(i)).

Example: least squares linear regression.

f(x) =
n∑

i=

(xTa(i) − y(i))

Note that by linearity, ∇f(x) =
∑n

i= ∇fi(x).
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STOCHASTIC GRADIENT DESCENT

Main idea: Use random approximate gradient in place of
actual gradient.

Pick random j ∈ , . . . ,n and update x using ∇fj(x).

E
[
∇fj(x)

]
=

n
∇f(x).

n∇fj(x) is an unbiased estimate for the true gradient ∇f(x),
but can typically be computed in a /n fraction of the time!

Trade slower convergence for cheaper iterations.
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STOCHASTIC GRADIENT DESCENT

Stochastic first-order oracle for f(x) =
∑n

i= fi(x).

• Function Query: For any chosen j, x, return fj(x)
• Gradient Query: For any chosen j, x, return ∇fj(x)

Stochastic Gradient descent:

• Choose starting vector x( ), step size η

• For i = , . . . , T:
• Pick random ji uniformly at random from , . . . ,n.
• x(i+ ) = x(i) − η∇fji(x(i))

• Return x̂ = T
∑T

i= x(i)
-
- I
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VISUALIZING SGD
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STOCHASTIC GRADIENT DESCENT

Assume:
• Finite sum structure: f(x) =

∑n
i= fi(x), with f , . . . , fn all convex.

• Lipschitz functions: for all x, j, ‖∇fj(x)‖ ≤ G′

n .
• What does this imply about Lipschitz constant of f?

• Starting radius: ‖x∗ − x( )‖ ≤ R.

Stochastic Gradient descent:
• Choose x( ), steps T, step size η = R

G′
√
T .

• For i = , . . . , T:
• Pick random ji ∈ , . . . ,n.
• x(i+ ) = x(i) − η∇fji(x(i))

• Return x̂ = T
∑T

i= x(i)

Approach: View as online gradient descent run on function
sequence fj , . . . , fjT .

Only use the fact that step equals gradient in expectation.
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JENSEN’S INEQUALITY

For a convex function f and points x( ), . . . , x(t)

f
(

t
· x( ) + . . .+

t
· x(t)

)
≤

t
· f(x( )) + . . .+

t
· f(x(t))I

f(d x th.AT) c d f ( x ) th-a)f l y )
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STOCHASTIC GRADIENT DESCENT ANALYSIS

Claim (SGD Convergence)

After T = R G′

ε
iterations:

E [f(x̂)− f(x∗)] ≤ ε.

Claim 1:

f(x̂)− f(x∗) ≤
T

T∑

i=

[
f(x(i))− f(x∗)

]

Prove using Jensen’s Inequality:
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STOCHASTIC GRADIENT DESCENT ANALYSIS

Claim (SGD Convergence)
After T = R G′

ε iterations:
E [f(x̂)− f(x∗)] ≤ ε.

E[f(x̂)− f(x∗)] ≤
T

T∑

i=

E
[
f(x(i))− f(x∗)

]

=
T

T∑

i=

nE
[
fji(x

(i))− fji(x
∗)
]

=
n
T
· E

[ T∑

i=

fji(x
(i))− fji(x

∗)

]

n E-f±(y)= fly)
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STOCHASTIC GRADIENT DESCENT ANALYSIS

Claim (SGD Convergence)
After T = R G′

ε iterations:
E [f(x̂)− f(x∗)] ≤ ε.

E[f(x̂)− f(x∗)] ≤
T

T∑

i=

E
[
f(x(i))− f(x∗)

]

=
T

T∑

i=

nE
[
fji(x

(i))− fji(x
∗)
]

≤ n
T
· E

[ T∑

i=

fji(x
(i))− fji(x

offline)

]
,

where xoffline = argminx
∑T

i= fji(x).
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STOCHASTIC GRADIENT DESCENT ANALYSIS

Claim (SGD Convergence)
After T = R G′

ε iterations:
E [f(x̂)− f(x∗)] ≤ ε.

E[f(x̂)− f(x∗)] ≤
T

T∑

i=

E
[
f(x(i))− f(x∗)

]

=
T

T∑

i=

nE
[
fji(x

(i))− fji(x
∗)
]

≤ n
T
E
[ T∑

i=

fji(x
(i))− fji(x

offline)

]

≤ n
T
·
(
R · G

′

n
·
√
T
)

(by OGD guarantee.)
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STOCHASTIC VS. FULL BATCH GRADIENT DESCENT

Number of iterations for error ε:

• Gradient Descent: T = R G
ε

.
• Stochastic Gradient Descent: T = R G′

ε
.

Always have G ≤ G′:

max
x

‖∇f(x)‖ ≤ max
x

(‖∇f (x)‖ + . . .+ ‖∇fn(x)‖ )

≤ max
x

(‖∇f (x)‖ ) + . . .+max
x

(‖∇fn(x)‖ )

≤ n · G
′

n
= G′.

So GD converges strictly faster than SGD.

But for a fair comparison:

• SGD cost = (# of iterations) · O( )

• GD cost = (# of iterations) · O(n)
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STOCHASTIC VS. FULL BATCH GRADIENT DESCENT

We always have G ≤ G′. When it is much smaller then GD will
perform better. When it is closer to this upper bound, SGD will
perform better.

What is an extreme case where G = G′?
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STOCHASTIC VS. FULL BATCH GRADIENT DESCENT

What if each gradient ∇fi(x) looks like random vectors in Rd?
E.g. with N ( , ) entries?

E
[
‖∇fi(x)‖

]
=

E
[
‖∇f(x)‖

]
= E

[
‖

n∑

i=

∇fi(x)‖
]
=

Id
dimensio
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STOCHASTIC VS. FULL BATCH GRADIENT DESCENT

Takeaway: SGD performs better when there is more structure
or repetition in the data set.
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PRECONDITIONING
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PRECONDITIONING

Main idea: Instead of minimizing f(x), find another function
g(x) with the same minimum but which is better suited for first
order optimization (e.g., has a smaller conditioner number).

Claim: Let h(x) : Rd → Rd be an invertible function. Let
g(x) = f(h(x)). Then

min
x

f(x) = min
x

g(x) and argmin
x

f(x) = h
(
argmin

x
g(x)

)
.

unfix)ef(hug))= g(X I )
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PRECONDITIONING

First Requirement: We need g(x) to still be convex.

Claim: Let P be an invertible d× d matrix and let g(x) = f(Px).

g(x) is always convex.

For this choice of preconditioner, if x̃ ≈ argmin g(x), we would
want to return Px̃ as a near minimizer of f.
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PRECONDITIONING

Additional Goals:

• g(x) should be better conditioned (more smooth, more
strongly convex, etc.) than f.

• P needs to be easy to compute and we need to be able to
apply Px efficiently.

Common choice: Diagonal preconditioner.

• Choose P to be a diagonal matrix D.
• For f(x) = ‖Ax− b‖ , common choice is D = diag(ATA)− ,
which is known as the Jacobi preconditioner.

Often works very well in practice!
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DIAGONAL PRECONDITIONER
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ADAPTIVE STEPSIZES

Another view: If g(x) = f(Px) then ∇g(x) = PT∇f(Px).

∇g(x) = P∇f(Px) when P is symmetric.

Gradient descent on g:

• For t = , . . . , T,
• x(t+ ) = x(t) − ηP

[
∇f(Px(t))

]

Gradient descent on g:

• For t = , . . . , T,
• y(t+ ) = y(t) − ηP

[
∇f(y(t))

]

When P is diagonal, this is just gradient descent with a
different step size for each parameter!
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ADAPTIVE STEPSIZES

Algorithms based on this idea:

• AdaGrad
• RMSprop
• Adam optimizer

(Pretty much all of the most widely used optimization methods
for training neural networks.)
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FIRST ORDER CONVEX OPTIMIZATION

First Order Optimization: Given a convex function f and a
convex set S ,

Goal: Find x̂ ∈ S such that f(x̂) ≤ minx∈S f(x) + ε.

Assume we have:

• Function oracle: Evaluate f(x) for any x.
• Gradient oracle: Evaluate ∇f(x) for any x.
• Projection oracle: Evaluate PS(x) for any x.

Gradient descent requires O
(
R G
ε

)
calls to each oracle to

solve the problem.

We were only able to improve the ε dependence by making
stronger assumptions on f (strong convexity, smoothness).
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DIMENSION DEPENDENT BOUND

Alternatively, we can get much better bounds if we are willing
to depend on the problem dimension. I.e. on d if f(x) is a
function mapping d-dimensional vectors to scalars.

We already know how to do this for a few special functions:

f(x) = ‖Ax− b‖ where A ∈ Rn×d.

A tLAX-b)
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DIMENSION DEPENDENT BOUND

Let f(x) be bounded between [−B,B] on S .

Theorem (Dimension Dependent Convex Optimization)
There is an algorithm (the Center-of-Gravity Method) which
finds x̂ satisfying f(x̂) ≤ minx∈S f(x) + ε using O(d log(B/ε))
calls to a function and gradient oracle for convex f.

Caveat: Assumes we have some representation of S , not just a
projection oracle. We will discuss this more later.

Note: For an unconstrained problem with known starting
radius R, can take S to be the ball of radius R around x( ). If
‖∇f(x)‖ ≤ G, we always have B = O(RG).
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CENTER OF GRAVITY METHOD

Natural “cutting plane” method. Developed simultaneous on
opposite sides of iron curtain.

Not used in practice (we will discuss why) but the basic idea
underlies many popular algorithms.
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CENTER OF GRAVITY METHOD

A few basic ingredients:

. The center-of-gravity of a convex set S is defined as:

c =
∫
x∈S x dx
vol(S) =

∫
x∈S x dx∫
x∈S dx

. For two convex sets A and B, A ∩ B is convex. Proof by
picture:

O

g.

"

: QQ÷€
÷÷



CENTER OF GRAVITY METHOD

Natural “cutting plane” method.

• S = S
• For t = , . . . , T :

• ct = center of gravity of St.
• Compute ∇f(ct).
• H = {x

∣∣〈∇f(ct), x− ct〉 ≤ }.
• St+ = St ∩ H

• Return x̂ = argmint f(ct)
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CENTER OF GRAVITY METHOD

Natural “cutting plane” method.

• S = S
• For t = , . . . , T :

• ct = center of gravity of St.
• Compute ∇f(ct).
• H = {x

∣∣〈∇f(ct), x− ct〉 ≤ }.
• St+ = St ∩ H

• Return x̂ = argmint f(ct)



CENTER OF GRAVITY METHOD

Natural “cutting plane” method.

• S = S
• For t = , . . . , T :

• ct = center of gravity of St.
• Compute ∇f(ct).
• H = {x

∣∣〈∇f(ct), x− ct〉 ≤ }.
• St+ = St ∩ H

• Return x̂ = argmint f(ct)
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CENTER OF GRAVITY METHOD

Intuitively, why does it make sense to search in St ∩H where:

H = {x
∣∣〈∇f(ct), x− ct〉 ≤ }?
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CENTER OF GRAVITY METHOD

Intuitively, why does it make sense to search in St ∩H where:

H = {x
∣∣〈∇f(ct), x− ct〉 ≤ }?

By convexity,

f(y) ≥ f(ct) + 〈∇f(ct), y− ct〉.

If y /∈ {St ∩H} then
〈∇f(ct), y− ct〉 is negative,
so f(y) > f(ct).

÷ - Kii
= I positive



CONVERGENCE THEOREM

Theorem (Center-of-Gravity Convergence)
Let f be a convex function with values in [−B,B]. Let x̂ be the
output of the center-of-gravity method run for T iterations.
Then:

f(x̂)− f(x∗) ≤ B
(

−
e

)T/d
≤ Be−T/ d.

If we set T = d log( B/ε), then f(x̂)− f(x∗) ≤ ε.

n o
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KEY GEOMETRIC TOOL

Want to argue that, at every step of the algorithm, we “cut off”
a large portion of the convex set we are searching over:

1111111

↳"Ii-te) votes.'



KEY GEOMETRIC TOOL

Theorem (Grünbaum’s Theorem)
For any convex set S with center-of-gravity c, and any
halfspace Z = {x

∣∣〈a, x− c〉 ≤ } then:

vol(S ∩ Z)

vol(S) ≥
e
≈ .
-
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KEY GEOMETRIC TOOL

Want to argue that, at every step of the algorithm, we “cut off”
a large portion of the convex set we are searching over.

Theorem (Grünbaum’s Theorem)
For any convex set S with center-of-gravity c, and any
halfspace Z = {x

∣∣〈a, x− c〉 ≤ } then:

vol(S ∩ Z)

vol(S) ≥
e
≈ .

Let Z be the compliment of H from the algorithm. Then we cut
off at least a /e fraction of the convex body on every iteration.

Corollary: After t steps, vol(St) ≤
(

− e
)t
vol(S).

- -



CONVERGENCE PROOF

Let δ be a small parameter to be chosen later.

Let Sδ = {( − δ)x∗ + δx
∣∣ for x ∈ S}.

Claim: Every point y in Sδ has good function value.
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CONVERGENCE PROOF

For any y ∈ Sδ :

f(y) = f (( − δ)x∗ + δx)
≤ ( − δ)f(x∗) + δf(x)
≤ f(x∗)− δf(x∗) + δf(x)
≤ f(x∗) + Bδ.

÷ - =
←



CONVERGENCE PROOF

We also have: vol(Sδ) = δd vol(S).

Set δ =
(

− e
)T/d. After T steps,

vol(St) ≤
(

− e
)T

= vol(Sδ).

Either St exactly equals Sδ , in which
case our next centroid gives error
≤ Bδ.

Or we must have “chopped off” at
least one point y in Sδ by the time we
reach step T.
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CONVERGENCE PROOF

Claim: If we “chopped off” at least

one point y in Sδ by the time we
reach step T then for some centroid
c , . . . , ct, f(ct) < Bδ.

Proof:

Bδ ≥ f(y) ≥ f(ct) + 〈∇f(ct), y− ct〉
> f(ct).

Algorithm returns argminci f(ci).
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CONVERGENCE THEOREM

Theorem (Center-of-Gravity Convergence)
Let f be a convex function with values in [−B,B]. Let x̂ be the
output of the center-of-gravity method run for T iterations.
Then:

f(x̂)− f(x∗) ≤ B
(

−
e

)T/d
≤ Be−T/ d.

If we set T = O (d log(B/ε)), then f(x̂)− f(x∗) ≤ ε.

In terms of gradient-oracle complexity, this is essentially
optimal. So why isn’t the algorithm used?

a -
-



CENTROID COMPUTATION

In general computing the centroid is hard. #P-hard even when
when S is an intersection of half-spaces (a polytope).

Even if the problem isn’t hard for your starting convex body S ,
it likely will become hard for S ∩H ∩H ∩H . . ..

So while the oracle complexity of dimension-dependent
optimization was settled in the s, a number of basic
questions in terms of computational complexity.

We will discuss how to obtain a computationally efficient
version of the center-of-gravity method called the ellipsoid
method. This method is most famous for giving the first
polynomial time algorithm for linear programming.
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LINEAR PROGRAMMING

Linear programs (LPs) are one of the most basic convex
constrained, convex optimization problems:

Let c ∈ Rd,b ∈ Rn,A ∈ Rn×d be fixed vectors that define the
problem, and let x be our variable parameter.

min f(x) = cTx
subject to Ax ≥ b.

Think about Ax ≥ b as a union of half-space constraints:

{x : aTx ≥ b }
{x : aTx ≥ b }

...
{x : aTnx ≥ bn}



LINEAR PROGRAMMING

min f(x) = cTx
subject to Ax ≥ b.



LINEAR PROGRAMMING APPLICATIONS

• Classic optimization applications: industrial resource
optimization problems were killer app in the s.

• Robust regression: minx ‖Ax− b‖ .
• L constrained regression: minx ‖x‖ subject to Ax = b. Lots
of applications in sparse recovery/compressed sensing.

• Solve minx ‖Ax− b‖∞.
• Polynomial time algorithms for Markov Decision Processes.
• Many combinatorial optimization problems can be solved
via LP relaxations.



LINEAR PROGRAMMING

Theorem (Khachiyan, 1979)
Assume n = d. The ellipsoid method solves any linear
program with L-bit integer valued constraints in O(n L) time.

Ellipsoid is a relatively simple center-of-gravity like method!

Front page of New York Times, November , .



PROBLEM SIMPLIFICATION

Simplifying the problem: Given a convex set K via access to
separation oracle SK for the set, determine if K is empty, or
otherwise return any point x ∈ K.

Sk(y) =
{
∅ if y ∈ K.

separating hyperplane (a, c) if y /∈ K.

Let H = {x : aTx = c}.



SEPARATION ORACLE

Example: How would you implement a separation oracle for a
polytope {x : Ax ≥ b}.



FROM MEMBERSHIP TO OPTIMIZATION

Original problem: minx∈S f(x).

How to reduce to determining if a convex set K is empty or not?



FROM MEMBERSHIP TO OPTIMIZATION

Original problem: minx∈S f(x).

How to reduce to determining if a convex set K is empty or not?

Binary search! For a convex function f(x), {x : f(x) ≤ c} is
convex, and you can get a separation oracle via the gradient.



ELLIPSOID METHOD SKETCH

Goal of ellipsoid algorithm: Solve “Is K empty or not?” given a
separation oracle for K under the assumptions that:

. K ⊂ B(cR,R).

. If non-empty, K contains B(cr, r) for some r < R.



ELLIPSOID METHOD SKETCH

Iterative method similar to center-of-gravity:

. Check if center cR of B(cR,R) is in K.

. If it is, we are done.

. If not, cut search space in half, using separating
hyperplane.



ELLIPSOID METHOD SKETCH

Key insight: Before moving on, approximate new search region
by something that we can easily compute the centroid of.
Specifically an ellipse!!

Produce a sequence of ellipses that always contain K and
decrease in volume: B(cR,R) = E , E , . . .. Once we get to an
ellipse with volume ≤ B(cr, r), we know that K must be empty.



ELLIPSE

An ellipse is a convex set of the form: {x : ‖A(x− c)‖ ≤ α} for
some constant c and matrix A. The center-of-mass is c.

Often re-parameterized to say that the ellipse is all x with
{x : (x− c)TQ− (x− c) ≤ }



ELLIPSOID UPDATE

There is a closed form solution for the equation of the
smallest ellipse containing a given half-ellipse. I.e. let Ei have
parameters Qi, ci and consider the half-ellipse:

Ei ∩ {x : aTi x ≤ aTi ci}.

Then Ei+ is the ellipse with parameters:

Qi+ =
d

d −

(
Qi − d+

hhT
)

ci+ = ci − n+
h,

where h =
√
aTi Qiai · ai.



GEOMETRIC OBSERVATION

Claim: vol(Ei+ ) ≤ ( − d) vol(Ei).

Proof: Via reduction to the “isotropic case”. I will post a proof
on the course website if you are interested.

Not as good as the ( − e) constant-factor volume reduction
we got from center-of-gravity, but still very good!



GEOMETRIC OBSERVATION

Claim: vol(Ei+ ) ≤ ( − d) vol(Ei)

After O(d) iterations, we reduce the volume by a constant.

In total require O(d log(R/r)) iterations to solve the problem.



ELLIPSOID FOR LPS

Theorem (Khachiyan, 1979)
Assume n = d. The ellipsoid method solves any linear
program with L-bit integer valued constraints in O(n L) time.
I.e. linear programming is in (weakly) polynomial time!

The method works for any convex program.

For LPs, we have an O(nd) time separation oracle, and ellipsoid
update take O(d ) time.

Careful analysis of the binary search method, how to set Br

and BR, etc. leads to the final runtime bound.



INTERIOR POINT METHODS

Theorem (Karmarkar, 1984)
Assume n = d. The interior point method solves any linear
program with L-bit integer valued constraints in O(n . L) time.

Front page of New York Times, November , .



INTERIOR POINT METHODS

Will post lecture notes on the website (optional reading).

Projected Gradient Descent Optimization Path



INTERIOR POINT METHODS

Will post lecture notes on the website (optional reading).

Ideal Interior Point Optimization Path



POLYNOMIAL TIME LINEAR PROGRAMMING

Both results had a huge impact on the theory of optimization,
although at the time neither the ellipsoid method or interior
point method were faster than a heuristic known at the
Simplex Method.

These days, improved interior point methods compete with
and often outperform simplex.


