CS-GY 6763: Lecture 9
Online and Stochastic Gradient Descent,
Dimension Dependent Optimization

NYU Tandon School of Engineering, Prof. Christopher Musco



STANDARD OPTIMIZATION SETTING

Given a function fto minimize, assume we have:

- Function oracle: Evaluate f(x) for any x.

- Gradient oracle: Evaluate Vf{(x) for any x.
Goal: Minimize the number of oracle calls to find X such that

f(X) < ming f(X) + €.

In machine learning applications, f(x) is typically a loss
function for a fixed training dataset.



ONLINE AND STOCHASTIC GRADIENT DESCENT

First part of class:

- Basics of an alternative setting: Online Learning +
Optimization.

- Introduction to Regret Analysis.

- Application to analyzing Stochastic Gradient Descent.




ONLINE LEARNING

Many machine learning problems are solved in an online
setting with constantly changing data.

- Spam filters are incrementally updated and adapt as they
see more examples of spam over time.

- Text recommendation engines (e.g. Github Copilot) need
to be kept up-to-date as software libraries/APIs change.

- Content recommendation systems adapt to user behavior
and clicks (which may not be a good thing...)



EXAMPLE

Machine learning based email spam filtering.

Re:SAFTY CORONA VIRUS AWARENESS WHO

@ World Health Organization 9 %

7
“(i‘ World Health

Organization

)
v
W

LL‘<<\

Dear Sir,

Go through the attached document on safety measures regarding the
spreading of corona virus

Click on the button below to download

Safety measures

Symptoms common symptoms include fever coughcshortness of breath and
breathing difficulties

Regards,

Dr. Stella Chungong
Specialist wuhan-virus-advisory

Markers for spam change overtime, so model might change.



EXAMPLE

Plant identification via iNaturalist app.

(California Academy of Science + National Geographic)

- When the app fails, image

is classified via
crowdsourcing (backed by
huge network of amateurs
and experts).

- Single model that is

updated constantly, not
retrained in batches.



ONLINE LEARNING FRAMEWORK

Choose some model My parameterized by parameters x and

some loss function £. At time steps 1,...,T, receive data
vectors a, ... a(D.

—

- At each time step, we pick (“play”) a parameter vector

- Make prediction y{) = My (a1).

- Then told true value or label )& Possibly use this
information to choose a new x(*1),

5 ) 5
- Goal is to minimize cumulative loss: /\ ] HK(') (0’ > -OU)
.r
( L= oxD, a0, y0) )
=1

For example, for a regression problem we might use the ¢, loss:
2

x().
—_—

ox®, al) )y ‘(x(’), ally — 0

For classification, we could use logistic/cross-entropy loss. 7



ONLINE OPTIMIZATION

Abstraction as optimization problem: Instead of a single
objective function f, we have a single (initially unknown)
function fi, ..., fr : R? — R for each time step.

- Fortimestepie,...,T, select vector

* Observe f; and pay cost f;(x())

+ Goal is to minimize Y-, fi(x).
——————

We make no assumptions that fi,. .., fr are related to each
other at all!




REGRET BOUND

In offline optlml;'gUon we wanted to find X satisfying
F(X) < ming f(x ) Ask for a similar thing here.

Objective: Choose x(, ..., x(D so that:

T T
. Zﬁ(x([))'é%[m)j”z:ﬁ(x)
=1 =1

Here ¢ is called the regret of our solution sequence
x(, ..., x(N. Regret compares to the best fixed solution in
hindsight.

We typically € to be growing sublinearly in T.



REGRET BOUND

Regret compares to the best fixed solution in hindsight.

+ €.

T T
D fx0) < [mxinZﬁ(x)

It's very possible that(z,»T:1ﬁ(x(’)))< [minx Z;fi(x)] Could we
hope for something stronger?

Exercise: Argue that the following is impossible to achieve:

)
+ €.

T

> fitx) < [Z min fi(x)




HARD EXAMPLE FOR ONLINE OPTIMIZATION

1/
Convex functions: wu S qc (K)
XQ%
FilX) = |x — ] =T/
Fy(x) = Ix— ol
where hy, ..., hrare i.i.d. uniform {O 1}.

',:\ P f(‘c) @

OH\"'*{ o "' '§ \;&,‘A’( (\’\1&\4
S 8(<) =< T/

I



REGRET BOUNDS

Beautiful balance:

- Either fy, ..., fr are similar or changing slowly, so we can
learn predict f; from earlier functions.

- Orfy,...,fr are very different, in which case miny Z,Tﬁfi(x)
is large, so regret bound is easy to achieve.

« Or we live somewhere in the middle.



FOLLOW-THE-LEADER

Follow-the-leader algorithm: ’F/ (:

/_.. (I |

- Choose x(0).

- Fori=1,...,T
- Let x) = argmin, Z};JE(X)
- Play x. -

- Observe f; and incur cost f;(x().

Simple and intuitive, but there are two issues with this

approach. One is computational, one is related to th/eic_cw
—_\

6(1)
ﬁ,(&)=,@/ﬁx(a"")—3:> 5



FOLLOW-THE-LEADER

’LL ‘{L §b /gq’cu ‘p,‘\c\,

Hard case:

f, fy

14



ONLINE GRADIENT DESCENT

Online Gradient descent:

. O - _R_
Choosex/ and n = S
s Fori=1,...,T
+ Play x(0

- Observe f; and incur cost fi(x()),
< xUH1) = x() — an,-(x("))
-—

If f1,...,fr = fare all the same, this is the same as regular
gradient descent. We update parameters using the gradient@
at each step.

15



ONLINE GRADIENT DESCENT (OGD)

x* = argmin, .1, fi(x) (the offline optimum)
/_\a

Assume:

“fi,e., Tareall
- Each is G-Lipschitz: for all x, ‘
- Starting radius: [|x* — x|, < R

Online Gradient descent:

- Choose x(" and n =
s Fori=1,...,T
Play x(.
- Observe f, and incur cost f;(x().
x(HD = x0 — nvfi(xO)

R
GVT

16



ONLINE GRADIENT DESCENT ANALYSIS

Let x* = arg min, 1, fi(x) (the offline optimum) I
Qs/ g’ '

Theorem (OGD Regret Bound) Col (onRt¥ ,

After T steps, e :%{Z,Lf,(x“h} —%Z;f;(x*)} < R_G—%f_[

Average regret overtime is bounded by £

Goes —» 0as T — . T RGY
N
All this with no assumptions on how fi, ..., fr relate to each

other! They could have even been chosen adversarially - e.g.
with f; depending on our choice of x; and all previous choices.

17



ONLINE GRADIENT DESCENT ANALYSIS

Theorem (OGD Regret Bound)
After T steps, € = [Z[Tﬂf,-(x("))} - [Z,-T:m(x*)} < RGVT.

(i) e
Claim1: Foralli=1,...,T, /’)X( -MOQCK )
. () w112 — |15 (iF1) _ y*2 2
]cl(x(l)) - i(X*) < HX X HZ HX X HZ + ﬁ )
- ~ 2n 2

(Same proof for standard GD. Only uses convexity of f;.)

18



ONLINE GRADIENT DESCENT ANALYSIS

Theorem (OGD Regret Bound)
After T steps, € = [2;1 f,(x("))} - [z,; ]‘;(x*)} < RGVT

Claim1: Foralli=1,...,T,

. x() — xx (12 — (x(H+1) — x* |2

Telescoping Sum: < N _ 0
T
. X(1) _x* 2 X(T) _ x* 2 T GZ
Z |:f/(x(l)) —f,‘(X*) < H HZ H H2 _,'__,7/
=1 T 2n 2
R TnG? 26 e
S o + - < ﬁ vﬁ: G— —
R TR
M= —

T "



STOCHASTIC GRADIENT DESCENT (SGD)

¥ b bFrove~g oy
Efficient offline optimization method for functions f with finite

sum structure:
ere)

Goal is to find X such that f(x) < f(x*

- The most widely use optimization algorithm in modern
machine learning.

- Easily analyzed as a special case of online gradient
descent!

20



STOCHASTIC GRADIENT DESCENT

Recall the machine learning setup. In empirical risk
minimization, we can typically write:

fx) =) fi(x)
i=1

where f; is the loss function for a particular data example
(@, y). 9 (()

Example: least squares linear regressigh.
n
f0 = - (a® —y0y?
=1
Note that by linearity, Vf(x) = >, Vfi(x).

—_—
21



STOCHASTIC GRADIENT DESCENT

Main idea: Use random approximate gradient in place of
actual gradient.

Pick randomj € 1,...,n and update x usin
i EELELLR

[Vf/( )] = *Vf( )-

h,’(v((n)] Z L \7((&) ' % k) .

nVfi(x) is an unb|ased estimate for the true gradient Vf( ),
but can typically be computed in a 1/n fraction of the time!

1 ol
wn /

Trade slower convergence for cheaper iterations.



STOCHASTIC GRADIENT DESCENT

Stochastic first-order oracle for f(x) = >°/L, fi(X).

- Gradient Query: For any chosen j,x, return Vf;(x)
Stochastic Gradient descent:

+ Choose starting vector x, step size n

- Fori=1,...,T
- Pick random j; uniformly at random from 1,...,n.
- x(H#) = xO 7 vF (x0)

- Return X = 121 x()
- —

23



VISUALIZING SGD

GD's smooth convergence SGD's stochastic convergence
600 oT0
500
608
s s
£ 400 13
o 5 606
[ [4
5300 5
a 3 604
= c
3 200 3
= =
602
100
600
0

0 10 o 0 40
# GD iterations

0 10 20 30 40 50
# SGD iterations
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STOCHASTIC GRADIENT DESCENT
| s G

Assume: RZIQLNE z o f e,
- Finite sum structure: f( ) = Z, i(x), W|thj]_1 all convex.

- Lipschitz functions: for all x, J, HV}j( N2 < ° —
- What does this imply about Lipschitz constant of f?

+ Starting radius: [|x* — x|, <R.

Stochastic Gradient descent:

. ™ 3 _ R
Choose x\") steps T, step size n = T
- Fori=1,...,T:
- Pickrandom j; €1,...,n.

x(+D = xO —ij,( )

* Return X = 7 Iy x(

Approach: View as online gradient descent run on function
sequence fi,....fi.

Only use the fact that step equals gradient in expectation. 2



JENSEN’S INEQUALITY

For a convex function f and points x(M, ... x®

f<1.x(1>+_”+1t.x(r))§

,"—\/

4:(/\ X *(‘)\\3) ¢ A §0D +(;_,\)Q(7)

26



STOCHASTIC GRADIENT DESCENT ANALYSIS

Claim (SGD Convergence) X‘; 1 % X ¢)
2. : LI P
After T = R2§2 iterations: ?i’;s
Ef(%) - f(x)] < e
———
Claim 1:

asing Jensen’s Inequality:

PFO}WG/

h T _ T
FrE) L35 « LERET) RS

=

<1

27



STOCHASTIC GRADIENT DESCENT ANALYSIS

Claim (SGD Convergence) n E ‘f,). (U> - f(C))
After T = S~ iterations: -
EJf(X) - flx)] < e.
T B
BJfR) — )] < 3 D [00) — 1)) = E w,%ﬂ)

28



STOCHASTIC GRADIENT DESCENT ANALYSIS

Claim (SGD Convergence)
After T =

X"L: ™ Ler f;g

=5 S48 10 )

Zf/ X(I offme)] ,
where 77 — a
N—

\HS

29



STOCHASTIC GRADIENT DESCENT ANALYSIS

Claim (SGB.Convergence)
Afterations: chr (F
E[f(X) — f(x*)] < e.

)
EIf®) — 0] < 7 3 E [f1x0) - )]

- " T

ij/ (X(/')) _’f&_(xofﬂine)]

< ; . (R g ﬁ) (by OGD guarantee.)

(
/5= "



STOCHASTIC VS. FULL BATCH GRADIENT DESCENT

Number of iterations for error e

- Gradient Descent: T = &, )

. Stochastic Gradient Descent: T = LSy )
Always have G < G W sx W94, ) 96 (x) + il

G = maxIVAx)IrE max (19X Qe+ + IVa(x)2)
- < max ([[VAX)[[2) + - - + max ([[Vfn(X)])2)
T =%y
So GD converges strlctly faster than SGD.
But for a fair comparison:

+ SGD cost = (# of iterations) - O(1) /
- GD cost = (# of iterations) - O(n) / 31



STOCHASTIC VS. FULL BATCH GRADIENT DESCENT

We always have G < Qi When it is much smaller then GD will
perform better. When it is closer to this upper bound, SGD will
perform better.

What is an extreme case where G = G'?

f b - 4

32



STOCHASTIC VS. FULL BATCH GRADIENT DESCENT

What if each gradient Vfj(x) looks like random vectors inﬂlgi?

E.g. with A._/(O/,Q entries?

y L s
E(vill = & & wd  O'xld oy
{Hw HZW, ||2] dv

Gxidw

5 B o

q %(K) 33



STOCHASTIC VS. FULL BATCH GRADIENT DESCENT

Takeaway: SGD performs better when there is more structure
or repetition in the data set.

- wEE , EEED
ERETEEHeE=S
ol Smll N ¥ O
o Pl Tl LA
o) L] ol "B T =k ]
Y e WL
O | EEENEYDANE
ol MWL P RELEE
RS ES TS
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V Q( ﬂj/ g))t)m)) TV’?)-\(K(‘l))

b‘ q (&)-3¢ > /j'bf”"

PRECONDITIONING

Sy \m& U/-— l4>
B KC‘J\/X7 ‘3)‘5
= G
g



PRECONDITIONING

v ) 2 b 509 L K s §00)
wnflde (W )) = g%yt

Main idea: Instead of minimizing f(x), find anot erfunctlon

g(x) with the same minimum but which is better suited for first

order optimization (e.g., has a smaller conditioner number).

LA

(%
laim: Let h(x) : RY — RY be an invertible function. Let 3;\\"& )

(x) = f(h(x)). Then 0 g\*x%@
N
d argminf(X) = h <arg min g(X *

we ~ %LK) < Wie ﬁ()&) l/('(' xgﬂ“:ofsw.ﬁ CC&)
W o) ¢ 6 (W) -

35



PRECONDITIONING

_ , | WGx )
First Requirement: We need g(x) to still be convex. §7

Claim: Let P be an invertible d x d matrix and let g(x) = f(Px).

g(x) is always convex.
- >

For this choice of preconditioner, if‘gz arg min g(x), we would
want to retur 4s a near minimizer of f.
P

36



PRECONDITIONING

Ld

Additional Goals:

- g(x) should be better conditioned (more smooth, more
strongly convex, etc.) than f.

{P)weeds to be easy to compute and we need to be able to
apply Px efficiently.

Common choice: Diagonal precond|t|oner

N[ A P
+ Choose P to p€ a diagonal matrix D,
- For f(x) = ommon choice is D = diag(ATA)”,b

which is known as the Jacobi preconditioner.
Often works very well in practice!

37



DIAGONAL PRECONDITIONER

A=
1 33 [}
-2 108 -19
= 101 10
) -65 9
) 26 [)
-2 -94 =4
) -132 -25
-1 92 6
[) [} -22
1 -5 -23
>> cond(A'*A) >> P = sqrt(inv(diag(diag(A'xA))));
- >> cond(PxA"'xAxP)
ans =
ans =
8.4145e+07
10.3878

38



ADAPTIVE STEPSIZES

Another view: If g(x) = f(Px) then Vg(x) = PTVf(Px).
Vg(x) = PVf(Px) when P is symmetric.

- Fort=1,.
me) :?x

() — (O _ 2 [(y®
y y n/[ fly®)]

S —
When P is diagonal, this is just gradient descent with a
different step size for each parameter!

39



ADAPTIVE STEPSIZES

Algorithms based on this idea: P TA *A 7
- AdaGrad -
- RMSprop /

- Adam optimizer/

Oy ©®
‘v{é“‘\vv#t\

CRNERE

Hidden Layers

40
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FIRST ORDER CONVEX OPTIMIZATION

First Order Optimization: Given a convex function fand a
convex set S,
Goal: Find X € S such that f(X) < minges f(X) + €.
—

Assume we have:

f Function oracle: Evaluate f(x) for any x.
Gradient oracle: Evaluate Vf(x) for any x.
- Projection oracle: Evaluate Ps(x) for any x. )

Gradient descent requires O (%) calls to each oracle to
solve the problem. T~

We were only able to improve the e dependence by making

stronger assumptions on f (strong convexity, smoothness).
41



DIMENSION DEPENDENT BOUND

Alternatively, we can get much better bounds if we are willing
to depend on the problem dimension. l.e. on d if f(x) is a
function mapping d-dimensional vectors to scalars.

We already know how to do this for a few special functions:
AT -Y)

where A c R™d,

() = [|Ax — b]|3

42



DIMENSION DEPENDENT BOUND

Let f(x) be bounded between [-B, B] on S. X €S

Theorem (Dimension Dependent Convex Optimization)
There is an algorithm (the Center-of-Gravity Method) which
finds  $atisfying f(X) < minkes f(X) + e using O(d log(B/<))
calls to a function and gradient oracle for convex f.

Caveat: Assumes we have some representation of S, not just a
projection oracle. We will discuss this more later.

Note: For an unconstrained problem with known starting
radius R, can take S to be the ball of radius R around
VA(X)|l2 < G, we always have B = O(RG).

—

i

x(M
—

43



CENTER OF GRAVITY METHOD

Natural “cutting plane” method. Developed simultaneous on
opposite sides of iron curtain.

Fptein

Not used in practice (we will discuss why) but the basic idea

underlies many popular algorithms. e



CENTER OF GRAVITY METHOD

A few basic ingredients: o

1. The center-of-gravity of a convex set S is defined as:

_ JuesX X fies X X
vol(S) Jres 10X

2. For two convex sets A and B, AN B is convex. Proof by
picture:

45




CENTER OF GRAVITY METHOD

Natural “cutting plane” method.

;
Si=o
Fort=1,...,T

- Compute Vf(cy).
© 1 = {x|(Vf(ct),x — ¢t) < 0}
* S =8NH

- Return X = arg min, f(¢;)

46



CENTER OF GRAVITY METHOD

Natural “cutting plane” method.

-5 =8
s Fort=1,...,T:
- ¢; = center of gravity of S;.

© 1 = {x|(Vf(ct),x — ¢t) < 0}
* S =8NH

- Return X = arg min, f(¢;)

47



CENTER OF GRAVITY METHOD

Natural “cutting plane” method.

- &$5=S$

cFort=1,...,T:
- ¢; = center of gravity of S;.
- Compute Vf(cy).

- Return X = arg min, f(c;)
— /_v

48



CENTER OF GRAVITY METHOD

Intuitively, why does it make sense to search in St N H where:

H = {x|(Vf(ct),x — ct) < 0}7?

constraint set §

level sets of f(x) s



CENTER OF GRAVITY METHOD

Intuitively, why does it make sense to search in &t N H where:
H = {x|(Vf(ct),x — ct) < 0}7?

constraint set §

By convexity,

Aly) = fle) + (VAer), Y — c).

—_—

Ify ¢ {StN#H} then
(Vf(ct),y — Ct) IS Resative,

so fly) > flct). pes i

level sets of f(x)
50



CONVERGENCE THEOREM

Theorem (Center-of-Gravity Convergence
Let f be a convex function with values in\[—B, B]. Let X be the

output of the center-of-gravity method run for T iterations.
Then:

< <

51



KEY GEOMETRIC TOOL

Want to argue that, at every step of the algorithm, we “cut off”
a large portion of the convex set we are searching over:




KEY GEOMETRIC TOOL

Theorem (Griinbaum’s Theorem)
For any convex set S with center-of-gravity ¢, and any

halfspace Z = {x|(a,x — ) < 0} then: /@/
vol(SN 2) 21 268

VO|(S) e —

| \

O

—_—
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KEY GEOMETRIC TOOL

Want to argue that, at every step of the algorithm, we “cut off”
a large portion of the convex set we are searching over.

Theorem (Grinbaum’s Theorem)
For any convex set S with center-of-gravity ¢, and any
halfspace Z = {x|(a,x — ¢) < 0} then:

vol(SN Z) 1

vol(S) E ~ 308

Let Z be the compliment of H from the algorithm. Then we cut
off at least a 1/e fraction of the convex body on every iteration.

Corollary: After t steps, vol(S;) < (1— é) vol(S).

54



CONVERGENCE PROOF

Let 6 be a small parameter to be chosen later.

Let S° = {(1— 6)x* + ox | for x € S}.

(1' 86

Claim: Every pointy ihas good function value.



CONVERGENCE PROOF

Foranyy € S°:

IA AN IA
\h
|

. E
+
=
=

56



CONVERGENCE PROOF

We also have: vol(S?) = 9 vol(S).

Set § After T steps,

vol(Sy) < (1— %)T = vol(S%).

—

Either S; exactly equals S?, in which
case our next centroid gives error
< 2BS.

Or we must have “chopped off” at
least one pointy in 8% by the time we
reach step T.

(\/"é/}r‘\}m'\CS)



CONVERGENCE PROOF

Claim: If we “chopped off” at least

one pointy in 8% by the time we
reach step T then for some centroid
C,...,Ct, f(Ct) < 2B0.

Proof: Q/: [[’ %’ "

2Bd > fly) > flcr) + (Vf(er),y — ¢&)
> f(Ct).

—

Algorithm returns arg min. f(c;).

58



CONVERGENCE THEOREM

Theorem (Center-of-Gravity Convergence)

Let f be a convex function with values in [—B, B]. Let X be the
output of the center-of-gravity method run for T iterations.
Then:

T/d

fR) — fx*) < 2B (1 _ ;) < 2Be /%,
—
If we set(T = O (dlog(B/¢)), thlen f(X) — f(x*) <.

In terms of gradient-oracle complexity, this is essentially
optimal. So why isn’t the algorithm used?

59



CENTROID COMPUTATION

In general computing the centroid is hard. #P-hard even when
when S is an intersection of half-spaces (a polytope).

Even if the problem isn't hard for your starting convex body S,
it likely will become hard forSNH N H, N Hs .. ..

So while the oracle complexity of dimension-dependent
optimization was settled in the 70s,a number of basic
questions in terms of computational complexity./

We will discuss how to obtain a computationally efficient
version of the center-of-gravity method called the ellipsoid
method. This method is most famous for giving the first
polynomial time algorithm for linear programming.

60
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LINEAR PROGRAMMING

Linear programs (LPs) are one of the most basic convex
constrained, convex optimization problems:

Letc e RY b € R", A € R"*? be fixed vectors that define the
problem, and let x be our variable parameter.

min f(x) = c'x
subject to Ax > b.
Think about Ax > b as a union of half-space constraints:
{x:ajx> b}

{x:alx> by}

{x:alx>b,} .



LINEAR PROGRAMMING

min f(x) = c'x
subject to Ax > b.

e



LINEAR PROGRAMMING APPLICATIONS

- Classic optimization applications: industrial resource
optimization problems were killer app in the 70s.

- Robust regression: miny [|Ax — bs.

- L1 constrained regression: miny ||x||; subject to Ax = b. Lots
of applications in sparse recovery/compressed sensing.

- Solve miny ||AX — b||c-
- Polynomial time algorithms for Markov Decision Processes.

- Many combinatorial optimization problems can be solved
via LP relaxations.

63



LINEAR PROGRAMMING

Theorem (Khachiyan, 1979)
Assume n = d. The ellipsoid method solves any linear

program with L-bit integer valued constraints in O(n“L) time.

Ellipsoid is a relatively simple center-of-gravity like method!

A Soviet Discovery Rocks World of Mathematics

By MALCOLM W. BROWNE

A surprise discovery by an obscure
Soviet mathematician has rocked the
world of mathematics and computer
analysis, and experts have begun explor-
ing its practical applications.

Mathematicians describe the discov-
ery by L.G. Khachian as a method by
which computers can find guaranteed
solutions to a class of very difficuit prob-
lems that have hitherto been tackled on a
kind of hit-or-miss basis.

Apart from its profound theoretical in-

in weather prediction, complicated indus-
trial processes, petroleum refining, the
scheduling of workers at large factories,
secret codes and many other things.

““I have been deluged with calls from
virtually every department of govern-
ment for an interpretation of the signifi-
cance of this,” a leading expert on com-
puter methods, Dr. George B. Dantzig of
Stanford University, said in an interview.

The solution of mathematical problems
by computer must be broken down into a
serles of steps. One class of problem

terest, the y may be

S0 many steps that it

could take billions of years to compute,

The Russian discovery offers a way by
which the number of steps in a solution
can be dramatically reduced. It also of-
fers the mathematician a way of learning
quickly ap has a soluti
or not, without having to complete the en-
tire immense computation that may be
required.

According to the American journal Sci-

Continued on Page A20, Column 3

ONLY $1000 A MONTH!!! 24 Hr. Phone Anawering

Service. Totally New Concept™ Increfible®” 279-3870—ADV

Front page of New York Times, November 9, 1979.
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PROBLEM SIMPLIFICATION

Simplifying the problem: Given a convex set K via access to
separation oracle Si for the set, determine if K is empty, or
otherwise return any point x € K.

0 ifyek.
Se(y) = . 4
separating hyperplane (a,c) ify ¢ K.

Let H = {x:a’x = c}.

65



SEPARATION ORACLE

Example: How would you implement a separation oracle for a
polytope {x : AX > b}.

66



FROM MEMBERSHIP TO OPTIMIZATION

Original problem: minyes f(X).

How to reduce to determining if a convex set K is empty or not?

constraint set §

level sets of f(x)

67



FROM MEMBERSHIP TO OPTIMIZATION

Original problem: minyes f(X).

How to reduce to determining if a convex set K is empty or not?
constraint set §

level sets of f(x)

Binary search! For a convex function f(x), {x: f(x) < c} is
convex, and you can get a separation oracle via the gradient.



ELLIPSOID METHOD SKETCH

Goal of ellipsoid algorithm: Solve “Is K empty or not?” given a
separation oracle for K under the assumptions that:

1. KC B(CR, R).
2. If non-empty, K contains B(cy, r) for some r < R.

B(cg,R)
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ELLIPSOID METHOD SKETCH

Iterative method similar to center-of-gravity:

1. Check if center cg of B(cgr,R) is in K.
2. Ifitis, we are done.

3. If not, cut search space in half, using separating
hyperplane.
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ELLIPSOID METHOD SKETCH

Key insight: Before moving on, approximate new search region
by something that we can easily compute the centroid of.
Specifically an ellipse!!

Produce a sequence of ellipses that always contain K and
decrease in volume: B(cg,R) = Eq, E,,.... Once we get to an
ellipse with volume < B(cy, r), we know that KL must be empty. 5



ELLIPSE

An ellipse is a convex set of the form: {x : [|[A(x — ¢)||3 < a} for
some constant ¢ and matrix A. The center-of-mass is c.

{x: Mx=c)ll < a} {x: ID(x-C)ll < @} {x: NA(x-C)Il < o}

Often re-parameterized to say that the ellipse is all x with
{x:(x—c)Q"(x—¢c) <1} 7



ELLIPSOID UPDATE

There is a closed form solution for the equation of the
smallest ellipse containing a given half-ellipse. l.e. let E; have
parameters Q;, ¢; and consider the half-ellipse:

Ein{x:a/x<alc}.

Then Ejyq is the ellipse with parameters:

d2 1

where h = ,/alQ;a; - a;.
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GEOMETRIC OBSERVATION

Claim: vol(Ejy1) < (1— 55) vol(E;).

Proof: Via reduction to the “isotropic case”. | will post a proof
on the course website if you are interested.

Not as good as the (1 — 1) constant-factor volume reduction
we got from center-of-gravity, but still very good! 74



GEOMETRIC OBSERVATION

Claim: vol(Ej;1) < (1— 55) vol(E;)

After O(d) iterations, we reduce the volume by a constant.
In total require O(d? log(R/r)) iterations to solve the problem.
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ELLIPSOID FOR LPs

Theorem (Khachiyan, 1979)

Assume n = d. The ellipsoid method solves any linear
program with L-bit integer valued constraints in O(n“L) time.
l.e. linear programming is in (weakly) polynomial time!

The method works for any convex program.

For LPs, we have an O(nd) time separation oracle, and ellipsoid
update take O(d?) time.

Careful analysis of the binary search method, how to set B,
and Bg, etc. leads to the final runtime bound.
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Theorem (Karmarkar, 1984)
Assume n = d. The interior point method solves any linear

program with L-bit integer valued constraints in O(n3>L) time.

Breakthrough in Problem Solving

By JAMES GLEICK

- A 28year-old mathematician at
A.T.&T. Bell Laboratories has made a

ments of great progress, and this may
well be one of them.”

startling theoretical gh in
the solving of sy of that
often grow Loo vast and for the

in linear pro-

g can have billions or more

most powerful computers.

The discovery, which is to be for-
mally published next month, is already
circulating rapidly through the mathe-
matical world. It has also set off a del-
uge of inquiries from brokerage
houses, oil companies and airlines, in-
dustries with millions of dollars at
stake in problems known as linear pro-
gramming. .

, even hij
computers cannot check every one. So
computers must use a special proce-
dure, an algorithm, to examine as few
answers as possible before finding the
best one — typically the one that mini-
mizes cost or maximizes efficiency.
A procedure devised in 1947, the sim-
plex method, is now used for such prob-

Continued on Page Al9, Column 1

Front page of New York Times, November 19, 1984.

INTERIOR POINT METHODS
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INTERIOR POINT METHODS

Will post lecture notes on the website (optional reading).

*

X

Projected Gradient Descent Optimization Path



INTERIOR POINT METHODS

Will post lecture notes on the website (optional reading).

*

X

Ideal Interior Point Optimization Path



POLYNOMIAL TIME LINEAR PROGRAMMING

Both results had a huge impact on the theory of optimization,
although at the time neither the ellipsoid method or interior
point method were faster than a heuristic known at the

Simplex Method.
These days, improved interior point methods compete with
and often outperform simplex.
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