
CS-GY 6763: Lecture 8
Second Order Conditions, Online and
Stochastic Gradient Descent

NYU Tandon School of Engineering, Prof. Christopher Musco

ࠀ

FIRST ORDER OPTIMIZATION

Given a function f to minimize, assume we have:

• Function oracle: Evaluate f(x) for any x.
• Gradient oracle: Evaluate ∇f(x) for any x.

Goal: Minimize the number of oracle calls to find x̃ such that
f(x̃) ≤ minx f(x) + ε.

ࠁ

GRADIENT DESCENT

Prototype gradient descent method:

• Choose starting point x(߿).
• For i = ,߿ . . . , T:

• x(i+ࠀ) = x(i) − η∇f(x(i))
• Return x(T) (or similar).

Intuition: Last time we showed that, for sufficiently small η,
f(x(i+ࠀ)) ≤ f(x(i)). So the algorithm eventually finds a (local)
minimum. The question is, how fast.

ࠂ

O
- §

steps i r e
learningrate.

.

BASIC GRADIENT DESCENT ANALYSIS

Assume:

• f is convex.
• Lipschitz function: for all x, ‖∇f(x)‖ࠁ ≤ G.
• Starting radius: ‖x∗ − x(߿)‖ࠁ ≤ R.

Gradient descent:

• Choose number of steps T.
• Starting point x(߿). E.g. x(߿) = .߿#
• η = R

G
√
T

• For i = ,߿ . . . , T:
• x(i+ࠀ) = x(i) − η∇f(x(i))

• Return x̂ = argminx(i) f(x(i)).

ࠃ

BASIC GRADIENT DESCENT ANALYSIS

Claim (GD Convergence Bound)

If we run GD for T ≥ RࠁGࠁ

εࠁ
iterations then f(x̂) ≤ f(x∗) + ε.

Proof was made tricky by the fact that f(x(i)) does not improve
monotonically. We can “overshoot” the minimum.

ࠄ

O -

o

o

o

o
•
o
← .

PROJECTED GRADIENT DESCENT

Given function f(x), set S , and access to projection oracle
PS(x) = argminy∈S ‖x− y‖ࠁ.

Projected gradient descent:

• Select starting point x(߿), η = R
G
√
T .

• For i = ,߿ . . . , T:
• z = x(i) − η∇f(x(i))
• x(i+ࠀ) = PS(z)

• Return x̂ = argmini f(x(i)).

Claim (PGD Convergence Bound)
If f,S are convex, ‖∇f(x)‖ࠁ ≤ G for all x ∈ S and
‖x(߿) − x∗‖ࠁ ≤ R.

If T ≥ RࠁGࠁ

εࠁ
, then f(x̂) ≤ f(x∗) + ε.

ࠅ

I f } f¥=

E
- ¥ {L:f6)= c }

E - ÷o÷¥'

BEYOND THE BASIC BOUND

The previous bounds are optimal for convex first order
optimization in general.

But in practice, the dependence on ࠁε/ࠀ is pessimistic: gradient
descent typically requires far fewer steps to reach ε error.

Previous bounds only make a very weak first order assumption:

‖∇f(x)‖ࠁ ≤ G.

In practice, many function satisfy stronger assumptions.

ࠆ

G : . ' toooo
5

O
-

- -

If
'(x)) E G

SECOND ORDER CONDITIONS

Today we will talk about assumptions that involve the second
derivative of f.

In particular, we say that a scalar function f is α-strongly
convex and β-smooth if for all x:

α ≤ f′′(x) ≤ β.

We will give appropriate generalizations of these conditions to
multi-dimensional functions shortly.

Take away: Having either an upper and lower bound on the
second derivative helps convergence. Having both helps a lot.

ࠇ

/ >& >
o

§
- O EE"cx)

- - - → > O

IMPROVING GRADIENT DESCENT

Take away: Having either an upper and lower bound on the
second derivative helps convergence. Having both helps a lot.

Number of iterations for ε error:

G-Lipschitz β-smooth
R bounded start O

(
GࠁRࠁ

εࠁ

)
O
(
βRࠁ

ε

)

α-strong convex O
(

Gࠁ

αε

)
O
(
β
α log(ࠀ/ε)

)

As we defined them so far, smoothness and strong convexity
require f to be twice differentiable. On the other hand,
gradient descent only requires first order differentiability.

ࠈ

{ insteado f You

→

→

-

SECOND ORDER CONDITIONS

Equivalent conditions:

f′′(x) ≤ β ⇐⇒ [f(y)− f(x)]− f′(x)(y− x) ≤ β

ࠁ
(y− x)ࠁ

f′′(x) ≥ α ⇐⇒ [f(y)− f(x)]− f′(x)(y− x) ≥ α

ࠁ
(y− x)ࠁ

Recall: For all convex functions [f(y)− f(x)]− f′(x)(y− x) ≥ .߿
߿ࠀ

-

A fo - y , ×

l)

ftp.x#f)zflxbf-x)

for a c o n v e x
fu ,e h→ .

!
÷i÷i÷¥

'" ' " '"' " '" '" "

SECOND ORDER CONDITIONS

Proof that f′′(x) ≤ β ⇒ [f(y)− f(x)]− f′(x)(y− x) ≤ β
ࠁ (y− x)ࠁ:

Proof for α-strongly convex is similar, as are the other
directions.

ࠀࠀ

k¥607?
F t

E 5×7f
'(x)t (tx)B d t

= fY¥×) x 1×2Blt-×)d
t .f i#x)tBlt I IR,

y t.EE#

MULTIDIMENSIONAL GENERALIZATION

A function is α-strongly convex and β-smooth if for all x, y:
α

ࠁ
‖y− x‖ࠁࠁ ≤ [f(y)− f(x)]−∇f(x)T(y− x) ≤ β

ࠁ
‖y− x‖ࠁࠁ

ࠁࠀ

O s #

ALERNATIVE DEFINITION OF SMOOTHNESS

Definition (β-smoothness)
A function f is β smooth if, for all x, y

‖∇f(x)−∇f(y)‖ࠁ ≤ β‖x− y‖ࠁ

I.e., the gradient function is a β-Lipschitz function.

We won’t use this definition directly, but it’s good to know.
Easy to prove equivalency to previous definition (see Lem. ࠃ.ࠂ
in Bubeck’s book).

ࠂࠀ

=

https://arxiv.org/pdf/1405.4980.pdf

CONVERGENCE GUARANTEE

Theorem (GD convergence for β-smooth functions.)
Let f be a β smooth convex function and assume we have
‖x∗ − x(߿)‖ࠁ ≤ R. If we run GD for T steps, we have:

f(x(T))− f(x∗) ≤ ࠁβRࠁ

T

Corollary: If T = O
(
βRࠁ

ε

)
we have f(x(T))− f(x∗) ≤ ε.

Compare this to T = O
(

GࠁRࠁ

εࠁ

)
without a smoothness

assumption.

ࠃࠀ

-

GUARANTEED PROGRESS

Why do you think gradient descent might be faster when a
function is β-smooth?

ࠄࠀ

i yi
do

"

" o
o ,

E

GUARANTEED PROGRESS

Previously learning rate/step size η depended on G. Now
choose it based on β:

x(t+ࠀ) ← x(t) − ࠀ
β
∇f(x(t))

Progress per step of gradient descent:

.ࠀ
[
f(x(t+ࠀ))− f(x(t))

]
−∇f(x(t))T(x(t+ࠀ)−x(t)) ≤ β

ࠁ ‖x
(t)−x(t+ࠀ)‖ࠁࠁ.

.ࠁ
[
f(x(t+ࠀ))− f(x(t))

]
+ ࠀ

β‖∇f(x
(t))‖ࠁࠁ ≤

β
ࠁ ‖

ࠀ
β∇f(x

(t))‖ࠁࠁ.

.ࠂ f(x(t))− f(x(t+ࠀ)) ≥ ࠀ
β‖∇f(xࠁ

(t))‖ࠁࠁ.

ࠅࠀ

÷÷±
±÷i÷÷÷⇒.
I - I . E E#e ,

CONVERGENCE GUARANTEE

Once we have the bound from the previous page, proving a
convergence result isn’t hard, but not obvious. A concise proof
can be found in Page ࠄࠀ in Garrigos and Gower’s notes.

Theorem (GD convergence for β-smooth functions.)
Let f be a β smooth convex function and assume we have
‖x∗ − x(ࠀ)‖ࠁ ≤ R. If we run GD for T steps with η = ࠀ

β we have:

f(x(T))− f(x∗) ≤ ࠁβRࠁ

T

Corollary: If T = O
(
βRࠁ

ε

)
we have f(x(T))− f(x∗) ≤ ε.

ࠆࠀ

1

https://gowerrobert.github.io/pdf/M2_statistique_optimisation/grad_conv.pdf

GUARANTEED PROGRESS

Where did we use convexity in this proof?

Progress per step of gradient descent:

.ࠀ
[
f(x(t+ࠀ))− f(x(t))

]
−∇f(x(t))T(x(t+ࠀ)−x(t)) ≤ β

ࠁ ‖x
(t)−x(t+ࠀ)‖ࠁࠁ.

.ࠁ
[
f(x(t+ࠀ))− f(x(t))

]
+ ࠀ

β‖∇f(x
(t))‖ࠁࠁ ≤

β
ࠁ ‖

ࠀ
β∇f(x

(t))‖ࠁࠁ.

.ࠂ f(x(t))− f(x(t+ࠀ)) ≥ ࠀ
β‖∇f(xࠁ

(t))‖ࠁࠁ.

ࠇࠀ

#

STATIONARY POINTS

Definition (Stationary point)
For a differentiable function f, a stationary point is any x with:

∇f(x) = ߿

local/global minima - local/global maxima - saddle points

ࠈࠀ

µ . I +

CONVERGENCE TO STATIONARY POINT

Theorem (Convergence to Stationary Point)
For any β-smooth differentiable function f (convex or not), if
we run GD for T steps, we can find a point x̂ such that:

‖∇f(x̂)‖ࠁࠁ ≤
βࠁ
T

(
f(x(߿))− f(x∗)

)

Corollary: If T ≥ βࠁ
ε , then ‖∇f(x̂)‖

ࠁ
ࠁ ≤ ε

(
f(x(߿))− f(x∗)

)
.

߿ࠁ

I - I

- - -

TELESCOPING SUM PROOF

Theorem (Convergence to Stationary Point)
For any β-smooth differentiable function f (convex or not), if
we run GD for T steps, we can find a point x̂ such that:

‖∇f(x̂)‖ࠁࠁ ≤
βࠁ
T

(
f(x(߿))− f(x∗)

)

We have that ࠀ
β‖∇f(xࠁ

(t))‖ࠁࠁ ≤ f(x(t))− f(x(t+ࠀ)). So:
T−ࠀ∑

t=߿

ࠀ
βࠁ
‖∇f(x(t))‖ࠁࠁ ≤ f(x(߿))− f(x(t))

ࠀ
T

T−ࠀ∑

t=߿
‖∇f(x(t))‖ࠁࠁ ≤

βࠁ
T

(
f(x(߿))− f(x∗)

)

min
t
‖∇f(x(t))‖ࠁࠁ ≤

βࠁ
T

(
f(x(߿))− f(x∗)

)
ࠀࠁ

+ L in-f¥ 7ftp..FI
#I

-
-

i f f(x"-") .f(x§
-

- i -

t -

BACK TO CONVEX FUNCTIONS

I said it was a bit tricky to prove that f(x̂)− f(x∗) ≤ ࠁβRࠁ

T for
convex functions. But we just easily proved that ‖∇f(x̂)‖ࠁࠁ is
small. Why doesn’t this show we are close to the minimum?

ࠁࠁ

=

i t .

STRONG CONVEXITY

Definition (α-strongly convex)
A convex function f is α-strongly convex if, for all x, y

[f(y)− f(x)]−∇f(x)T(y− x) ≥ α

ࠁ
‖x− y‖ࠁࠁ

Compare to smoothness condition.

[f(y)− f(x)]−∇f(x)T(y− x) ≤ β

ࠁ
‖x− y‖ࠁࠁ.

For a twice-differentiable scalar function f, equivalent to
f′′(x) ≥ α.

When f is convex, we always have that f′′(x) ≥ ,߿ so larger
values of α correspond to a “stronger” condition. ࠂࠁ

-

GD FOR STRONGLY CONVEX FUNCTION

Gradient descent for strongly convex functions:

• Choose number of steps T.
• For i = ,߿ . . . , T:

• η = ࠁ
α·(i+ࠀ)

• x(i+ࠀ) = x(i) − η∇f(x(i))
• Return x̂ = argminx(i) f(x(i)).

ࠃࠁ

|

CONVERGENCE GUARANTEE

Theorem (GD convergence for α-strongly convex functions.)
Let f be an α-strongly convex function and assume we have
that, for all x, ‖∇f(x)‖ࠁ ≤ G. If we run GD for T steps (with
adaptive step sizes) we have:

f(x̂)− f(x∗) ≤ ࠁGࠁ

αT

Corollary: If T = O
(

Gࠁ

αε

)
we have f(x̂)− f(x∗) ≤ ε

ࠄࠁ

#

CONVERGENCE GUARANTEE

We could also have that f is both β-smooth and α-strongly
convex.

Theorem (GD for β-smooth, α-strongly convex.)
Let f be a β-smooth and α-strongly convex function. If we run
GD for T steps (with step size η = ࠀ

β) we have:

‖x(T) − x∗‖ࠁࠁ ≤ e−Tα
β ‖x(߿) − x∗‖ࠁࠁ

κ = β
α is called the “condition number” of f.

Is it better if κ is large or small?

ࠅࠁ

fck)-f v) E E

Jgfflx"')-4×
9/1 - = -

e .e -Tfs 1 3 2

=

e -T F = E J e f-log(Ya)

SMOOTH AND STRONGLY CONVEX

Converting to more familiar form: Using that fact the
∇f(x∗) = ߿ along with

α

ࠁ
‖x− y‖ࠁࠁ ≤ [f(y)− f(x)]−∇f(x)T(y− x) ≤ β

ࠁ
‖x− y‖ࠁࠁ,

we have:

‖x(T) − x∗‖ࠁࠁ ≥
ࠁ
β

[
f(x(T))− f(x∗)

]
.

We also assume

‖x(߿) − x∗‖ࠁࠁ ≤ Rࠁ.

ࠆࠁ

× : X ' y e× C t)

=]

CONVERGENCE GUARANTEE

Corollary (GD for β-smooth, α-strongly convex.)
Let f be a β-smooth and α-strongly convex function. If we run
GD for T steps (with step size η = ࠀ

β) we have:

f(x(T))− f(x∗) ≤ β

ࠁ
e−Tα

β · Rࠁ

Corollary: If T = O
(
β
α log(Rβ/ε)

)
we have:

f(x(T))− f(x∗) ≤ ε

Only depend on log(ࠀ/ε) instead of on ε/ࠀ or !ࠁε/ࠀ

ࠇࠁ

- -
E E

-

y ' 2 x 2

SMOOTH, STRONGLY CONVEX OPTIMIZATION

We are going to prove the guarantee on the previous page for
the special case of:

f(x) = ࠀ
ࠁ
‖Ax− b‖ࠁࠁ

Goal: Get some of the key ideas across, introduces important
concepts like the Hessian, and show the connection between
conditioning and linear algebra.

ࠈࠁ

EFFIE
'

em .

THE HESSIAN

Let f be a twice differentiable function from Rd → R. Let the
Hessian f(x)ࠁ∇ contain all of its second derivatives at a point
x. So the Hessian is a d× d matrix and we have:

[
f(x)ࠁ∇

]
j,k =

fࠁ∂
∂xjxk

.

For vector x, v:

∇f(x+ tv) ≈ ∇f(x) + t
[
f(x)ࠁ∇

]
v.

߿ࠂ

- e -

•

i t
flxttv)
s f(x)ttLr,ofCxD

- - ¥ 4 n d

¥ , Pflxt¥f€)=@' f l×))r .

THE HESSIAN

Let f be a twice differentiable function from Rd → R. Let the
Hessian f(x)ࠁ∇ contain all of its second derivatives at a point
x. So the Hessian is a d× d matrix and we have:

[
f(x)ࠁ∇

]
j,k =

fࠁ∂
∂xjxk

.

Example: f(x) = ࠀ
−Ax‖ࠁ b‖ࠁࠁ = ࠀ

ࠁ
∑n

i=ࠀ
(
xTa(i) − b(i)

ࠁ(

∂f
∂xk

=
ࠀ
ࠁ

n∑

i=ࠀ

ࠁ
(
xTa(i) − b(i)

)
· a(i)k

fࠁ∂
∂xj∂xk

=
n∑

i=ࠀ

a(i)j a(i)k

f(x)ࠁ∇ =

ࠀࠂ

%

, -

p i th
r o w o f a .

-

=

/ I ×

(i) : Ajtau
where ¥,'a r e j t handt e n
columnso f

A Z

ALTERNATIVE DERIVATION

f(x) = ࠀ
−Ax‖ࠁ b‖ࠁࠁ. Recall that ∇f(x) = ࠀ

ࠁ · Aࠁ
T(Ax− b).

ࠁࠂ

t÷¥¥=o±±,"
" '"

'" '" '

AYA(xxt¥)AHtx-b) =A#ftp.A/AxtNb/-
AtA,#..AtArd=P2flx)

IMPORTANT NOTE

The Hessian matrix is symmetric if for all j, k,

fࠁ∂
∂xj∂xk

=
fࠁ∂

∂xk∂xj

I.e. the order of differentiation does not matter. This is true
whenever the second derivatives are continuous, which we will
assume is the case.

ࠂࠂ

CONVEXITY IN ONE DIMENSION

A twice-differentiable function f : R→ R is :

• convex if and only if f′′(x) ≥ ߿ for all x.
• β-smooth if f′′(x) ≤ β.
• α-strongly convex if f′′(x) ≥ α.

How do these statements generalize to the case when f has a
vector input, so the second derivative is a matrix ?(f(x)ࠁ∇

ࠃࠂ

- -

µ
2

flax'

O

HESSIAN MATRICES AND POSITIVE SEMIDEFINITENESS

Claim: If f is twice differentiable, then it is convex if and only if
the matrix f(x)ࠁ∇ is positive semidefinite for all x.

Definition (Positive Semidefinite (PSD))
A square, symmetric matrix H ∈ Rd×d is positive semidefinite
(PSD) for any vector y ∈ Rd, yTHy ≥ .߿

This is a natural notion of “positivity” for symmetric matrices.
To denote that H is PSD we will typically use “Loewner order”
notation (\succeq in LaTex):

H - .߿

We write B - A or equivalently A . B to denote that (B− A) is
positive semidefinite. This gives a partial ordering on matrices.

ࠄࠂ

=

-

-

.

B - A4 0 A 4 B B -A t oO .

HESSIAN MATRICES AND POSITIVE SEMIDEFINITENESS

Claim: If f is twice differentiable, then it is convex if and only if
the matrix f(x)ࠁ∇ is positive semidefinite for all x.

Definition (Positive Semidefinite (PSD))
A square, symmetric matrix H ∈ Rd×d is positive semidefinite
(PSD) for any vector y ∈ Rd, yTHy ≥ .߿

For the least squares regression loss function:
f(x) = ࠀ

−Ax‖ࠁ b‖ࠁࠁ, f(x)ࠁ∇ = ATA for all x. Is f(x)ࠁ∇ PSD?

ࠅࠂ

For au , y ,
¥7220,
1

LAD,Ay) = HAJI 2 0 .

THE LINEAR ALGEBRA OF CONDITIONING

If f is β-smooth and α-strongly convex then at any point x, the
Hessian f(x)ࠁ∇ satisfies:

αI . f(x)ࠁ∇ . βI,

where I is a d× d identity matrix.

This is the natural matrix generalization of the statement for
scalar valued functions:

α ≤ f′′(x) ≤ β.

ࠆࠂ

→

÷,

SMOOTH AND STRONGLY CONVEX HESSIAN

αId×d . f(x)ࠁ∇ . βId×d.

Equivalently for any z,

α‖z‖ࠁࠁ ≤ zT[∇ࠁf(x)]z ≤ β‖z‖ࠁࠁ.

ࠇࠂ

O

BI-O-f(x) ⇒
I¥D.

F o r a l l 2 , 2 T(BI-Jfk)) 2 2 0

B,}¥,}I 0 4 4 7 2 2 0

SIMPLE EXAMPLE

Let f(x) = ࠀ
−Dx‖ࠁ b‖ࠁࠁ where D is a diagonal matrix. For now

imagine we’re in two dimensions: x =

[
xࠀ
xࠁ

]
, D =

[
dࠀ ߿
߿ dࠁ

]
.

What are α,β for this problem?

α‖z‖ࠁࠁ ≤ zT[∇ࠁf(x)]z ≤ β‖z‖ࠁࠁ

ࠈࠂ

@

(DTD= D ' = f d}%)

I t
nextd ,',dat)

u n (d i ,d i)

r e (b) 2=10,)

GEOMETRIC VIEW

Level sets of ࠀ
−Dx‖ࠁ b‖ࠁࠁ when dࠁ

ࠀ = ࠁd,ࠀ
ࠁ = .ࠀ

߿ࠃ

i : X
:

-
o n ,

° . °
' i . . .

%

- -

= 's11×-3115

GEOMETRIC VIEW

Level sets of ࠀ
−Dx‖ࠁ b‖ࠁࠁ when dࠁ

ࠀ =
ࠀ
ࠂ ,d

ࠁ
ࠁ = .ࠁ

What about non-diagonal D?
ࠀࠃ

I lana
- - -

Di 2
f - I t s

K¥8= [

"'¥¥¥1 ¥

EIGENDECOMPOSITION VIEW

Any symmetric matrix H has an orthogonal, real valued
eigendecomposition.

Here V is square and orthogonal, so VTV = VVT = I. And for
each vi, we have:

Hvi = λivi.

By definition, that’s what makes vࠀ, . . . , vd eigenvectors.
ࠁࠃ

ET"
↳ eigenvector o f H V ;

- -

EIGENDECOMPOSITION VIEW

Recall VVT = VTV = I.

Claim: H is PSD ⇔ λࠀ, ...,λd ≥ .߿ Proof for⇐:

ࠂࠃ

OO O

O OO

H.V I I r t : Kart)'Travt) = C E

z'-Itc = 116115 7 0 .

EIGENDECOMPOSITION VIEW

Recall VVT = VTV = I.

Claim: αI . H . βI⇔ α ≤ λd ≤ ... ≤ λࠀ ≤ β.

ࠃࠃ

-

" " " "" " " " "

-

H EB .I (B-I-H)t o
B .vvt.VIVT.ir/B.I-A

(B. I - A)i ;2 0 fo r a l l i .

EIGENDECOMPOSITION VIEW

Recall that if λmax(H) and λmin(H) be the smallest and largest
eigenvalues of H, then for all z we have:

zTHz ≤ λmax(H) · ‖z‖ࠁ

zTHz ≥ λmin(H) · ‖z‖ࠁ

ࠄࠃ

EIGENDECOMPOSITION VIEW

If for all x the maximum eigenvalue of f(x)ࠁ∇ is ≤ β and the
minimum eigenvalue of f(x)ࠁ∇ is ≥ α then f(x) is β-smooth
and α-strongly convex.

Note that for f(x) = ࠀ
−Ax‖ࠁ b‖ࠁࠁ, we have that, for all x,

f(x)ࠁ∇ = ATA. So, we can take α = λmin(ATA) and β = λmax(ATA).

ࠅࠃ

O -

- - -

POLYNOMIAL VIEW POINT

Theorem (GD for β-smooth, α-strongly convex.)
Let f be a β-smooth and α-strongly convex function. If we run
GD for S steps (with step size η = ࠀ

β) we have:

‖x(S) − x∗‖ࠁ ≤ e−S/κ‖x(߿) − x∗‖ࠁ

Goal: Prove for f(x) = ࠀ
−Ax‖ࠁ b‖ࠁࠁ.

Let λmax = λmax(ATA) and set step size η = ࠀ
λmax

. Gradient
descent update is:

x(t+ࠀ) = x(t) − ࠀ
λmax

AT(Ax(t) − b)

ࠆࠃ

O
- I

- -

o

1 -
-n,

I

ALTERNATIVE VIEW OF GRADIENT DESCENT

Richardson Iteration view:

(x(t+ࠀ) − x∗) =
(
I− ࠀ

λmax
ATA

)
(x(t) − x∗)

ࠇࠃ

051×4=0 A t(Axers)= O
AtAx-Ab=

-

× It)-Xt-ImaxA tA¥ t ¥ ¥ x

¥i÷E÷÷÷.""

=x€tI¥)
- *

UNROLLED GRADIENT DESCENT

(x(S) − x∗) =
(
I− ࠀ

λmax
ATA

)S
(x(߿) − x∗)

ࠈࠃ

xl"-x-=
(t.IT#A)(xo-xt

H"'-xD= (I-In..at#Yx'"-xD

i.
µ")-×'):(I-In* A tA)

2 (Xo-x')

UNROLLED GRADIENT DESCENT

(x(S) − x∗) =
(
I− ࠀ

λmax
ATA

)S
(x(߿) − x∗)

Conclusion: ‖x(S) − x∗‖ࠁࠁ ≤

Approach: Show that the maximum eigenvalue of(
I− ࠀ

λmax
ATA

Sࠁ(
is small – i.e., bounded by e−S/κ = ε.

߿ࠄ

o÷÷÷...:*.
E llxd.ci#mx3).

H

12THz) E 112115.
HuexCH))

-
.

UNROLLED GRADIENT DESCENT

(x(S) − x∗) =
(
I− ࠀ

λmax
ATA

)S
(x(߿) − x∗)

What is the maximum eigenvalue of the symmetric matrix(
I− ࠀ

λmax
ATA

)
in terms of the eigenvalues of ATA?

ࠀࠄ

O

✓✓t - ¥✓AV ' t = ✓(I - # *A)V t = I - ↳ (AA)

1 -¥ .

÷¥±m.

"" " ' " ' " '"'D="'i÷x4¥¥,
i - E x

UNROLLED GRADIENT DESCENT

(x(S) − x∗) =
(
I− ࠀ

λmax
ATA

)S
(x(߿) − x∗)

What is the maximum eigenvalue of
(
I− ࠀ

λmax
ATA

Sࠁ(
?

ࠁࠄ

(I-¥)" E Ye when k 2 2

B eM r s

BigVA N N A . . ✓ r u t , F)
°

inexCB): I-'¥1, Ana,
CB's)--C-III,)"

T.is#..te:Ii.."'"

ACCELERATION

ࠁࠄ

ACCELERATED GRADIENT DESCENT

Nesterov’s accelerated gradient descent:

• x(߿) = y(ࠀ) = z(ࠀ)

• For t = ,ࠀ . . . , T
• y(t+ࠀ) = x(t) − ࠀ

β∇f(x
(t))

• x(t+ࠀ) =
(
+ࠀ

√
κ−ࠀ√
κ+ࠀ

)
y(t+ࠀ) +

√
κ−ࠀ√
κ+ࠀ

(
y(t+ࠀ) − y(t)

)

Theorem (AGD for β-smooth, α-strongly convex.)
Let f be a β-smooth and α-strongly convex function. If we run
AGD for S steps we have:

‖x(S) − x∗‖ࠁ ≤ e−S/
√
κ‖x(߿) − x∗‖ࠁ

Corollary: If T = O (
√
κ log(βR/ε)) achieve error ε.

ࠂࠄ

q-sa
S e h l y(Y a)

t - -

=

INTUITION BEHIND ACCELERATION

Level sets of ‖Ax− b‖ࠁࠁ.

Other terms for similar ideas:

• Momentum
• Heavy-ball methods

What if we look back beyond two iterates?

ࠃࠄ

'¥ . . .

±

BREAK

ࠃࠄ

ONLINE AND STOCHASTIC GRADIENT DESCENT

Second part of class:

• Basics of Online Learning + Optimization.
• Introduction to Regret Analysis.
• Application to analyzing Stochastic Gradient Descent.

ࠄࠄ

ONLINE LEARNING

Many machine learning problems are solved in an online
setting with constantly changing data.

• Spam filters are incrementally updated and adapt as they
see more examples of spam over time.

• Image classification systems learn from mistakes over
time (often based on user feedback).

• Content recommendation systems adapt to user behavior
and clicks (which may not be a good thing...)

ࠅࠄ

EXAMPLE

Plant identification via iNaturalist app.

(California Academy of Science + National Geographic)

• When the app fails, image
is classified via
crowdsourcing (backed by
huge network of amateurs
and experts).

• Single model that is
updated constantly, not
retrained in batches.

ࠆࠄ

EXAMPLE

Machine learning based email spam filtering.

Markers for spam change overtime, so model might change.

ࠇࠄ

EXAMPLE

Machine learning based email spam filtering.

Markers for spam change overtime, so model might change.
ࠈࠄ

ONLINE LEARNING FRAMEWORK

Choose some model Mx parameterized by parameters x and
some loss function). At time steps ,ࠀ . . . , T, receive data
vectors a(ࠀ), . . . , a(T).

• At each time step, we pick (“play”) a parameter vector x(i).
• Make prediction ỹ(i) = Mx(i)(ai).
• Then told true value or label y(i). Possibly use this
information to choose a new x(i+ࠀ).

• Goal is to minimize cumulative loss:

L =
n∑

i=ࠀ

)(x(i), a(i), y(i))

For example, for a regression problem we might use the ࠁ(loss:

)(x(i), a(i), y(i)) =
∣∣∣〈x(i), a(i)〉 − y(i)

∣∣∣
ࠁ
.

For classification, we could use logistic/cross-entropy loss. ߿ࠅ

ONLINE OPTIMIZATION

Abstraction as optimization problem: Instead of a single
objective function f, we have a single (initially unknown)
function fࠀ, . . . , fT : Rd → R for each time step.

• For time step i ∈ ,ࠀ . . . , T, select vector x(i).
• Observe fi and pay cost fi(x(i))
• Goal is to minimize

∑T
i=ࠀ fi(x(i)).

We make no assumptions that fࠀ, . . . , fT are related to each
other at all!

ࠀࠅ

REGRET BOUND

In offline optimization, we wanted to find x̂ satisfying
f(x̂) ≤ minx f(x). Ask for a similar thing here.

Objective: Choose x(ࠀ), . . . , x(T) so that:

T∑

i=ࠀ

fi(x(i)) ≤
[
min
x

T∑

i=ࠀ

fi(x)
]
+ ε.

Here ε is called the regret of our solution sequence
x(߿), . . . , x(T).

We typically ε to be growing sublinearly in T.

ࠁࠅ

REGRET BOUND

Regret compares to the best fixed solution in hindsight.

T∑

i=ࠀ

fi(x(i)) ≤
[
min
x

T∑

i=ࠀ

fi(x)
]
+ ε.

It’s very possible that
∑T

i=ࠀ fi(x(i)) <
[
minx

∑T
i=ࠀ fi(x)

]
. Could we

hope for something stronger?

Exercise: Argue that the following is impossible to achieve:

T∑

i=ࠀ

fi(x(i)) ≤
[T∑

i=ࠀ

min
x

fi(x)
]
+ ε.

ࠂࠅ

HARD EXAMPLE FOR ONLINE OPTIMIZATION

Convex functions:

fࠀ(x) = |x− hࠀ|
...

fn(x) = |x− hT|

where hࠀ, . . . ,hT are i.i.d. uniform ,߿} .{ࠀ

ࠃࠅ

REGRET BOUNDS

T∑

i=ࠀ

fi(x(i)) ≤
[
min
x

T∑

i=ࠀ

fi(x)
]
+ ε.

Beautiful balance:

• Either fࠀ, . . . , fT are similar or changing slowly, so we can
learn predict fi from earlier functions.

• Or fࠀ, . . . , fT are very different, in which case minx
∑T

i=ࠀ fi(x)
is large, so regret bound is easy to achieve.

• Or we live somewhere in the middle.

ࠄࠅ

FOLLOW-THE-LEADER

Follow-the-leader algorithm:

• Choose x(߿).
• For i = ,ࠀ . . . , T:

• Let x(i) = argminx
∑i−ࠀ

j=ࠀ fj(x).
• Play x(i).
• Observe fi and incur cost fi(x(i)).

Simple and intuitive, but there are two issues with this
approach. One is computational, one is related to the accuracy.

ࠅࠅ

FOLLOW-THE-LEADER

Hard case:

ࠆࠅ

ONLINE GRADIENT DESCENT

Online Gradient descent:

• Choose x(ࠀ) and η = R
G
√
T .

• For i = ,ࠀ . . . , T:
• Play x(i).
• Observe fi and incur cost fi(x(i)).
• x(i+ࠀ) = x(i) − η∇fi(x(i))

If fࠀ, . . . , fT = f are all the same, this looks a lot like regular
gradient descent. We update parameters using the gradient ∇f
at each step.

ࠇࠅ

ONLINE GRADIENT DESCENT (OGD)

x∗ = argminx
∑T

i=ࠀ fi(x) (the offline optimum)

Assume:

• fࠀ, . . . , fT are all convex.
• Each is G-Lipschitz: for all x, i, ‖∇fi(x)‖ࠁ ≤ G.
• Starting radius: ‖x∗ − x(ࠀ)‖ࠁ ≤ R.

Online Gradient descent:

• Choose x(ࠀ) and η = R
G
√
T .

• For i = ,ࠀ . . . , T:
• Play x(i).
• Observe fi and incur cost fi(x(i)).
• x(i+ࠀ) = x(i) − η∇fi(x(i))

ࠈࠅ

ONLINE GRADIENT DESCENT ANALYSIS

Let x∗ = argminx
∑T

i=ࠀ fi(x) (the offline optimum)

Theorem (OGD Regret Bound)

After T steps, ε =
[∑T

i=ࠀ fi(x(i))
]
−

[∑T
i=ࠀ fi(x∗)

]
≤ RG

√
T.

Average regret overtime is bounded by ε
T ≤

RG√
T .

Goes→ ߿ as T→∞.

All this with no assumptions on how fࠀ, . . . , fT relate to each
other! They could have even been chosen adversarially – e.g.
with fi depending on our choice of xi and all previous choices.

߿ࠆ

ONLINE GRADIENT DESCENT ANALYSIS

Theorem (OGD Regret Bound)

After T steps, ε =
[∑T

i=ࠀ fi(x(i))
]
−

[∑T
i=ࠀ fi(x∗)

]
≤ RG

√
T.

Claim :ࠀ For all i = ,ࠀ . . . , T,

fi(x(i))− fi(x∗) ≤
‖x(i) − x∗‖ࠁࠁ − ‖x(i+ࠀ) − x∗‖ࠁࠁ

ηࠁ
+

ηGࠁ

ࠁ

(Same proof for standard GD. Only uses convexity of fi.)

ࠀࠆ

ONLINE GRADIENT DESCENT ANALYSIS

Theorem (OGD Regret Bound)

After T steps, ε =
[∑T

i=ࠀ fi(x(i))
]
−

[∑T
i=ࠀ fi(x∗)

]
≤ RG

√
T.

Claim :ࠀ For all i = ,ࠀ . . . , T,

fi(x(i))− fi(x∗) ≤
‖x(i) − x∗‖ࠁࠁ − ‖x(i+ࠀ) − x∗‖ࠁࠁ

ηࠁ
+

ηGࠁ

ࠁ

Telescoping Sum:
T∑

i=ࠀ

[
fi(x(i))− fi(x∗)

]
≤ ‖x

(ࠀ) − x∗‖ࠁࠁ − ‖x(T) − x∗‖ࠁࠁ
ηࠁ

+
TηGࠁ

ࠁ

≤ Rࠁ

ηࠁ
+

TηGࠁ

ࠁ

ࠁࠆ

STOCHASTIC GRADIENT DESCENT (SGD)

Efficient offline optimization method for functions f with finite
sum structure:

f(x) =
n∑

i=ࠀ

fi(x).

Goal is to find x̂ such that f(x̂) ≤ f(x∗) + ε.

• The most widely use optimization algorithm in modern
machine learning.

• Easily analyzed as a special case of online gradient
descent!

ࠂࠆ

STOCHASTIC GRADIENT DESCENT

Recall the machine learning setup. In empirical risk
minimization, we can typically write:

f(x) =
n∑

i=ࠀ

fi(x)

where fi is the loss function for a particular data example
(a(i), y(i)).

Example: least squares linear regression.

f(x) =
n∑

i=ࠀ

(xTa(i) − y(i))ࠁ

Note that by linearity, ∇f(x) =
∑n

i=ࠀ∇fi(x).

ࠃࠆ

STOCHASTIC GRADIENT DESCENT

Main idea: Use random approximate gradient in place of
actual gradient.

Pick random j ∈ ,ࠀ . . . ,n and update x using ∇fj(x).

E
[
∇fj(x)

]
=

ࠀ
n
∇f(x).

n∇fj(x) is an unbiased estimate for the true gradient ∇f(x),
but can often be computed in a n/ࠀ fraction of the time!

Trade slower convergence for cheaper iterations.

ࠄࠆ

STOCHASTIC GRADIENT DESCENT

Stochastic first-order oracle for f(x) =
∑n

i=ࠀ fi(x).

• Function Query: For any chosen j, x, return fj(x)
• Gradient Query: For any chosen j, x, return ∇fj(x)

Stochastic Gradient descent:

• Choose starting vector x(ࠀ), step size η

• For i = ,ࠀ . . . , T:
• Pick random ji ∈ ,ࠀ . . . ,n.
• x(i+ࠀ) = x(i) − η∇fji(x

(i))

• Return x̂ = ࠀ
T
∑T

i=ࠀ x(i)

ࠅࠆ

VISUALIZING SGD

ࠆࠆ

STOCHASTIC GRADIENT DESCENT

Assume:
• Finite sum structure: f(x) =

∑n
i=ࠀ fi(x), with fࠀ, . . . , fn all convex.

• Lipschitz functions: for all x, j, ‖∇fj(x)‖ࠁ ≤ G′

n .
• What does this imply about Lipschitz constant of f?

• Starting radius: ‖x∗ − x(ࠀ)‖ࠁ ≤ R.

Stochastic Gradient descent:
• Choose x(ࠀ), steps T, step size η = R

G′
√
T .

• For i = ,ࠀ . . . , T:
• Pick random ji ∈ ,ࠀ . . . ,n.
• x(i+ࠀ) = x(i) − η∇fji(x(i))

• Return x̂ = ࠀ
T
∑T

i=ࠀ x(i)

Approach: View as online gradient descent run on function
sequence fjࠀ , . . . , fjT .

Only use the fact that step equals gradient in expectation. ࠇࠆ

JENSEN’S INEQUALITY

For a convex function f and points x(ࠀ), . . . , x(t)

f
(
ࠀ
t
· x(ࠀ) + . . .+

ࠀ
t
· x(t)

)
≤ ࠀ

t
· f(x(ࠀ)) + . . .+

ࠀ
t
· f(x(t))

ࠈࠆ

STOCHASTIC GRADIENT DESCENT ANALYSIS

Claim (SGD Convergence)

After T = RࠁG′ࠁ

εࠁ
iterations:

E [f(x̂)− f(x∗)] ≤ ε.

Claim :ࠀ

f(x̂)− f(x∗) ≤ ࠀ
T

T∑

i=ࠀ

[
f(x(i))− f(x∗)

]

Prove using Jensen’s Inequality:

߿ࠇ

STOCHASTIC GRADIENT DESCENT ANALYSIS

Claim (SGD Convergence)
After T = RࠁG′ࠁ

εࠁ iterations:
E [f(x̂)− f(x∗)] ≤ ε.

E[f(x̂)− f(x∗)] ≤ ࠀ
T

T∑

i=ࠀ

E
[
f(x(i))− f(x∗)

]

=
ࠀ
T

T∑

i=ࠀ

nE
[
fji(x

(i))− fji(x
∗)
]

ࠀࠇ

STOCHASTIC GRADIENT DESCENT ANALYSIS

Claim (SGD Convergence)
After T = RࠁG′ࠁ

εࠁ iterations:
E [f(x̂)− f(x∗)] ≤ ε.

E[f(x̂)− f(x∗)] ≤ ࠀ
T

T∑

i=ࠀ

E
[
f(x(i))− f(x∗)

]

=
ࠀ
T

T∑

i=ࠀ

nE
[
fji(x

(i))− fji(x
∗)
]

≤ n
T
· E

[T∑

i=ࠀ

fji(x
(i))− fji(x

offline)

]
,

where xoffline = argminx
∑T

i=ࠀ fji(x).

ࠁࠇ

STOCHASTIC GRADIENT DESCENT ANALYSIS

Claim (SGD Convergence)
After T = RࠁG′ࠁ

εࠁ iterations:
E [f(x̂)− f(x∗)] ≤ ε.

E[f(x̂)− f(x∗)] ≤ ࠀ
T

T∑

i=ࠀ

E
[
f(x(i))− f(x∗)

]

=
ࠀ
T

T∑

i=ࠀ

nE
[
fji(x

(i))− fji(x
∗)
]

≤= n
T
E
[T∑

i=ࠀ

fji(x
(i))− fji(x

offline)

]

≤ n
T
·
(
R · G

′

n
·
√
T
)

(by OGD guarantee.)

ࠂࠇ

STOCHASTIC VS. FULL BATCH GRADIENT DESCENT

Number of iterations for error ε:

• Gradient Descent: T = RࠁGࠁ

εࠁ
.

• Stochastic Gradient Descent: T = RࠁG′ࠁ

εࠁ
.

Always have G ≤ G′:

max
x
‖∇f(x)‖ࠁ ≤ max

x
(‖∇fࠀ(x)‖ࠁ + . . .+ ‖∇fn(x)‖ࠁ)

≤ max
x

(‖∇fࠀ(x)‖ࠁ) + . . .+max
x

(‖∇fn(x)‖ࠁ)

≤ n · G
′

n
= G′.

So GD converges strictly faster than SGD.

But for a fair comparison:

• SGD cost = (# of iterations) · O(ࠀ)
• GD cost = (# of iterations) · O(n) ࠃࠇ

STOCHASTIC VS. FULL BATCH GRADIENT DESCENT

We always have G ≤ G′. When it is much smaller then GD will
perform better. When it is closer to this upper bound, SGD will
perform better.

What is an extreme case where G = G′?

ࠄࠇ

STOCHASTIC VS. FULL BATCH GRADIENT DESCENT

What if each gradient ∇fi(x) looks like random vectors in Rd?
E.g. with N ,߿) (ࠀ entries?

E
[
‖∇fi(x)‖ࠁࠁ

]
=

E
[
‖∇f(x)‖ࠁࠁ

]
= E

[
‖

n∑

i=ࠀ

∇fi(x)‖ࠁࠁ

]
=

ࠅࠇ

STOCHASTIC VS. FULL BATCH GRADIENT DESCENT

Takeaway: SGD performs better when there is more structure
or repetition in the data set.

ࠆࠇ

PRECONDITIONING

ࠆࠇ

PRECONDITIONING

Main idea: Instead of minimizing f(x), find another function
g(x) with the same minimum but which is better suited for first
order optimization (e.g., has a smaller conditioner number).

Claim: Let h(x) : Rd → Rd be an invertible function. Let
g(x) = f(h(x)). Then

min
x

f(x) = min
x

g(x) and argmin
x

f(x) = h
(
argmin

x
g(x)

)
.

ࠇࠇ

PRECONDITIONING

First Goal: We need g(x) to still be convex.

Claim: Let P be an invertible d× d matrix and let g(x) = f(Px).

g(x) is always convex.

ࠈࠇ

PRECONDITIONING

Second Goal:

g(x) should have better condition number κ than f(x).

Example:

• f(x) = ‖Ax− b‖ࠁࠁ. κf =
λࠀ(ATA)
λd(ATA)

.

• g(x) = ‖APx− b‖ࠁࠁ. κg = λࠀ(PTATAP)
λd(PTATAP)

.

߿ࠈ

DIAGONAL PRECONDITIONER

Third Goal: P should be easy to compute.

Many, many problem specific preconditioners are used in
practice. There design is usually a heuristic process.

Example: Diagonal preconditioner.

• Let D = diag(ATA)
• Intuitively, we roughly have that D ≈ ATA.
• Let P =

√
D−ࠀ

P is often called a Jacobi preconditioner. Often works very well
in practice!

ࠀࠈ

DIAGONAL PRECONDITIONER

ࠁࠈ

ADAPTIVE STEPSIZES

Another view: If g(x) = f(Px) then ∇g(x) = PT∇f(Px).

∇g(x) = P∇f(Px) when P is symmetric.

Gradient descent on g:

• For t = ,ࠀ . . . , T,
• x(t+ࠀ) = x(t) − ηP

[
∇f(Px(t))

]

Gradient descent on g:

• For t = ,ࠀ . . . , T,
• y(t+ࠀ) = y(t) − ηPࠁ [∇f(y(t))

]

When P is diagonal, this is just gradient descent with a
different step size for each parameter!

ࠂࠈ

ADAPTIVE STEPSIZES

Algorithms based on this idea:

• AdaGrad
• RMSprop
• Adam optimizer

(Pretty much all of the most widely used optimization methods
for training neural networks.)

ࠃࠈ

COORDINATE DESCENT

ࠃࠈ

STOCHASTIC METHODS

Main idea: Trade slower convergence (more iterations) for
cheaper iterations.

Stochastic Gradient Descent: When f(x) =
∑n

i=ࠀ fi(x),
approximate ∇f(x) with ∇fi(x) for randomly chosen i.

ࠄࠈ

STOCHASTIC METHODS

Main idea: Trade slower convergence (more iterations) for
cheaper iterations.

Stochastic Coordinate Descent: Only compute a single random
entry of ∇f(x) on each iteration:

∇f(x) =





∂f
∂xࠀ (x)
∂f
∂xࠁ (x)...
∂f
∂xd (x)




∇if(x) =





߿
∂f
∂xi

(x)
...
߿





Update: x(t+ࠀ) ← x(t) + η∇if(x(t)).

ࠅࠈ

