
CS-GY 6763: Lecture 6
Gradient Descent and Projected Gradient
Descent

NYU Tandon School of Engineering, Prof. Christopher Musco
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ADMINISTRATIVE

• Homework 2 due next Tuesday evening.
• First reading group meeting, Monday 3-4pm. Meet on 11th
floor of 370 Jay St. Thank you Roman and Marc for
volunteering to present! Please review their chosen paper
before the meeting.

• Midterm next Friday. 1 hour test, followed by break, then
lecture by our TA Feyza on fine-grained complexity. I will
post midterm review document and practice questions.

• Nothing from today will be covered on the midterm.
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FINISH UP LSH + NEAR NEIGHBOR SEARCH
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LOCALITY SENSITIVE HASH FUNCTIONS

Let h : Rd → {1, . . . ,m} be a random hash function.

We call h locality sensitive for similarity function s(q, y) if
Pr [h(q) == h(y)] is:

• Higher when q and y are more similar, i.e. s(q, y) is higher.
• Lower when q and y are more dissimilar, i.e. s(q, y) is
lower.
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OTHER LSH FUNCTIONS

We saw how MinHash gives an LSH function for Jaccard
similarity. Good locality sensitive hash functions exists for

other similarity measures.

Cosine similarity cos (θ(x, y)) = ⟨x,y⟩
∥x∥2∥y∥2 :

−1 ≤ cos (θ(x, y)) ≤ 1.
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COSINE SIMILARITY

Cosine similarity is natural “inverse” for Euclidean distance.

Euclidean distance ∥x− y∥22:

• Suppose for simplicity that ∥x∥22 = ∥y∥22 = 1.
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SIMHASH

Locality sensitive hash for cosine similarity:

• Let g ∈ Rd be randomly chosen with each entry N (0, 1).
• Let f : {−1, 1} → {1, . . . ,m} be a uniformly random hash
function.

• h : Rd → {1, . . . ,m} is definied h(x) = f (sign(⟨g, x⟩)).

Claim: If cos(θ(x, y)) = v, then

Pr[h(x) == h(y)] = 1− θ

π
+

1− v
m

.
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SIMHASH ANALYSIS IN 2D

Lemma to prove: If cos(θ(x, y)) = v, then

Pr[g(x) == g(y)] = 1− θ

π
= 1− cos−1(v)

π

Pr[h(x) == h(y)] = Pr[g(x) == g(y)] + 1−v
m . 7



SIMHASH

SimHash can be tuned, just like MinHash-based LSH function
for Jaccard similarity. Version of hash function with r bands:

• Let g1, . . . , gr ∈ Rd be chosen with each entry N (0, 1).
• Let f : {−1, 1}r → {1, . . . ,m} be a uniformly random hash
function.

• h : Rd → {1, . . . ,m} is defined

h(x) = f ([sign(⟨g1, x⟩), . . . , sign(⟨gr, x⟩)])

.

Pr[h(x) == h(y)] =
(
1− θ

Π

)r
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SIMHASH ANALYSIS 2D

To prove: Pr[g(x) == g(y)] = 1− θ
π , where g(x) = sign(⟨g, x⟩).

Pr[g(x) == g(y)] = Pr[sign(⟨g, x⟩) == sign(⟨g, y⟩)] = probability
x and y are on the same side of hyperplane orthogonal to g.
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SIMHASH ANALYSIS HIGHER DIMENSIONS

There is always some rotation matrix U such that Ux,Uy are
spanned by the first two-standard basis vectors and have the
same cosine similarity as x and y.
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SIMHASH ANALYSIS HIGHER DIMENSIONS

There is always some rotation matrix U such that x, y are
spanned by the first two-standard basis vectors.

Note: A rotation matrix U has the property that UTU = I. I.e., UT

is a rotation matrix itself, which reverses the rotation of U.
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SIMHASH ANALYSIS HIGHER DIMENSIONS

Claim:

Pr[sign(⟨g, x⟩) == sign(⟨g, y⟩)]
= Pr[sign(⟨g,Ux⟩) == sign(⟨g,Uy⟩)]
= Pr[sign(⟨g[1, 2], (Ux)[1, 2]⟩) == sign(⟨g[1, 2], (Uy[1, 2]⟩)]

= 1− θ

π
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WORST CASE THEORETICAL RESULT

Last class and on the homework, we show how to build LSH
data structures for specific point sets that achieves o(n)

search time by using Ω(n) space. However, we did’t prove any
“worst-case” theoretical guarantees.

Such guarantees can be proven, and were actually a major
driving force in the development of LSH methods.
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WORST CASE THEORETICAL RESULT

Near Neighbor Search Problem.

Theorem (Indyk, Motwani, 1998)
If there exists some q with ∥q− y∥0 ≤ R, return a vector q̃ with
∥q̃− y∥0 ≤ C · R in:

• Time: O
(
n1/C).

• Space: O
(
n1+1/C).

∥q− y∥0 = “hamming distance” = number of elements that
differ between q and y.

R is a fixed parameter given as part of the input.
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APPROXIMATE NEAREST NEIGHBOR SEARCH

Exponential search over values of R easily yields:

Theorem (Indyk, Motwani, 1998)
Let q be the closest database vector to y. Return a vector q̃
with ∥q̃− y∥0 ≤ C · ∥q− y∥0 in:

• Time: Õ
(
n1/C).

• Space: Õ
(
n1+1/C).
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OPTIMIZATION
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CONTINUOUS OPTIMIZATION

Given function f : Rd → R. Find x̂ such that:

f(x̂) ≤ min
x

f(x) + ϵ.
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NEXT UNIT: CONTINUOUS OPTIMIZATION

Have some function f : Rd → R. Want to find x∗ such that:

f(x∗) = min
x

f(x).

Or at least x̂ which is close to a minimum. E.g.
f(x̂) ≤ minx f(x) + ϵ

Often we have some additional constraints:

• x > 0.
• ∥x∥2 ≤ R, ∥x∥1 ≤ R.
• aTx > c.
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CONTINUOUS OPTIMIZATION

Dimension d = 1:

Dimension d = 2:
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OPTIMIZATION IN MACHINE LEARNING

Continuouos optimization is the foundation of modern
machine learning.

Supervised learning: Want to learn a model that maps inputs

• numerical data vectors
• images, video
• text documents

to predictions

• numerical value (probability stock price increases)
• label (is the image a cat? does the image contain a car?)
• decision (turn car left, rotate robotic arm)
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MACHINE LEARNING MODEL

Let Mx be a model with parameters x = {x1, . . . , xk}, which
takes as input a data vector a and outputs a prediction.

Example:

Mx(a) = sign(aTx)
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MACHINE LEARNING MODEL

Example:

x ∈ R(# of connections) is the parameter vector containing all the
network weights.
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SUPERVISED LEARNING

Classic approach in supervised learning: Find a model that
works well on data that you already have the answer for
(labels, values, classes, etc.).

• Model Mx parameterized by a vector of numbers x.
• Dataset a(1), . . . , a(n) with outputs y(1), . . . , y(n).

Want to find x̂ so that Mx̂(a(i)) ≈ y(i) for i ∈ 1, . . . ,n.

How do we turn this into a function minimization problem?
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LOSS FUNCTION

Loss function L (Mx(a), y): Some measure of distance between
prediction Mx(a) and target output y. Increases if they are
further apart.

• Squared (ℓ2) loss: |Mx(a)− y|2

• Absolute deviation (ℓ1) loss: |Mx(a)− y|
• Hinge loss: 1 - y ·Mx(a)
• Cross-entropy loss (log loss).
• Etc.
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EMPIRICAL RISK MINIMIZATION

Empirical risk minimization:

f(x) =
n∑
i=1

L
(
Mx(a(i)), y(i)

)
Solve the optimization problem minx f(x).
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EXAMPLE: LEAST SQUARES REGRESSION

• Mx(a) = xTa. x contains the regression coefficients.
• L(z, y) = |z− y|2.
• f(x) =

∑n
i=1 |xTa(i) − y(i)|2

f(x) = ∥Ax− y∥22

where A is a matrix with a(i) as its ith row and y is a vector with
y(i) as its ith entry.
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ALGORITHMS FOR CONTINUOUS OPTIMIZATION

The choice of algorithm to minimize f(x) will depend on:

• The form of f(x) (is it linear, is it quadratic, does it have
finite sum structure, etc.)

• If there are any additional constraints imposed on x. E.g.
∥x∥2 ≤ c.

What are some example algorithms for continuous
optimization?
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FIRST TOPIC: GRADIENT DESCENT + VARIANTS

Gradient descent: A greedy algorithm for minimizing functions
of multiple variables that often works amazingly well.

Runtime generally scales linearly with the dimension of x
(although this is a bit of an over-simplification).
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SECOND TOPIC: METHODS SUITABLE FOR LOWER DIMENSION

• Cutting plane methods (e.g. center-of-gravity, ellipsoid)
• Interior point methods

Fast and more accurate in low-dimensions, slower in very high
dimensions. Generally runtime scales polynomially with the
dimension of x.
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CALCULUS REVIEW

For i = 1, . . . ,d, let xi be the ith entry of x. Let e(i) be the ith

standard basis vector.

Partial derivative:

∂f
∂xi

(x) = lim
t→0

f(x+ te(i))− f(x)
t

Directional derivative:

Dvf(x) = lim
t→0

f(x+ tv)− f(x)
t
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CALCULUS REVIEW

Gradient:

∇f(x) =


∂f
∂x1 (x)
∂f
∂x2 (x)...
∂f
∂xd (x)


Directional derivative:

Dvf(x) = lim
t→0

f(x+ tv)− f(x)
t = ∇f(x)Tv.
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FIRST ORDER OPTIMIZATION

Given a function f to minimize, assume we have:

• Function oracle: Evaluate f(x) for any x.
• Gradient oracle: Evaluate ∇f(x) for any x.

We view the implementation of these oracles as black-boxes,
but they can often require a fair bit of computation.
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EXAMPLE GRADIENT EVALUATION

Linear least-squares regression:

• Given a(1), . . . a(n) ∈ Rd, y(1), . . . y(n) ∈ R.
• Want to minimize:

f(x) =
n∑
i=1

(
xTa(i) − y(i)

)2
= ∥Ax− y∥22.

What is the time complexity to implement a function oracle
for f(x)?

32



EXAMPLE GRADIENT EVALUATION

Linear least-squares regression:

• Want to minimize:

f(x) =
n∑
i=1

(
xTa(i) − y(i)

)2
= ∥Ax− y∥22.

∂f
∂xj

=
n∑
i=1

2
(
xTa(i) − y(i)

)
· a(i)j = 2α(j)T(Ax− y)

where α(j) is the jth column of A.
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EXAMPLE GRADIENT EVALUATION

Linear least-squares regression:

∂f
∂xj

=
n∑
i=1

2
(
xTa(i) − y(i)

)
· a(i)j = 2α(j)T(Ax− y)

where α(j) is the jth column of A.

∇f(x) = 2AT (Ax− y)

What is the time complexity of a gradient oracle for ∇f(x)?
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DECENT METHODS

Greedy approach: Given a starting point x, make a small
adjustment that decreases f(x). In particular, x← x+ ηv.

What property do I want in v?

Leading question: When η is small, what’s an approximation
for f(x+ ηv)− f(x)?

f(x+ ηv)− f(x) ≈
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DIRECTIONAL DERIVATIVES

Dvf(x) = lim
t→0

f(x+ tv)− f(x)
t = ∇f(x)Tv.

So:

f(x+ ηv)− f(x) ≈ η · ∇f(x)Tv.

How should we choose v so that f(x+ ηv) < f(x)?
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GRADIENT DESCENT

Prototype algorithm:

• Choose starting point x(0).
• For i = 0, . . . , T:

• x(i+1) = x(i) − η∇f(x(i))
• Return x(T).

η is a step-size parameter, which is often adapted on the go.
For now, assume it is fixed ahead of time.
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GRADIENT DESCENT INTUITION

1 dimensional example:
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GRADIENT DESCENT INTUITION

2 dimensional example:
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KEY RESULTS

For a convex function f(x): For sufficiently small η and a
sufficiently large number of iterations T, gradient descent will
converge to a near global minimum:

f(x(T)) ≤ f(x∗) + ϵ.

Examples: least squares regression, logistic regression, kernel
regression, SVMs.

For a non-convex function f(x): For sufficiently small η and a
sufficiently large number of iterations T, gradient descent will
converge to a near stationary point:

∥∇f(x(T))∥2 ≤ ϵ.

Examples: neural networks, matrix completion problems,
mixture models.
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CONVEX VS. NON-CONVEX

One issue with non-convex functions is that they can have
local minima. Even when they don’t, convergence analysis
requires different assumptions than convex functions.
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APPROACH FOR THIS UNIT

We care about how fast gradient descent and related methods
converge, not just that they do converge.

• Bounding iteration complexity requires placing some
assumptions on f(x).

• Stronger assumptions lead to better bounds on the
convergence.

Understanding these assumptions can help us design faster
variants of gradient descent (there are many!).

Today, we will start with convex functions.
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CONVEXITY

Definition (Convex)
A function f is convex iff for any x, y, λ ∈ [0, 1]:

(1− λ) · f(x) + λ · f(y) ≥ f ((1− λ) · x+ λ · y)
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GRADIENT DESCENT

Definition (Convex)
A function f is convex if and only if for any x, y:

f(x+ z) ≥ f(x) +∇f(x)Tz

Equivalently:
f(x)− f(y) ≤ ∇f(x)T(x− y)
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DEFINITIONS OF CONVEXITY

It is easy but not obvious how to prove the equivalence
between these definitions. A short proof can be found in
Karthik Sridharan’s lecture notes here:

http://www.cs.cornell.edu/courses/cs6783/2018fa/lec16-
supplement.pdf
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GRADIENT DESCENT ANALYSIS

Assume:

• f is convex.
• Lipschitz function: for all x, ∥∇f(x)∥2 ≤ G.
• Starting radius: ∥x∗ − x(0)∥2 ≤ R.

Gradient descent:

• Choose number of steps T.
• Starting point x(0). E.g. x(0) = 0⃗.
• η = R

G
√
T

• For i = 0, . . . , T:
• x(i+1) = x(i) − η∇f(x(i))

• Return x̂ = argminx(i) f(x(i)).
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GRADIENT DESCENT ANALYSIS

Claim (GD Convergence Bound)
If we run GD for T ≥ R2G2

ϵ2
iterations then f(x̂) ≤ f(x∗) + ϵ.

Proof is made tricky by the fact that f(x(i)) does not improve
monotonically. We can “overshoot” the minimum.
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GRADIENT DESCENT ANALYSIS

Claim (GD Convergence Bound)
If we run GD for T ≥ R2G2

ϵ2
iterations with step-size η = R

G
√
T ,

then f(x̂) ≤ f(x∗) + ϵ.

Proof is made tricky by the fact that f(x(i)) does not improve
monotonically. We can “overshoot” the minimum.

We will prove that the average solution value is low after
T = R2G2

ϵ2
iterations. I.e. that:

1
T

T−1∑
i=0

[
f(x(i))− f(x∗)

]
≤ ϵ.

Of course the best solution found, x̂ is only better than the
average.
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GRADIENT DESCENT ANALYSIS

Claim (GD Convergence Bound)
If we run GD for T ≥ R2G2

ϵ2 iterations with step-size η = R
G
√
T , then

f(x̂) ≤ f(x∗) + ϵ.

Claim 1: For all i = 0, . . . , T,

f(x(i))− f(x∗) ≤ ∥x
(i) − x∗∥22 − ∥x(i+1) − x∗∥22

2η +
ηG2

2

Claim 1(a): For all i = 0, . . . , T,

∇f(x(i))T(x(i) − x∗) ≤ ∥x
(i) − x∗∥22 − ∥x(i+1) − x∗∥22

2η +
ηG2

2

Claim 1 follows from Claim 1(a) by definition of convexity.
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GRADIENT DESCENT ANALYSIS

Claim (GD Convergence Bound)
If we run GD for T ≥ R2G2

ϵ2 iterations with step size η = R
G
√
T , then

f(x̂) ≤ f(x∗) + ϵ.

Claim 1(a): For all i = 0, . . . , T,

∥x(i) − x∗∥22 − ∥x(i+1) − x∗∥22
2η +

ηG2

2 ≥ ∇f(x(i))T(x(i) − x∗)
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GRADIENT DESCENT ANALYSIS

Claim (GD Convergence Bound)
If T ≥ R2G2

ϵ2 and η = R
G
√

T , then f(x̂) ≤ f(x∗) + ϵ.

Claim 1: For all i = 0, . . . , T,

f(x(i))− f(x∗) ≤ ∥x(i) − x∗∥22 − ∥x(i+1) − x∗∥22
2η +

ηG2

2
Telescoping sum:

T−1∑
i=0

[
f(x(i))− f(x∗)

]
≤ ∥x(0) − x∗∥22 − ∥x(1) − x∗∥22

2η +
ηG2

2

+
∥x(1) − x∗∥22 − ∥x(2) − x∗∥22

2η +
ηG2

2

+
∥x(2) − x∗∥22 − ∥x(3) − x∗∥22

2η +
ηG2

2
...

+
∥x(T−1) − x∗∥22 − ∥x(T) − x∗∥22

2η +
ηG2

2

T−1∑
i=0

[
f(x(i))− f(x∗)

]
≤ ∥x(0) − x∗∥22 − ∥x(T) − x∗∥22

2η +
TηG2

2

1
T

T−1∑
i=0

[
f(x(i))− f(x∗)

]
≤ R2

2Tη +
ηG2

2
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GRADIENT DESCENT ANALYSIS

Claim (GD Convergence Bound)
If T ≥ R2G2

ϵ2 and η = R
G
√
T , then f(x̂) ≤ f(x∗) + ϵ.

Telescoping sum:

T−1∑
i=0

[
f(x(i))− f(x∗)

]
≤ ∥x

(0) − x∗∥22 − ∥x(T) − x∗∥22
2η +

TηG2

2

1
T

T−1∑
i=0

[
f(x(i))− f(x∗)

]
≤ R2

2Tη +
ηG2

2
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GRADIENT DESCENT ANALYSIS

Claim (GD Convergence Bound)
If T ≥ R2G2

ϵ2
and η = R

G
√
T , then f(x̂) ≤ f(x∗) + ϵ.

Final step:

1
T

T−1∑
i=0

[
f(x(i))− f(x∗)

]
≤ ϵ

[
1
T

T−1∑
i=0

f(x(i))
]
− f(x∗) ≤ ϵ

We always have that f(x̂) = mini f(x(i)) ≤ 1
T
∑T−1

i=0 f(x(i)), which
gives the final bound:

f(x̂) ≤ f(x∗) + ϵ.
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CONSTRAINED CONVEX OPTIMIZATION

Typical goal: Solve a convex minimization problem with
additional convex constraints.

min
x∈S

f(x)

where S is a convex set.

Which of these is convex?
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CONSTRAINED CONVEX OPTIMIZATION

Definition (Convex set)
A set S is convex if for any x, y ∈ S, λ ∈ [0, 1]:

(1− λ)x+ λy ∈ S.
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CONSTRAINED CONVEX OPTIMIZATION

Examples:

• Norm constraint: minimize ∥Ax− b∥2 subject to ∥x∥2 ≤ λ.
Used e.g. for regularization, finding a sparse solution, etc.

• Positivity constraint: minimize f(x) subject to x ≥ 0.
• Linear constraint: minimize cTx subject to Ax ≤ b. Linear
program used in training support vector machines,
industrial optimization, subroutine in integer
programming, etc.
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PROBLEM WITH GRADIENT DESCENT

Gradient descent:

• For i = 0, . . . , T:
• x(i+1) = x(i) − η∇f(x(i))

• Return x̂ = argmini f(x(i)).

Even if we start with x(0) ∈ S , there is no guarantee that
x(0) − η∇f(x(0)) will remain in our set.

Extremely simple modification: Force x(i) to be in S by
projecting onto the set.
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CONSTRAINED FIRST ORDER OPTIMIZATION

Given a function f to minimize and a convex constraint set S ,
assume we have:

• Function oracle: Evaluate f(x) for any x.
• Gradient oracle: Evaluate ∇f(x) for any x.
• Projection oracle: Evaluate PS(x) for any x.

PS(x) = argmin
y∈S

∥x− y∥2
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PROJECTION ORACLES

• How would you implement PS for S = {y : ∥y∥2 ≤ 1}.
• How would you implement PS for S = {y : y = Qz}.
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PROJECTED GRADIENT DESCENT

Given function f(x) and set S , such that ∥∇f(x)∥2 ≤ G for all
x ∈ S and starting point x(0) with ∥x(0) − x∗∥2 ≤ R.

Projected gradient descent:

• Select starting point x(0), η = R
G
√
T .

• For i = 0, . . . , T:
• z = x(i) − η∇f(x(i))
• x(i+1) = PS(z)

• Return x̂ = argmini f(x(i)).

Claim (PGD Convergence Bound)
If f,S are convex and T ≥ R2G2

ϵ2
, then f(x̂) ≤ f(x∗) + ϵ.
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PROJECTED GRADIENT DESCENT ANALYSIS

Analysis is almost identical to standard gradient descent! We
just need one additional claim:

Claim (Contraction Property of Convex Projection)
If S is convex, then for any y ∈ S ,

∥y− PS(x)∥2 ≤ ∥y− x∥2.
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GRADIENT DESCENT ANALYSIS

Claim (PGD Convergence Bound)
If f,S are convex and T ≥ R2G2

ϵ2 , then f(x̂) ≤ f(x∗) + ϵ.

Claim 1: For all i = 0, . . . , T, let z(i) = x(i) − η∇f(x(i)). Then:

f(x(i))− f(x∗) ≤ ∥x
(i) − x∗∥22 − ∥z(i) − x∗∥22

2η +
ηG2

2

≤ ∥x
(i) − x∗∥22 − ∥x(i+1) − x∗∥22

2η +
ηG2

2

Same telescoping sum argument:[
1
T

T−1∑
i=0

f(x(i))
]
− f(x∗) ≤ R2

2Tη +
ηG2

2 .
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GRADIENT DESCENT

Conditions:

• Convexity: f is a convex function, S is a convex set.
• Bounded initial distant:

∥x(0) − x∗∥2 ≤ R

• Bounded gradients (Lipschitz function):

∥∇f(x)∥2 ≤ G for all x ∈ S.

Theorem (GD Convergence Bound)
(Projected) Gradient Descent returns x̂ with
f(x̂) ≤ minx∈S f(x) + ϵ after

T =
R2G2

ϵ2
iterations.
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BEYOND THE BASIC BOUND

Can our convergence bound be tightened for certain
functions? Can it guide us towards faster algorithms?

Goals:

• Improve ϵ dependence below 1/ϵ2.
• Ideally 1/ϵ or log(1/ϵ).

• Reduce or eliminate dependence on G and R.

Will need to take advantage of additional problem structure.
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SMOOTHNESS

Definition (β-smoothness)
A function f is β smooth if, for all x, y

∥∇f(x)−∇f(y)∥2 ≤ β∥x− y∥2

For a scalar valued function f, equivalent to f′′(x) ≤ β. After

some calculus (see Lem. 3.4 in Bubeck’s book), this implies:

[f(y)− f(x)]−∇f(x)T(y− x) ≤ β

2 ∥x− y∥22
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SMOOTHNESS

Recall from convexity that f(y)− f(x) ≥ ∇f(x)T(y− x).

So now we have an upper and lower bound.

0 ≤ [f(y)− f(x)]−∇f(x)T(y− x) ≤ β

2 ∥x− y∥22
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CONVERGENCE GUARANTEE

Theorem (GD convergence for β-smooth functions.)
Let f be a β smooth convex function and assume we have
∥x∗ − x(1)∥2 ≤ R. If we run GD for T steps, we have:

f(x(T))− f(x∗) ≤ 2βR2

T

Corollary: If T = O
(
βR2
ϵ

)
we have f(x(T))− f(x∗) ≤ ϵ.

Compare this to T = O
(
G2R2
ϵ2

)
without a smoothness

assumption.
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GUARANTEED PROGRESS

Why do you think gradient descent might be faster when a
function is β-smooth? Think about scalar case, in which case

smoothness means f′′(x) ≤ β.
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GUARANTEED PROGRESS

Previously learning rate/step size η depended on G. Now
choose it based on β:

x(t+1) ← x(t) − 1
β
∇f(x(t))

Progress per step of gradient descent:

1.
[
f(x(t+1))− f(x(t))

]
−∇f(x(t))T(x(t+1)−x(t)) ≤ β

2 ∥x(t)−x(t+1)∥22.

2.
[
f(x(t+1))− f(x(t))

]
+ 1

β∥∇f(x(t))∥22 ≤
β
2 ∥

1
β∇f(x(t))∥22.

3. f(x(t))− f(x(t+1)) ≥ 1
2β∥∇f(x(t))∥22.
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CONVERGENCE GUARANTEE

Theorem (GD convergence for β-smooth functions.)
Let f be a β smooth convex function and assume we have
∥x∗ − x(1)∥2 ≤ R. If we run GD for T steps with η = 1

β we have:

f(x(T))− f(x∗) ≤ 2βR2

T

Corollary: If T = O
(
βR2
ϵ

)
we have f(x(T))− f(x∗) ≤ ϵ.

Again getting this result from the previous page is not hard,
but also not obvious/direct. A concise proof can be found in
Garrigos and Gower’s notes.
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GUARANTEED PROGRESS

Where did we use convexity in this proof?

Progress per step of gradient descent:

1.
[
f(x(t+1))− f(x(t))

]
−∇f(x(t))T(x(t+1)−x(t)) ≤ β

2 ∥x(t)−x(t+1)∥22.

2.
[
f(x(t+1))− f(x(t))

]
+ 1

β∥∇f(x(t))∥22 ≤
β
2 ∥

1
β∇f(x(t))∥22.

3. f(x(t))− f(x(t+1)) ≥ 1
2β∥∇f(x(t))∥22.
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STATIONARY POINTS

Definition (Stationary point)
For a differentiable function f, a stationary point is any x with:

∇f(x) = 0

local/global minima - local/global maxima - saddle points
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CONVERGENCE TO STATIONARY POINT

Theorem (Convergence to Stationary Point)
For any β-smooth differentiable function f (convex or not), if
we run GD for T steps, we can find a point x̂ such that:

∥∇f(x̂)∥22 ≤
2β
T

(
f(x(0))− f(x∗)

)

Corollary: If T ≥ 2β
ϵ , then ∥∇f(x̂)∥22 ≤ ϵ

(
f(x(0))− f(x∗)

)
.
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TELESCOPING SUM PROOF

Theorem (Convergence to Stationary Point)
For any β-smooth differentiable function f (convex or not), if
we run GD for T steps, we can find a point x̂ such that:

∥∇f(x̂)∥22 ≤
2β
T

(
f(x(0))− f(x∗)

)

We have that 1
2β∥∇f(x(t))∥22 ≤ f(x(t))− f(x(t+1)). So:

T−1∑
t=0

1
2β ∥∇f(x

(t))∥22 ≤ f(x(0))− f(x(t))

1
T

T−1∑
t=0
∥∇f(x(t))∥22 ≤

2β
T

(
f(x(0))− f(x∗)

)
min
t
∥∇f(x(t))∥22 ≤

2β
T

(
f(x(0))− f(x∗)

)
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QUESTIONS IN NON-CONVEX OPTIMIZATION

If GD can find a stationary point, are there algorithms which
find a stationary point faster using preconditioning,
acceleration, stochastic methods, etc.?
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QUESTIONS IN NON-CONVEX OPTIMIZATION

What if my function only has global minima and saddle
points? Randomized methods (SGD, perturbed gradient
methods, etc.) can provably “escape” saddle points.

Example: minx
−xTATAx

xTx

• Global minimum: Top eigenvector of ATA (i.e., top principal
component of A).

• Saddle points: All other eigenvectors of A.

Useful for lots of other matrix factorization problems beyond
vanilla PCA.
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BACK TO CONVEX FUNCTIONS

I said it was a bit tricky to prove that f(x̂)− f(x∗) ≤ 2βR2
T for

convex functions. But we just easily proved that ∥∇f(x̂)∥22 is
small. Why doesn’t this show we are close to the minimum?
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STRONG CONVEXITY

Definition (α-strongly convex)
A convex function f is α-strongly convex if, for all x, y

[f(y)− f(x)]−∇f(x)T(y− x) ≥ α

2 ∥x− y∥22

Compare to smoothness condition.

[f(y)− f(x)]−∇f(x)T(y− x) ≤ β

2 ∥x− y∥22.

For a twice-differentiable scalar function f, equivalent to
f′′(x) ≥ α.

When f is convex, we always have that f′′(x) ≥ 0, so larger
values of α correspond to a “stronger” condition. 78



GD FOR STRONGLY CONVEX FUNCTION

Gradient descent for strongly convex functions:

• Choose number of steps T.
• For i = 1, . . . , T:

• η = 2
α·(i+1)

• x(i+1) = x(i) − η∇f(x(i))
• Return x̂ = argminx(i) f(x(i)).
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CONVERGENCE GUARANTEE

Theorem (GD convergence for α-strongly convex functions.)
Let f be an α-strongly convex function and assume we have
that, for all x, ∥∇f(x)∥2 ≤ G. If we run GD for T steps (with
adaptive step sizes) we have:

f(x̂)− f(x∗) ≤ 2G2

α(T− 1)

Corollary: If T = O
(

G2

αϵ

)
we have f(x̂)− f(x∗) ≤ ϵ
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CONVERGENCE GUARANTEE

We could also have that f is both β-smooth and α-strongly
convex.

α

2 ∥x− y∥22 ≤ [f(y)− f(x)]−∇f(x)T(y− x) ≤ β

2 ∥x− y∥22.

We will discuss and analyzing this setting after the midterm! 81


