
CS-GY : Lecture
Dimensionality reduction, near neighbor
search in high dimensions

NYU Tandon School of Engineering, Prof. Christopher Musco

PROJECT

• If you are doing a project, find a partner and sign-up to
present for reading group slot by Monday, / . We need
presenters for next Friday!

EUCLIDEAN DIMENSIONALITY REDUCTION

Lemma (Johnson-Lindenstrauss,)
For any set of n data points q , . . . ,qn ∈ Rd there exists a
linear map Π : Rd → Rk where k = O

(
log n
ε

)
such that for all

i, j,

(− ε)‖qi − qj‖ ≤ ‖Πqi −Πqj‖ ≤ (+ ε)‖qi − qj‖ .

(I

¥
I b k : 0/1%(414%2),

then W-P. l - f , a random

Gaussian IT satisfies...

SAMPLE APPLICATION

k-means clustering: For data set a , . . . , an, find clusters
C , . . . , Ck ⊆ { , . . . ,n} to minimize:

Cost(C , . . . , Ck) =
k∑

j=
|Cj|

∑

u,v∈Cj

‖au − av‖ .

SAMPLE APPLICATION

k-means clustering: For data set a , . . . , an, find clusters
C , . . . , Ck ⊆ { , . . . ,n} to minimize:

Cost(C , . . . , Ck) =
k∑

j=
|Cj|

∑

u,v∈Cj

‖au − av‖ .

Claim: If I find the optimal clustering for Πa , . . . ,Πan then its
cost is less than (+ ε) times the cost of the best clustering
obtained with the original data.

0

RANDOMIZED JL CONSTRUCTIONS

Π ∈ Rk×d can chosen so that each entry equals √
k
N (,), or

each entry equals √
k
± with equal probability.

Lots of other constructions work.

IT#th I

o

u Tt§

RANDOM PROJECTION

Intuition: Multiplying by a random matrix mimics the process
of projecting onto a random k dimensional subspace in d
dimensions.

EUCLIDEAN DIMENSIONALITY REDUCTION

Intermediate result:
Lemma (Distributional JL Lemma)
Let Π ∈ Rk×d be chosen so that each entry equals √

k
N (,),

where N (,) denotes a standard Gaussian random variable.

If we choose k = O
(
log(/δ)

ε

)
, then for any vector x, with

probability (− δ):

(− ε)‖x‖ ≤ ‖Πx‖ ≤ (+ ε)‖x‖

Given this lemma, how do we prove the traditional
Johnson-Lindenstrauss lemma?

→
loser) f o r J b

JL FROM DISTRIBUTIONAL JL

We have a set of vectors q , . . . ,qn. Fix i, j ∈ , . . . ,n.

Let x = qi − qj. By linearity, Πx = Π(qi − qj) = Πqi −Πqj.

By the Distributional JL Lemma, with probability − δ,

(− ε)‖qi − qj‖ ≤ ‖Πqi −Πqj‖ ≤ (+ ε)‖qi − qj‖ .

Finally, set δ = n . Since there are < n total i, j pairs, by a
union bound we have that with probability / , the above will
hold for all i, j, as long as we compress to:

k = O
(
log(/(/n))

ε

)
= O

(
log n
ε

)
dimensions.

E e
w .P. I - fun

f = 0 (Yha) log(Yg): loge).-Olga)

PROOF OF DISTRIBUTIONAL JL

Want to argue that, with probability (− δ),

(− ε)‖x‖ ≤ |Πx‖ ≤ (+ ε)‖x‖

Claim: E‖Πx‖ = ‖x‖ .
Some notation:

So each πi contains N (,) entries.

÷O

/

IT;:[No,D Non)}

PROOF OF DISTRIBUTIONAL JL

Intermediate Claim: Let π be a length d vector with N (,)

entries.

E
[
‖Πx‖

]
= E

[
(〈π, x〉)

]
.

Goal: Prove E‖Πx‖ = ‖x‖ .

= - 0
ELIE,CTx)?)--Ei?.Huai,xD)

-'IIf teIE,Citi,x >' 3
= I IE,IEl a ti ,x D

~ ¥ ,x) -
=

PROOF OF DISTRIBUTIONAL JL

〈π, x〉 = Z · x[] + Z · x[] + . . .+ Zd · x[d]

where each Z , . . . , Zd is a standard normal N (,).

We have that Zi · x[i] is a normal N (, x[i]) random variable.

Goal: Prove E‖Πx‖ = ‖x‖ . Established: E‖Πx‖ = E
[
(〈π, x〉)

]

¥,#lilx l i]

I n - - 0

i n -

STABLE RANDOM VARIABLES

What type of random variable is 〈π, x〉?

Fact (Stability of Gaussian random variables)

N (µ ,σ) +N (µ ,σ) = N (µ + µ ,σ + σ)

〈π, x〉 = N (, x[]) +N (, x[]) + . . .+N (, x[d])
= N (, ‖x‖).

So E‖Πx‖ = E
[
(〈π, x〉)

]
= E

[
N (, ‖x‖)

]
= ‖x‖ , as desired.

- -G - = Ed,X l i ? " = 11×112

- - -

"#i i i I#FeI I . Emoji,}

PROOF OF DISTRIBUTIONAL JL

Want to argue that, with probability (− δ),

(− ε)‖x‖ ≤ ‖Πx‖ ≤ (+ ε)‖x‖

. E‖Πx‖ = ‖x‖ .

. Need to use a concentration bound.

‖Πx‖ =
k

k∑

i=

(〈πi, x〉) =
k

k∑

i=

N (, ‖x‖)

“Chi-squared random variable with k degrees of freedom.”

i ,
i"¥

=
(Y

-

CONCENTRATION OF CHI-SQUARED RANDOM VARIABLES

Lemma
Let Z be a Chi-squared random variable with k degrees of
freedom.

Pr[|EZ− Z| ≥ εEZ] ≤ e−kε /

Goal: Prove ‖Πx‖ concentrates within ± ε of its expectation,
which equals ‖x‖ .

N YKis.N(0,11×112)'

l
I#" i 114×11=11×118 I f

e - K42 /0 = 8 / 2

- h 648 = log(%) K E Y8 = log(%)
µ = 810%87=04%412

CONNECTION LAST LECTURE

If high dimensional geometry is so different from
low-dimensional geometry, why is dimensionality reduction
possible? Doesn’t Johnson-Lindenstrauss tell us that
high-dimensional geometry can be approximated in low
dimensions?

CONNECTION TO DIMENSIONALITY REDUCTION

Hard case: x , . . . , xn ∈ Rd are all mutually orthogonal unit
vectors:

‖xi − xj‖ = for all i, j.

When we reduce to k dimensions with JL, we still expect these
vectors to be nearly orthogonal. Why?

-

nearly Ha-blli= La-b,a - b>

"Xi11-2=1
I ' HI'.""#' " ' "÷¥±

a
look?

-

11ITx i -Tx;11,2=2
4 -
"HxillittllTxill? - 2 LHei,Tx;)
= 11×11,2+ IN;117-KITA, Hi,>
= L - 2 (Tx;,IT,>→ K E e

CONNECTION TO DIMENSIONALITY REDUCTION

Hard case: x , . . . , xn ∈ Rd are all mutually orthogonal unit
vectors:

‖xi − xj‖ = for all i, j.

From our result earlier, in O(log n/ε) dimensions, there exists
O(ε ·log n/ε) ≥ n unit vectors that are close to mutually
orthogonal. O(log n/ε) = just enough dimensions.

Alternative view: Without additional structure, we expect that
learning/inference in d dimenions requires O(d) data points. If
we really had a data set that large, then the JL bound would be
vacous, since log(n) = O(d).

2 0(a r k)nearly
orthogonal

rector, i n a d im
space.

I

-

I

→

DIMENSIONALITY REDUCTION

The Johnson-Lindenstrauss Lemma let us sketch vectors and
preserve their $ Euclidean distance.

We also have dimensionality reduction techniques that
preserve alternative measures of similarity.

I
accord
similarity

SIMILARITY ESTIMATION

How does Shazam match a song clip against a library of
million songs (TB of data) in a fraction of a second?

Spectrogram extracted
from audio clip.

Processed spectrogram:
used to construct audio
“fingerprint” q ∈ { , }d.

Each clip is represented by a high dimensional binary vector q.

SIMILARITY ESTIMATION

How does Shazam match a song clip against a library of
million songs (TB of data) in a fraction of a second?

Spectrogram extracted
from audio clip.

Processed spectrogram:
used to construct audio
“fingerprint” q ∈ { , }d.

Each clip is represented by a high dimensional binary vector q.

..¥:#

SIMILARITY ESTIMATION

Given q, find any nearby “fingerprint” y in a database – i.e. any
y with dist(y,q) small.

Challenges:

• Database is possibly huge: O(nd) bits.
• Expensive to compute dist(y,q): O(d) time.

- i

• o
-

SIMILARITY ESTIMATION

Goal: Design a more compact sketch for comparing
q, y ∈ { , }d. Ideally * d space/time complexity.

C(q) ∈ Rk

C(y) ∈ Rk

As in Johnson-Lindenstrauss compressions, we want that C(q)
is similar to C(y) if q is similar to y.

- - O
= 8

I

-

-

JACCARD SIMILARITY

Definition (Jaccard Similarity)

J(q, y) = |q ∩ y|
|q ∪ y| =

of non-zero entries in common
total # of non-zero entries

Natural similarity measure for binary vectors. ≤ J(q, y) ≤ .

Can be applied to any data which has a natural binary
representation (more than you might think).

t o o o o ¥ 1 1

-

l) ÷

JACCARD SIMILARITY FOR DOCUMENT COMPARISON

“Bag-of-words” model:

How many words do a pair of documents have in common?

- -

JACCARD SIMILARITY FOR DOCUMENT COMPARISON

“Bag-of-words” model:

How many bigrams do a pair of documents have in common?

JACCARD SIMILARITY FOR SEISMIC DATA

Feature extract pipeline for earthquake data.

(see paper by Rong et al. posted on course website)

APPLICATIONS: DOCUMENT SIMILARITY

• Finding duplicate or new duplicate documents or
webpages.

• Change detection for high-speed web caches.
• Finding near-duplicate emails or customer reviews which
could indicate spam.

SIMILARITY ESTIMATION

Goal: Design a compact sketch C : { , } → Rk:

Want to use C(q), C(y) to approximately compute the Jaccard
similarity J(q, y) = |q∩y|

|q∪y| .

MINHASH

MinHash (Broder, ’):

• Choose k random hash functions
h , . . . ,hk : { , . . . ,n} → [,].

• For i ∈ , . . . , k,
• Let ci = minj,qj= hi(j).

• C(q) = [c , . . . , ck].

÷
i , n

h a) h(3)h a

o

MINHASH

• Choose k random hash functions
h , . . . ,hk : { , . . . ,n} → [,].

• For i ∈ , . . . , k,
• Let ci = minj,qj= hi(j).

• C(q) = [c , . . . , ck].

g

g

"" " ' " ' " " ⇒ " ° "

(ly) =
§-55.0
2 §
= Ya

c)

MINHASH ANALYSIS

Claim: For all i, Pr[ci(q) = ci(y)] = J(q, y) = |q∩y|
|q∪y| .

Proof:

. For ci(q) = ci(y), we need that argmini∈q h(i) = argmini∈y h(i).

¥.:*."

MINHASH ANALYSIS

Claim: Pr[ci(q) = ci(y)] = J(q, y).

. Every non-zero index in q ∪ y is equally likely to produce the
lowest hash value. ci(q) = ci(y) only if this index is in both q
and y. There are q ∩ y such indices. So:

Pr[ci(q) = ci(y)] =
|q ∩ y|
|q ∪ y| = J(q, y)

MINHASH ANALYSIS

Let J = J(q, y) denote the Jaccard similarity between q and y.

Return: J̃ = k
∑k

i= [ci(q) = ci(y)].

Unbiased estimate for Jaccard similarity:

ẼJ =

The more repetitions, the lower the variance.

- - -

± EE I Ef 1 (ciao)..i c yD). I §..JG,s)
= J(bis)

MINHASH ANALYSIS

Let J = J(q, y) denote the true Jaccard similarity.

Estimator: J̃ = k
∑k

i= [ci(q) = ci(y)].

Var[̃J] =

Plug into Chebyshev inequality. How large does k need to be
so that with probability > − δ, |J− J̃| ≤ ε?

✓
J - J - EJ

tu.IT#cifol=CibD):E - J
⇐ t u

P r11J-JI z o o) e ¥
y y

' = Yrs 6 stfu,

O - O ,¥ .¥ , = E ¥ = K - f k=gt~µ

MINHASH ANALYSIS

Chebyshev inequality: As long as k = O
(
ε δ

)
, then with prob.

− δ,

J(q, y)− ε ≤ J̃ (C(q), C(y)) ≤ J(q, y) + ε.

And J̃ only takes O(k) time to compute! Independent of
original fingerprint dimension d.

Can be improved to log(/δ) dependence. Can anyone tell me
how?

SIMILARITY SKETCHING

BREAK

NEAR NEIGHBOR SEARCH

Common goal: Find all vectors in database q , . . . ,qn ∈ Rd that
are close to some input query vector y ∈ Rd. I.e. find all of y’s
“nearest neighbors” in the database.

• The Shazam problem.
• Audio + video search.
• Finding duplicate or near duplicate documents.
• Detecting seismic events.

How does similarity sketching help in these applications?

• Improves runtime of “linear scan” from O(nd) to O(nk).
• Improves space complexity from O(nd) to O(nk). This can
be super important – e.g. if it means the linear scan only
accesses vectors in fast memory.

-

-

K = 100¥)

-

O
- -

BEYOND A LINEAR SCAN

New goal: Sublinear o(n) time to find near neighbors.

nearest.

E

a . I E # .

BEYOND A LINEAR SCAN

This problem can already be solved for a small number of
dimensions using space partitioning approaches (e.g. kd-tree).

Runtime is roughly O(d ·min(n, d)), which is only sublinear for
d = o(log n).

• /

HIGH DIMENSIONAL NEAR NEIGHBOR SEARCH

Only been attacked much more recently:

• Locality-sensitive hashing [Indyk, Motwani,]
• Spectral hashing [Weiss, Torralba, and Fergus,]
• Vector quantization [Jégou, Douze, Schmid,]

Key Insight of LSH: Trade worse space-complexity for better
time-complexity. I.e. typically use more than O(n) space.

Graphbased
nea r ueishor search

methods.

I d
f)

()

LOCALITY SENSITIVE HASH FUNCTIONS

Let h : Rd → { , . . . ,m} be a random hash function.

We call h locality sensitive for similarity function s(q, y) if
Pr [h(q) == h(y)] is:

• Higher when q and y are more similar, i.e. s(q, y) is higher.
• Lower when q and y are more dissimilar, i.e. s(q, y) is
lower.

- -

LOCALITY SENSITIVE HASH FUNCTIONS

LSH for s(q, y) equal to Jaccard similarity:

• Let c : { , }d → [,] be a single instantiation of MinHash.
• Let g : [,] → { , . . . ,m} be a uniform random hash
function.

• Let h(q) = g(c(q)).

gcccq))
gcc.co)...circa)

⑤ I

-
g

- •

4181=48) wi th higher
prob i f) (gig) i s

large.

LOCALITY SENSITIVE HASH FUNCTIONS

LSH for Jaccard similarity:

• Let c : { , }d → [,] be a single instantiation of MinHash.
• Let g : [,] → { , . . . ,m} be a uniform random hash
function.

• Let h(x) = g(c(x)).

If J(q, y) = v,

Pr [h(q) == h(y)] =

(to).-cb)

h(g)= hly)wheneverdq¥D

V t a - r) .I ,

T.fm

NEAR NEIGHBOR SEARCH

Basic approach for near neighbor search in a database.

Pre-processing:

• Select random LSH function h : { , }d → , . . . ,m.
• Create table T with m = O(n) slots.
• For i = , . . . ,n, insert qi into T(h(qi)).

Query:

• Want to find near neighbors of input y ∈ { , }d.
• Linear scan through all vectors q ∈ T(h(y)) and return any
that are close to y. Time required is O(d · |T(h(y)|).

Enough to make the O(/m) term negligible.

÷

-

NEAR NEIGHBOR SEARCH

nap 0 0 0 0

7 .
return arshex (stg,82),Sly,83))

NEAR NEIGHBOR SEARCH

Two main considerations:

• False Negative Rate: What’s the probability we do not find
a vector that is close to y?

• False Positive Rate: What’s the probability that a vector in
T(h(y)) is not close to y?

A higher false negative rate means we miss near neighbors.

A higher false positive rate means increased runtime – we
need to compute J(q, y) for every q ∈ T(h(y)) to check if it’s
actually close to y.

Note: The meaning of “close” and “not close” is application
dependent. E.g. we might specify that we want to find anything
with Jaccard similarity > . , but not with Jaccard similarity < . .

l, o

- -

REDUCING FALSE NEGATIVE RATE

Suppose the nearest database point q has J(y,q) = . .

What’s the probability we do not find q?f)
accord

- - e r

1 - ✓ = . G

REDUCING FALSE NEGATIVE RATE

Pre-processing:

• Select t independent LSH’s h , . . . ,ht : { , }d → , . . . ,m.
• Create tables T , . . . , Tt, each with m slots.
• For i = , . . . ,n, j = , . . . , t,

• Insert qi into Tj(hj(qi)).

i i i .i f
I

REDUCING FALSE NEGATIVE RATE

Query:

• Want to find near neighbors of input y ∈ { , }d.
• Linear scan through all vectors in
T (h (y)) ∪ T (h (y)) ∪ . . . , Tt(ht(y)).

Suppose the nearest database point q has J(y,q) = . .

What’s the probability we find q?

(, %)

=
-

I - C-V)t 1 - . 610 e . 9 9

WHAT HAPPENS TO FALSE POSITIVES?

Suppose there is some other database point z with J(y, z) = . .

What is the probability we will need to compute J(z, y) in our
hashing scheme with one table? I.e. the probability that y
hashes into at least one bucket containing z.

In the new scheme with t = tables?

(%)

-

I - (I-u)t = 1 -set = .
89

Tell

REDUCING FALSE POSITIVES

Change our locality sensitive hash function.

Tunable LSH for Jaccard similarity:

• Choose parameter r ∈ Z+.

• Let c , . . . , cr : { , }d → [,] be random MinHash.

• Let g : [,]r → { , . . . ,m} be a uniform random hash function.

• Let h(x) = g(c (x), . . . , cr(x)).

- -
EE" '

" I
±

REDUCING FALSE POSITIVES

Tunable LSH for Jaccard similarity:

• Choose parameter r ∈ Z+.

• Let c , . . . , cr : { , }d → [,] be random MinHash.

• Let g : [,]r → { , . . . ,m} be a uniform random hash function.

• Let h(x) = g(c (x), . . . , cr(x)).

If J(q, y) = v, then Pr [h(q) == h(y)] == ✓
r

+ I
6
negligible.

TUNABLE LSH

| Oo

O

-

TUNABLE LSH

Full LSH cheme has two parameters to tune:

TUNABLE LSH

Effect of increasing number of tables t on:

False Negatives False Positives

Effect of increasing number of bands r on:

False Negatives False Positives

f p

i t

s-CURVE TUNING

Probability we check q when querying y if J(q, y) = v:

r = , t =

"÷::
:::

" ' " ' " " " " ' " ' ÷ "
A

"collision

s-CURVE TUNING

Probability we check q when querying y if J(q, y) = v:

≈ − (− vr)t

r = , t =

s-CURVE TUNING

Probability we check q when querying y if J(q, y) = v:

≈ − (− vr)t

r = , t =

0

s-CURVE TUNING

Probability we check q when querying y if J(q, y) = v:

− (− vr)t

Increasing both r and t gives a steeper curve.

Better for search, but worse space complexity.

O O

O

O O

FIXED THRESHOLD

Use Case : Fixed threshold.

• Shazam wants to find match to audio clip y in a database of
million clips.

• There are true matches with J(y,q) > . .

• There are , near matches with J(y,q) ∈ [. , .].

• All other items have J(y,q) < . .

With r = and t = ,

• Hit probability for J(y,q) > . is ! − (− .) = .

• Hit probability for J(y,q) ∈ [. , .] is " − (− .) = .

• Hit probability for J(y,q) < . is " − (− .) = .

Upper bound on total number of items checked:

+ . · , + . · , , ≈ , * , , .

-

I -
t

-

→ = , '
-

0 0 0 0

FIXED THRESHOLD

Space complexity: hash tables ≈ · O(n).

Directly trade space for fast search.

FIXED THRESHOLD R

Near Neighbor Search Problem

Concrete worst case result:

Theorem (Indyk, Motwani,)
If there exists some q with ‖q− y‖ ≤ R, return a vector q̃ with
‖q̃− y‖ ≤ C · R in:

• Time: O
(
n /C).

• Space: O
(
n + /C).

‖q− y‖ = “hamming distance” = number of elements that
differ between q and y.

APPROXIMATE NEAREST NEIGHBOR SEARCH

Theorem (Indyk, Motwani,)
Let q be the closest database vector to y. Return a vector q̃
with ‖q̃− y‖ ≤ C · ‖q− y‖ in:

• Time: Õ
(
n /C).

• Space: Õ
(
n + /C).

OTHER LSH FUNCTIONS

Good locality sensitive hash functions exists for other
similarity measures.

Cosine similarity cos (θ(x, y)) = 〈x,y〉
‖x‖ ‖y‖ :

− ≤ cos (θ(x, y)) ≤ .

COSINE SIMILARITY

Cosine similarity is natural “inverse” for Euclidean distance.

Euclidean distance ‖x− y‖ :

• Suppose for simplicity that ‖x‖ = ‖y‖ = .

SIMHASH

Locality sensitive hash for cosine similarity:

• Let g ∈ Rd be randomly chosen with each entry N (,).
• Let f : {− , } → { , . . . ,m} be a uniformly random hash
function.

• h : Rd → { , . . . ,m} is definied h(x) = f (sign(〈g, x〉)).

If cos(θ(x, y)) = v, what is Pr[h(x) == h(y)]?

SIMHASH ANALYSIS IN D

Theorem (to be prove): If cos(θ(x, y)) = v, then

Pr[h(x) == h(y)] = − θ

π
+

m
= − cos− (v)

π
+

mO -

SIMHASH

SimHash can be tuned, just like our MinHash based LSH
function for Jaccard similarity:

• Let g , . . . , gr ∈ Rd be randomly chosen with each entry
N (,).

• Let f : {− , }r → { , . . . ,m} be a uniformly random hash
function.

• h : Rd → { , . . . ,m} is defined
h(x) = f ([sign(〈g , x〉), . . . , sign(〈gr, x〉)]).

Pr[h(x) == h(y)] =
(

− θ

Π

)r

SIMHASH ANALYSIS IN D

To prove: Pr[h(x) == h(y)] = − θ
π , where h(x) = f (sign(〈g, x〉))

and f is uniformly random hash function.

Pr[h(x) == h(y)] = z+ − v
m

≈ z.

where z = Pr[sign(〈g, x〉) == sign(〈g, y〉)]

SIMHASH ANALYSIS D

Pr[h(x) == h(y)] ≈ probability x and y are on the same side of
hyperplane orthogonal to g.

SIMHASH ANALYSIS HIGHER DIMENSIONS

There is always some rotation matrix U such that Ux,Uy are
spanned by the first two-standard basis vectors and have the
same cosine similarity as x and y.

SIMHASH ANALYSIS HIGHER DIMENSIONS

There is always some rotation matrix U such that x, y are
spanned by the first two-standard basis vectors.

Note: A rotation matrix U has the property that UTU = I. I.e., UT

is a rotation matrix itself, which reverses the rotation of U.

SIMHASH ANALYSIS HIGHER DIMENSIONS

Claim:

− θ

π
= Pr[sign(〈g[,], (Ux)[,]〉) == sign(〈g[,], (Uy[,]〉)]

= Pr[sign(〈g,Ux〉) == sign(〈g,Uy〉)]
= Pr[sign(〈g, x〉) == sign(〈g, y〉)]

Why?

MODERN NEAR NEIGBHOR SEARCH

• High-dimensional vector search is exploding as a research
area with the rise of machine-learned multi-modal
embeddings for images, text, and more.

Web-scale image search is now a vector search problem.

§ o o

GRAPH BASED NEAR NEIGBHOR

