
CS-GY :ࠂࠅࠆࠅ Lecture ࠄ
Dimensionality reduction, near neighbor
search in high dimensions

NYU Tandon School of Engineering, Prof. Christopher Musco

ࠀ

PROJECT

• If you are doing a project, find a partner and sign-up to
present for reading group slot by Monday, .ࠈ/߿ࠀ We need
presenters for next Friday!

ࠁ

EUCLIDEAN DIMENSIONALITY REDUCTION

Lemma (Johnson-Lindenstrauss, (ࠃࠇࠈࠀ
For any set of n data points qࠀ, . . . ,qn ∈ Rd there exists a
linear map Π : Rd → Rk where k = O

(
log n
εࠁ

)
such that for all

i, j,

−ࠀ) ε)‖qi − qj‖ࠁ ≤ ‖Πqi −Πqj‖ࠁ ≤ +ࠀ) ε)‖qi − qj‖ࠁ.

ࠂ

(I

¥
I b k : 0/1%(414%2),

then W-P. l - f , a random

Gaussian IT satisfies...

SAMPLE APPLICATION

k-means clustering: For data set aࠀ, . . . , an, find clusters
Cࠀ, . . . , Ck ⊆ ,ࠀ} . . . ,n} to minimize:

Cost(Cࠀ, . . . , Ck) =
k∑

j=ࠀ

ࠀ
|Cj|ࠁ

∑

u,v∈Cj

‖au − av‖ࠁࠁ.

ࠃ

SAMPLE APPLICATION

k-means clustering: For data set aࠀ, . . . , an, find clusters
Cࠀ, . . . , Ck ⊆ ,ࠀ} . . . ,n} to minimize:

Cost(Cࠀ, . . . , Ck) =
k∑

j=ࠀ

ࠀ
|Cj|ࠁ

∑

u,v∈Cj

‖au − av‖ࠁࠁ.

Claim: If I find the optimal clustering for Πaࠀ, . . . ,Πan then its
cost is less than +ࠀ) ε) times the cost of the best clustering
obtained with the original data. ࠄ

0

RANDOMIZED JL CONSTRUCTIONS

Π ∈ Rk×d can chosen so that each entry equals √ࠀ
k
N ,߿) ,(ࠀ or

each entry equals √ࠀ
k
± ࠀ with equal probability.

Lots of other constructions work.

ࠅ

IT#th I

o

u Tt§

RANDOM PROJECTION

Intuition: Multiplying by a random matrix mimics the process
of projecting onto a random k dimensional subspace in d
dimensions. ࠆ

EUCLIDEAN DIMENSIONALITY REDUCTION

Intermediate result:
Lemma (Distributional JL Lemma)
Let Π ∈ Rk×d be chosen so that each entry equals √ࠀ

k
N ,߿) ,(ࠀ

where N ,߿) (ࠀ denotes a standard Gaussian random variable.

If we choose k = O
(
log(ࠀ/δ)

εࠁ

)
, then for any vector x, with

probability −ࠀ) δ):

−ࠀ) ε)‖x‖ࠁࠁ ≤ ‖Πx‖ࠁࠁ ≤ +ࠀ) ε)‖x‖ࠁࠁ

Given this lemma, how do we prove the traditional
Johnson-Lindenstrauss lemma?

ࠇ

→
loser) f o r J b

JL FROM DISTRIBUTIONAL JL

We have a set of vectors qࠀ, . . . ,qn. Fix i, j ∈ ,ࠀ . . . ,n.

Let x = qi − qj. By linearity, Πx = Π(qi − qj) = Πqi −Πqj.

By the Distributional JL Lemma, with probability −ࠀ δ,

−ࠀ) ε)‖qi − qj‖ࠁ ≤ ‖Πqi −Πqj‖ࠁ ≤ +ࠀ) ε)‖qi − qj‖ࠁ.

Finally, set δ = ࠀ
nࠁ . Since there are < nࠁ total i, j pairs, by a

union bound we have that with probability ,߿ࠀ/ࠈ the above will
hold for all i, j, as long as we compress to:

k = O
(
log(ࠀ/(ࠀ/nࠁ))

εࠁ

)
= O

(
log n
εࠁ

)
dimensions.

ࠈ

E e
w .P. I - fun

f = 0 (Yha) log(Yg): loge).-Olga)

PROOF OF DISTRIBUTIONAL JL

Want to argue that, with probability −ࠀ) δ),

−ࠀ) ε)‖x‖ࠁࠁ ≤ |Πx‖ࠁࠁ ≤ +ࠀ) ε)‖x‖ࠁࠁ

Claim: E‖Πx‖ࠁࠁ = ‖x‖ࠁࠁ.
Some notation:

So each πi contains N ,߿) (ࠀ entries. ߿ࠀ

÷O

/

IT;:[No,D Non)}

PROOF OF DISTRIBUTIONAL JL

Intermediate Claim: Let π be a length d vector with N ,߿) (ࠀ
entries.

E
[
‖Πx‖ࠁࠁ

]
= E

[
(〈π, x〉)ࠁ

]
.

Goal: Prove E‖Πx‖ࠁࠁ = ‖x‖ࠁࠁ.

ࠀࠀ

= - 0
ELIE,CTx)?)--Ei?.Huai,xD)

-'IIf teIE,Citi,x >' 3
= I IE,IEl a ti ,x D

~ ¥ ,x) -
=

PROOF OF DISTRIBUTIONAL JL

〈π, x〉 = Zࠀ · x[ࠀ] + Zࠁ · x[ࠁ] + . . .+ Zd · x[d]

where each Zࠀ, . . . , Zd is a standard normal N ,߿) .(ࠀ

We have that Zi · x[i] is a normal N ,߿) x[i]ࠁ) random variable.

Goal: Prove E‖Πx‖ࠁࠁ = ‖x‖ࠁࠁ. Established: E‖Πx‖ࠁࠁ = E
[
(〈π, x〉)ࠁ

]

ࠁࠀ

¥,#lilx l i]

I n - - 0

i n -

STABLE RANDOM VARIABLES

What type of random variable is 〈π, x〉?

Fact (Stability of Gaussian random variables)

N (µࠀ,σ
ࠁ
ࠀ) +N (µࠁ,σ

ࠁ
(ࠁ = N (µࠀ + µࠁ,σ

ࠁ
ࠀ + σࠁ

(ࠁ

〈π, x〉 = N ,߿) x[ࠀ]ࠁ) +N ,߿) x[ࠁ]ࠁ) + . . .+N ,߿) x[d]ࠁ)
= N ,߿) ‖x‖ࠁࠁ).

So E‖Πx‖ࠁࠁ = E
[
(〈π, x〉)ࠁ

]
= E

[
N ,߿) ‖x‖ࠁࠁ)

]
= ‖x‖ࠁࠁ, as desired.

ࠂࠀ

- -G - = Ed,X l i ? " = 11×112

- - -

"#i i i I#FeI I . Emoji,}

PROOF OF DISTRIBUTIONAL JL

Want to argue that, with probability −ࠀ) δ),

−ࠀ) ε)‖x‖ࠁࠁ ≤ ‖Πx‖ࠁࠁ ≤ +ࠀ) ε)‖x‖ࠁࠁ

.ࠀ E‖Πx‖ࠁࠁ = ‖x‖ࠁࠁ.
.ࠁ Need to use a concentration bound.

‖Πx‖ࠁࠁ =
ࠀ
k

k∑

i=ࠀ

(〈πi, x〉)ࠁ =
ࠀ
k

k∑

i=ࠀ

N ,߿) ‖x‖ࠁࠁ)

“Chi-squared random variable with k degrees of freedom.”

ࠃࠀ

i ,
i"¥

=
(Y

-

CONCENTRATION OF CHI-SQUARED RANDOM VARIABLES

Lemma
Let Z be a Chi-squared random variable with k degrees of
freedom.

Pr[|EZ− Z| ≥ εEZ] ≤ ࠇ/ࠁe−kεࠁ

Goal: Prove ‖Πx‖ࠁࠁ concentrates within ±ࠀ ε of its expectation,
which equals ‖x‖ࠁࠁ. ࠄࠀ

N YKis.N(0,11×112)'

l
I#" i 114×11=11×118 I f

e - K42 /0 = 8 / 2

- h 648 = log(%) K E Y8 = log(%)
µ = 810%87=04%412

CONNECTION LAST LECTURE

If high dimensional geometry is so different from
low-dimensional geometry, why is dimensionality reduction
possible? Doesn’t Johnson-Lindenstrauss tell us that
high-dimensional geometry can be approximated in low
dimensions?

ࠅࠀ

CONNECTION TO DIMENSIONALITY REDUCTION

Hard case: xࠀ, . . . , xn ∈ Rd are all mutually orthogonal unit
vectors:

‖xi − xj‖ࠁࠁ = ࠁ for all i, j.

When we reduce to k dimensions with JL, we still expect these
vectors to be nearly orthogonal. Why?

ࠆࠀ

-

nearly Ha-blli= La-b,a - b>

"Xi11-2=1
I ' HI'.""#' " ' "÷¥±

a
look?

-

11ITx i -Tx;11,2=2
4 -
"HxillittllTxill? - 2 LHei,Tx;)
= 11×11,2+ IN;117-KITA, Hi,>
= L - 2 (Tx;,IT,>→ K E e

CONNECTION TO DIMENSIONALITY REDUCTION

Hard case: xࠀ, . . . , xn ∈ Rd are all mutually orthogonal unit
vectors:

‖xi − xj‖ࠁࠁ = ࠁ for all i, j.

From our result earlier, in O(log n/εࠁ) dimensions, there exists
log·ࠁO(εࠁ n/εࠁ) ≥ n unit vectors that are close to mutually
orthogonal. O(log n/εࠁ) = just enough dimensions.

Alternative view: Without additional structure, we expect that
learning/inference in d dimenions requires O(d)ࠁ data points. If
we really had a data set that large, then the JL bound would be
vacous, since log(n) = O(d).

ࠇࠀ

2 0(a r k)nearly
orthogonal

rector, i n a d im
space.

I

-

I

→

DIMENSIONALITY REDUCTION

The Johnson-Lindenstrauss Lemma let us sketch vectors and
preserve their ࠁ$ Euclidean distance.

We also have dimensionality reduction techniques that
preserve alternative measures of similarity.

ࠈࠀ

I
accord
similarity

SIMILARITY ESTIMATION

How does Shazam match a song clip against a library of ࠇ
million songs ࠁࠂ) TB of data) in a fraction of a second?

Spectrogram extracted
from audio clip.

Processed spectrogram:
used to construct audio
“fingerprint” q ∈ ,߿} .d{ࠀ

Each clip is represented by a high dimensional binary vector q.

߿ࠁ

SIMILARITY ESTIMATION

How does Shazam match a song clip against a library of ࠇ
million songs ࠁࠂ) TB of data) in a fraction of a second?

Spectrogram extracted
from audio clip.

Processed spectrogram:
used to construct audio
“fingerprint” q ∈ ,߿} .d{ࠀ

Each clip is represented by a high dimensional binary vector q.

߿ࠁ

..¥:#

SIMILARITY ESTIMATION

Given q, find any nearby “fingerprint” y in a database – i.e. any
y with dist(y,q) small.

Challenges:

• Database is possibly huge: O(nd) bits.
• Expensive to compute dist(y,q): O(d) time.

ࠀࠁ

- i

• o
-

SIMILARITY ESTIMATION

Goal: Design a more compact sketch for comparing
q, y ∈ ,߿} .d{ࠀ Ideally * d space/time complexity.

C(q) ∈ Rk

C(y) ∈ Rk

As in Johnson-Lindenstrauss compressions, we want that C(q)
is similar to C(y) if q is similar to y.

ࠁࠁ

- - O
= 8

I

-

-

JACCARD SIMILARITY

Definition (Jaccard Similarity)

J(q, y) = |q ∩ y|
|q ∪ y| =

of non-zero entries in common
total # of non-zero entries

Natural similarity measure for binary vectors. ߿ ≤ J(q, y) ≤ .ࠀ

Can be applied to any data which has a natural binary
representation (more than you might think).

ࠂࠁ

t o o o o ¥ 1 1

-

l) ÷

JACCARD SIMILARITY FOR DOCUMENT COMPARISON

“Bag-of-words” model:

How many words do a pair of documents have in common?

ࠃࠁ

- -

JACCARD SIMILARITY FOR DOCUMENT COMPARISON

“Bag-of-words” model:

How many bigrams do a pair of documents have in common?

ࠄࠁ

JACCARD SIMILARITY FOR SEISMIC DATA

Feature extract pipeline for earthquake data.

(see paper by Rong et al. posted on course website)

ࠅࠁ

APPLICATIONS: DOCUMENT SIMILARITY

• Finding duplicate or new duplicate documents or
webpages.

• Change detection for high-speed web caches.
• Finding near-duplicate emails or customer reviews which
could indicate spam.

ࠆࠁ

SIMILARITY ESTIMATION

Goal: Design a compact sketch C : ,߿} {ࠀ → Rk:

Want to use C(q), C(y) to approximately compute the Jaccard
similarity J(q, y) = |q∩y|

|q∪y| .

ࠇࠁ

MINHASH

MinHash (Broder, :(ࠆࠈ’

• Choose k random hash functions
hࠀ, . . . ,hk : ,ࠀ} . . . ,n} → ,߿] .[ࠀ

• For i ∈ ,ࠀ . . . , k,
• Let ci = minj,qj=ࠀ hi(j).

• C(q) = [cࠀ, . . . , ck].

ࠈࠁ

÷
i , n

h a) h(3)h a

o

MINHASH

• Choose k random hash functions
hࠀ, . . . ,hk : ,ࠀ} . . . ,n} → ,߿] .[ࠀ

• For i ∈ ,ࠀ . . . , k,
• Let ci = minj,qj=ࠀ hi(j).

• C(q) = [cࠀ, . . . , ck].

߿ࠂ

g

g

"" " ' " ' " " ⇒ " ° "

(ly) =
§-55.0
2 §
= Ya

c)

MINHASH ANALYSIS

Claim: For all i, Pr[ci(q) = ci(y)] = J(q, y) = |q∩y|
|q∪y| .

Proof:

.ࠀ For ci(q) = ci(y), we need that argmini∈q h(i) = argmini∈y h(i).

ࠀࠂ

¥.:*."

MINHASH ANALYSIS

Claim: Pr[ci(q) = ci(y)] = J(q, y).

.ࠁ Every non-zero index in q ∪ y is equally likely to produce the
lowest hash value. ci(q) = ci(y) only if this index is ࠀ in both q
and y. There are q ∩ y such indices. So:

Pr[ci(q) = ci(y)] =
|q ∩ y|
|q ∪ y| = J(q, y)

ࠁࠂ

MINHASH ANALYSIS

Let J = J(q, y) denote the Jaccard similarity between q and y.

Return: J̃ = ࠀ
k
∑k

i=ࠀ [ci(q) = ci(y)].

Unbiased estimate for Jaccard similarity:

ẼJ =

The more repetitions, the lower the variance.

ࠂࠂ

- - -

± EE I Ef 1 (ciao)..i c yD). I §..JG,s)
= J(bis)

MINHASH ANALYSIS

Let J = J(q, y) denote the true Jaccard similarity.

Estimator: J̃ = ࠀ
k
∑k

i=ࠀ [ci(q) = ci(y)].

Var[̃J] =

Plug into Chebyshev inequality. How large does k need to be
so that with probability > −ࠀ δ, |J− J̃| ≤ ε?

ࠃࠂ

✓
J - J - EJ

tu.IT#cifol=CibD):E - J
⇐ t u

P r11J-JI z o o) e ¥
y y

' = Yrs 6 stfu,

O - O ,¥ .¥ , = E ¥ = K - f k=gt~µ

MINHASH ANALYSIS

Chebyshev inequality: As long as k = O
(ࠀ
εࠁδ

)
, then with prob.

−ࠀ δ,

J(q, y)− ε ≤ J̃ (C(q), C(y)) ≤ J(q, y) + ε.

And J̃ only takes O(k) time to compute! Independent of
original fingerprint dimension d.

Can be improved to log(ࠀ/δ) dependence. Can anyone tell me
how?

ࠄࠂ

SIMILARITY SKETCHING

ࠅࠂ

BREAK

ࠅࠂ

NEAR NEIGHBOR SEARCH

Common goal: Find all vectors in database qࠀ, . . . ,qn ∈ Rd that
are close to some input query vector y ∈ Rd. I.e. find all of y’s
“nearest neighbors” in the database.

• The Shazam problem.
• Audio + video search.
• Finding duplicate or near duplicate documents.
• Detecting seismic events.

How does similarity sketching help in these applications?

• Improves runtime of “linear scan” from O(nd) to O(nk).
• Improves space complexity from O(nd) to O(nk). This can
be super important – e.g. if it means the linear scan only
accesses vectors in fast memory.

ࠆࠂ

-

-

K = 100¥)

-

O
- -

BEYOND A LINEAR SCAN

New goal: Sublinear o(n) time to find near neighbors.

ࠇࠂ

nearest.

E

a . I E # .

BEYOND A LINEAR SCAN

This problem can already be solved for a small number of
dimensions using space partitioning approaches (e.g. kd-tree).

Runtime is roughly O(d ·min(n, ,((dࠁ which is only sublinear for
d = o(log n).

ࠈࠂ

• /

HIGH DIMENSIONAL NEAR NEIGHBOR SEARCH

Only been attacked much more recently:

• Locality-sensitive hashing [Indyk, Motwani, [ࠇࠈࠈࠀ
• Spectral hashing [Weiss, Torralba, and Fergus, [ࠇ߿߿ࠁ
• Vector quantization [Jégou, Douze, Schmid, [ࠈ߿߿ࠁ

Key Insight of LSH: Trade worse space-complexity for better
time-complexity. I.e. typically use more than O(n) space.

߿ࠃ

Graphbased
nea r ueishor search

methods.

I d
f)

()

LOCALITY SENSITIVE HASH FUNCTIONS

Let h : Rd → ,ࠀ} . . . ,m} be a random hash function.

We call h locality sensitive for similarity function s(q, y) if
Pr [h(q) == h(y)] is:

• Higher when q and y are more similar, i.e. s(q, y) is higher.
• Lower when q and y are more dissimilar, i.e. s(q, y) is
lower.

ࠀࠃ

- -

LOCALITY SENSITIVE HASH FUNCTIONS

LSH for s(q, y) equal to Jaccard similarity:

• Let c : ,߿} d{ࠀ → ,߿] [ࠀ be a single instantiation of MinHash.
• Let g : ,߿] [ࠀ → ,ࠀ} . . . ,m} be a uniform random hash
function.

• Let h(q) = g(c(q)).

ࠁࠃ

gcccq))
gcc.co)...circa)

⑤ I

-
g

- •

4181=48) wi th higher
prob i f) (gig) i s

large.

LOCALITY SENSITIVE HASH FUNCTIONS

LSH for Jaccard similarity:

• Let c : ,߿} d{ࠀ → ,߿] [ࠀ be a single instantiation of MinHash.
• Let g : ,߿] [ࠀ → ,ࠀ} . . . ,m} be a uniform random hash
function.

• Let h(x) = g(c(x)).

If J(q, y) = v,

Pr [h(q) == h(y)] =

ࠂࠃ

(to).-cb)

h(g)= hly)wheneverdq¥D

V t a - r) .I ,

T.fm

NEAR NEIGHBOR SEARCH

Basic approach for near neighbor search in a database.

Pre-processing:

• Select random LSH function h : ,߿} d{ࠀ → ,ࠀ . . . ,m.
• Create table T with m = O(n) slots.ࠀ

• For i = ,ࠀ . . . ,n, insert qi into T(h(qi)).

Query:

• Want to find near neighbors of input y ∈ ,߿} .d{ࠀ
• Linear scan through all vectors q ∈ T(h(y)) and return any
that are close to y. Time required is O(d · |T(h(y)|).

Enoughࠀ to make the O(ࠀ/m) term negligible.

ࠃࠃ

÷

-

NEAR NEIGHBOR SEARCH

ࠄࠃ

nap 0 0 0 0

7 .
return arshex (stg,82),Sly,83))

NEAR NEIGHBOR SEARCH

Two main considerations:

• False Negative Rate: What’s the probability we do not find
a vector that is close to y?

• False Positive Rate: What’s the probability that a vector in
T(h(y)) is not close to y?

A higher false negative rate means we miss near neighbors.

A higher false positive rate means increased runtime – we
need to compute J(q, y) for every q ∈ T(h(y)) to check if it’s
actually close to y.

Note: The meaning of “close” and “not close” is application
dependent. E.g. we might specify that we want to find anything
with Jaccard similarity > ,ࠃ. but not with Jaccard similarity < .ࠁ.

ࠅࠃ

l, o

- -

REDUCING FALSE NEGATIVE RATE

Suppose the nearest database point q has J(y,q) = .ࠃ.

What’s the probability we do not find q?

ࠆࠃ

f)
accord

- - e r

1 - ✓ = . G

REDUCING FALSE NEGATIVE RATE

Pre-processing:

• Select t independent LSH’s hࠀ, . . . ,ht : ,߿} d{ࠀ → ,ࠀ . . . ,m.
• Create tables Tࠀ, . . . , Tt, each with m slots.
• For i = ,ࠀ . . . ,n, j = ,ࠀ . . . , t,

• Insert qi into Tj(hj(qi)).

ࠇࠃ

i i i .i f
I

REDUCING FALSE NEGATIVE RATE

Query:

• Want to find near neighbors of input y ∈ ,߿} .d{ࠀ
• Linear scan through all vectors in
Tࠀ(hࠀ(y)) ∪ Tࠁ(hࠁ(y)) ∪ . . . , Tt(ht(y)).

Suppose the nearest database point q has J(y,q) = .ࠃ.

What’s the probability we find q?

,߿ࠀ) (%ࠈࠈ

ࠈࠃ

=
-

I - C-V)t 1 - . 610 e . 9 9

WHAT HAPPENS TO FALSE POSITIVES?

Suppose there is some other database point z with J(y, z) = .ࠁ.

What is the probability we will need to compute J(z, y) in our
hashing scheme with one table? I.e. the probability that y
hashes into at least one bucket containing z.

In the new scheme with t = ߿ࠀ tables?

(%ࠈࠇ)

߿ࠄ

-

I - (I-u)t = 1 -set = .
89

Tell

REDUCING FALSE POSITIVES

Change our locality sensitive hash function.

Tunable LSH for Jaccard similarity:

• Choose parameter r ∈ Z+.

• Let cࠀ, . . . , cr : ,߿} d{ࠀ → ,߿] [ࠀ be random MinHash.

• Let g : ,߿] r[ࠀ → ,ࠀ} . . . ,m} be a uniform random hash function.

• Let h(x) = g(cࠀ(x), . . . , cr(x)).

ࠀࠄ

- -
EE" '

" I
±

REDUCING FALSE POSITIVES

Tunable LSH for Jaccard similarity:

• Choose parameter r ∈ Z+.

• Let cࠀ, . . . , cr : ,߿} d{ࠀ → ,߿] [ࠀ be random MinHash.

• Let g : ,߿] r[ࠀ → ,ࠀ} . . . ,m} be a uniform random hash function.

• Let h(x) = g(cࠀ(x), . . . , cr(x)).

If J(q, y) = v, then Pr [h(q) == h(y)] =

ࠁࠄ

= ✓
r

+ I
6
negligible.

TUNABLE LSH

ࠂࠄ

| Oo

O

-

TUNABLE LSH

Full LSH cheme has two parameters to tune:

ࠃࠄ

TUNABLE LSH

Effect of increasing number of tables t on:

False Negatives False Positives

Effect of increasing number of bands r on:

False Negatives False Positives

ࠄࠄ

f p

i t

s-CURVE TUNING

Probability we check q when querying y if J(q, y) = v:

r = ,ࠄ t = ࠄ
ࠅࠄ

"÷::
:::

" ' " ' " " " " ' " ' ÷ "
A

"collision

s-CURVE TUNING

Probability we check q when querying y if J(q, y) = v:

≈ −ࠀ −ࠀ) vr)t

r = ,ࠄ t = ߿ࠃ
ࠆࠄ

s-CURVE TUNING

Probability we check q when querying y if J(q, y) = v:

≈ −ࠀ −ࠀ) vr)t

r = ,߿ࠃ t = ࠄ
ࠇࠄ

0

s-CURVE TUNING

Probability we check q when querying y if J(q, y) = v:

−ࠀ −ࠀ) vr)t

Increasing both r and t gives a steeper curve.

Better for search, but worse space complexity. ࠈࠄ

O O

O

O O

FIXED THRESHOLD

Use Case :ࠀ Fixed threshold.

• Shazam wants to find match to audio clip y in a database of ߿ࠀ
million clips.

• There are ߿ࠀ true matches with J(y,q) > .ࠈ.

• There are ߿߿߿,߿ࠀ near matches with J(y,q) ∈ ,ࠆ.] .[ࠈ.

• All other items have J(y,q) < .ࠆ.

With r = ࠄࠁ and t = ,߿ࠃ

• Hit probability for J(y,q) > ࠈ. is ! −ࠀ −ࠀ) ߿ࠃ(ࠄࠁࠈ. = ࠄࠈ.

• Hit probability for J(y,q) ∈ ,ࠆ.] [ࠈ. is " −ࠀ −ࠀ) ߿ࠃ(ࠄࠁࠈ. = ࠄࠈ.

• Hit probability for J(y,q) < ࠆ. is " −ࠀ −ࠀ) ߿ࠃ(ࠄࠁࠆ. = ࠄ߿߿.

Upper bound on total number of items checked:

+߿ࠀ ࠄࠈ. · ,߿ࠀ +߿߿߿ ࠄ߿߿. · ,ࠈ ,ࠈࠇࠈ ߿ࠈࠈ ≈ ,߿ࠅ ߿߿߿ * ,߿ࠀ ,߿߿߿ .߿߿߿ ߿ࠅ

-

I -
t

-

→ = , '
-

0 0 0 0

FIXED THRESHOLD

Space complexity: ߿ࠃ hash tables ≈ ߿ࠃ · O(n).

Directly trade space for fast search.

ࠀࠅ

FIXED THRESHOLD R

Near Neighbor Search Problem

Concrete worst case result:

Theorem (Indyk, Motwani, (ࠇࠈࠈࠀ
If there exists some q with ‖q− y‖߿ ≤ R, return a vector q̃ with
‖q̃− y‖߿ ≤ C · R in:

• Time: O
(
nࠀ/C).

• Space: O
(
nࠀ+ࠀ/C).

‖q− y‖߿ = “hamming distance” = number of elements that
differ between q and y.

ࠁࠅ

APPROXIMATE NEAREST NEIGHBOR SEARCH

Theorem (Indyk, Motwani, (ࠇࠈࠈࠀ
Let q be the closest database vector to y. Return a vector q̃
with ‖q̃− y‖߿ ≤ C · ‖q− y‖߿ in:

• Time: Õ
(
nࠀ/C).

• Space: Õ
(
nࠀ+ࠀ/C).

ࠂࠅ

OTHER LSH FUNCTIONS

Good locality sensitive hash functions exists for other
similarity measures.

Cosine similarity cos (θ(x, y)) = 〈x,y〉
‖x‖ࠁ‖y‖ࠁ :

ࠀ− ≤ cos (θ(x, y)) ≤ .ࠀ

ࠃࠅ

COSINE SIMILARITY

Cosine similarity is natural “inverse” for Euclidean distance.

Euclidean distance ‖x− y‖ࠁࠁ:

• Suppose for simplicity that ‖x‖ࠁࠁ = ‖y‖ࠁࠁ = .ࠀ

ࠄࠅ

SIMHASH

Locality sensitive hash for cosine similarity:

• Let g ∈ Rd be randomly chosen with each entry N ,߿) .(ࠀ
• Let f : ,ࠀ−} {ࠀ → ,ࠀ} . . . ,m} be a uniformly random hash
function.

• h : Rd → ,ࠀ} . . . ,m} is definied h(x) = f (sign(〈g, x〉)).

If cos(θ(x, y)) = v, what is Pr[h(x) == h(y)]?

ࠅࠅ

SIMHASH ANALYSIS IN Dࠁ

Theorem (to be prove): If cos(θ(x, y)) = v, then

Pr[h(x) == h(y)] = −ࠀ θ

π
+

ࠀ
m

= −ࠀ cos−ࠀ(v)
π

+
ࠀ
m

ࠆࠅ

O -

SIMHASH

SimHash can be tuned, just like our MinHash based LSH
function for Jaccard similarity:

• Let gࠀ, . . . , gr ∈ Rd be randomly chosen with each entry
N ,߿) .(ࠀ

• Let f : ,ࠀ−} r{ࠀ → ,ࠀ} . . . ,m} be a uniformly random hash
function.

• h : Rd → ,ࠀ} . . . ,m} is defined
h(x) = f ([sign(〈gࠀ, x〉), . . . , sign(〈gr, x〉)]).

Pr[h(x) == h(y)] =
(
−ࠀ θ

Π

)r

ࠇࠅ

SIMHASH ANALYSIS IN Dࠁ

To prove: Pr[h(x) == h(y)] = −ࠀ θ
π , where h(x) = f (sign(〈g, x〉))

and f is uniformly random hash function.

Pr[h(x) == h(y)] = z+ −ࠀ v
m

≈ z.

where z = Pr[sign(〈g, x〉) == sign(〈g, y〉)] ࠈࠅ

SIMHASH ANALYSIS Dࠁ

Pr[h(x) == h(y)] ≈ probability x and y are on the same side of
hyperplane orthogonal to g.

߿ࠆ

SIMHASH ANALYSIS HIGHER DIMENSIONS

There is always some rotation matrix U such that Ux,Uy are
spanned by the first two-standard basis vectors and have the
same cosine similarity as x and y.

ࠀࠆ

SIMHASH ANALYSIS HIGHER DIMENSIONS

There is always some rotation matrix U such that x, y are
spanned by the first two-standard basis vectors.

Note: A rotation matrix U has the property that UTU = I. I.e., UT

is a rotation matrix itself, which reverses the rotation of U.

ࠁࠆ

SIMHASH ANALYSIS HIGHER DIMENSIONS

Claim:

−ࠀ θ

π
= Pr[sign(〈g[ࠀ, ,[ࠁ (Ux)[ࠀ, (〈[ࠁ == sign(〈g[ࠀ, ,[ࠁ (Uy[ࠀ, [(〈[ࠁ

= Pr[sign(〈g,Ux〉) == sign(〈g,Uy〉)]
= Pr[sign(〈g, x〉) == sign(〈g, y〉)]

Why?

ࠂࠆ

MODERN NEAR NEIGBHOR SEARCH

• High-dimensional vector search is exploding as a research
area with the rise of machine-learned multi-modal
embeddings for images, text, and more.

Web-scale image search is now a vector search problem.
ࠃࠆ

§ o o

GRAPH BASED NEAR NEIGBHOR

ࠄࠆ

