CS-GY 6763: Lecture 5 Dimensionality reduction, near neighbor search in high dimensions

NYU Tandon School of Engineering, Prof. Christopher Musco

• If you are doing a project, find a partner and sign-up to present for reading group slot **by Monday, 10/9**. We need presenters for next Friday!

EUCLIDEAN DIMENSIONALITY REDUCTION

Lemma (Johnson-Lindenstrauss, 1984) For any set of n data points $\mathbf{q}_1, \ldots, \mathbf{q}_n \in \mathbb{R}^d$ there exists a <u>linear map</u> $\Pi : \mathbb{R}^d \to \mathbb{R}^k$ where $k = O\left(\frac{\log n}{c^2}\right)$ such that for all i, j, $(1-\epsilon)\|\mathbf{q}_i-\mathbf{q}_j\|_2 \leq \|\mathbf{\Pi}\mathbf{q}_i-\mathbf{\Pi}\mathbf{q}_j\|_2 \leq (1+\epsilon)\|\mathbf{q}_i-\mathbf{q}_j\|_2.$ s = kП 10 K= O(102 (4/2) / E2). then w.p. 1-8, a rondom Transgian II satisfies...

k-means clustering: For data set $\mathbf{a}_1, \ldots, \mathbf{a}_n$, find clusters $C_1, \ldots, C_k \subseteq \{1, \ldots, n\}$ to minimize:

k-means clustering: For data set $\mathbf{a}_1, \ldots, \mathbf{a}_n$, find clusters $C_1, \ldots, C_k \subseteq \{1, \ldots, n\}$ to minimize:

Claim: If I find the optimal clustering for $\Pi a_1, \ldots, \Pi a_n$ then its cost is less than $(1 + \epsilon)$ times the cost of the best clustering obtained with the original data.

RANDOMIZED JL CONSTRUCTIONS

$$\mathbf{n} \in \mathbb{R}^{k \times d} \text{ can chosen so that each entry equals } \mathbf{n} \in \mathbb{R}^{k \times d} \text{ can chosen so that each entry equals } \mathbf{n} \in \mathbb{R}^{k \times d} \text{ can chosen so that each entry equals } \mathbf{n} \in \mathbb{R}^{k \times d} \text{ can chosen so that each entry equals } \mathbf{n} \in \mathbb{R}^{k \times d} \text{ can chosen so that each entry equals } \mathbf{n} \in \mathbb{R}^{k \times d} \text{ can chosen so that each entry equals } \mathbf{n} \in \mathbb{R}^{k \times d} \text{ can chosen so that each entry equals } \mathbf{n} \in \mathbb{R}^{k \times d} \text{ can chosen so that each entry equals } \mathbf{n} \in \mathbb{R}^{k \times d} \text{ can chosen so that each entry equals } \mathbf{n} \in \mathbb{R}^{k \times d} \text{ can chosen so that each entry equals } \mathbf{n} \in \mathbb{R}^{k \times d} \text{ can chosen so that each entry equals } \mathbf{n} \in \mathbb{R}^{k \times d} \text{ can chosen so that each entry equals } \mathbf{n} \in \mathbb{R}^{k \times d} \text{ can chosen so that each entry equals } \mathbf{n} \in \mathbb{R}^{k \times d} \text{ can chosen so that each entry equals } \mathbf{n} \in \mathbb{R}^{k \times d} \text{ can chosen so that each entry equals } \mathbf{n} \in \mathbb{R}^{k \times d} \text{ can chosen so that each entry equals } \mathbf{n} \in \mathbb{R}^{k \times d} \text{ can chosen so that each entry equals } \mathbf{n} \in \mathbb{R}^{k \times d} \text{ can chosen so that each entry equals } \mathbf{n} \in \mathbb{R}^{k \times d} \text{ can chosen so that each entry equals } \mathbf{n} \in \mathbb{R}^{k \times d} \text{ can chosen so that each entry equals } \mathbf{n} \in \mathbb{R}^{k \times d} \text{ can chosen so that each entry equals } \mathbf{n} \in \mathbb{R}^{k \times d} \text{ can chosen so that each entry equals } \mathbf{n} \in \mathbb{R}^{k \times d} \text{ can chosen so that each entry equals } \mathbf{n} \in \mathbb{R}^{k \times d} \text{ can chosen so that each entry equals } \mathbf{n} \in \mathbb{R}^{k \times d} \text{ can chosen so the equal entry equals } \mathbf{n} \in \mathbb{R}^{k \times d} \text{ can chosen so the equal entry equal } \mathbf{n} \in \mathbb{R}^{k \times d} \text{ can chosen so the equal } \mathbf{n} \in \mathbb{R}^{k \times d} \text{ can chosen so the equal } \mathbf{n} \in \mathbb{R}^{k \times d} \text{ can chosen so the equal } \mathbf{n} \in \mathbb{R}^{k \times d} \text{ can chosen so the equal } \mathbf{n} \in \mathbb{R}^{k \times d} \text{ can chosen so the equal } \mathbf{n} \in \mathbb{R}^{k \times d} \text{ can chosen so the equal } \mathbf{n} \in \mathbb{R}^{k \times d} \text{ can chosen so the equal } \mathbf{n} \in \mathbb{R}^{k \times d} \text{ con chosen so the equal } \mathbf{n} \in \mathbb{R}^{k \times d} \text{ con chosen so the$$

TITINT

r	-2.1384 -8.8396 1.3546 -1.0722 8.9610 8.1240 1.4367 -1.9609 -8.1977 -1.2078	2.9088 0.8252 1.3798 -1.0582 -0.4686 -0.2725 1.0984 -0.2779 0.7015 -2.0518	-0.3538 -0.8236 -1.5771 0.5880 0.2820 0.0335 -1.3337 1.1275 0.3502 -0.2991	8.8229 -8.2620 -1.7582 -8.2857 -8.8314 -8.9792 -1.1564 -8.5336 -2.8026 8.9642	8.5201 -0.0208 -9.7982 .0187 1372 7185 .3514 -0.2248 -0.5898	-0.2938 -0.8479 -1.1201 2.5260 1.6555 0.3075 -1.2571 -0.8655 -0.1765 0.7914	-1.3320 -2.3299 -1.4491 0.3335 0.3914 0.4517 -0.1303 0.1837 -0.4762 0.8620	-1.3617 0.4550 -0.8487 -0.349 0.5528 1.0391 -1.1176 1.2607 0.6601 -0.0679	-0.1952 -0.2176 -0.3031 0.0230 0.0513 0.8261 1.5270 0.4669 -0.2097 0.6252	
---	--	---	---	--	--	--	---	--	--	--

>> Pi = randn(m,d);
>> s = (1/sqrt(m))*Pi*q;

1	1	-1	-1	-1	-1	-1	-1	1	-1	-1	1	-1	-1	1	1	
1	1	1	-1	1	-1	-1	-1	1	1	1	1	-1	1	-1	-1	
1	1	-1	-1	-1	1	-1	-1	1	1	-1	1	-1	1	-1	1	
-1	-1	-1	1	1	-1	-1	-1	-1	-1	-1	-1	-1	1	1	1	
1	-1	1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	1	1	-1	
1	-1	-1	1	-1	1	1	-1	-1	-1	1	-1	-1	-1	1	1	
1	1	-1	1	1	-1	1	-1	1	-1	1	-1	1	1	1	-1	-
-1	-1	-1	-1	-1	-1	1	-1	1	1	-1	-1	1	-1	-1	1	
-1	-1	1	1	1	1	-1	-1	1	-1	1	1	1	-1	1	-1	
-1	1	-1	1	-1	1	1	-1	-1	1	-1	1	-1	-1	1	-1	

>> Pi = 2*randi(2,m,d)-3;
>> s = (1/sqrt(m))*Pi*q;

Lots of other constructions work.

RANDOM PROJECTION

Intuition: Multiplying by a random matrix mimics the process of projecting onto a random *k* dimensional subspace in *d* dimensions.

EUCLIDEAN DIMENSIONALITY REDUCTION

Intermediate result: Lemma (Distributional JL Lemma) Let $\Pi \in \mathbb{R}^{k \times d}$ be chosen so that each entry equals $\frac{1}{\sqrt{k}}\mathcal{N}(0,1)$, where $\mathcal{N}(0,1)$ denotes a standard Gaussian random variable. If we choose $k = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for <u>any vector x</u>, with probability $(1 - \delta)$: $(1 - \epsilon) \|\mathbf{x}\|_2^2 \le \|\Pi \mathbf{x}\|_2^2 \le (1 + \epsilon) \|\mathbf{x}\|_2^2$

Given this lemma, how do we prove the traditional Johnson-Lindenstrauss lemma?

JL FROM DISTRIBUTIONAL JL

We have a set of vectors $\underline{\mathbf{q}}_1, \dots, \underline{\mathbf{q}}_n$. Fix $i, j \in 1, \dots, n$. Let $\underline{\mathbf{x}} = \underline{\mathbf{q}}_i - \underline{\mathbf{q}}_i$. By linearity, $\underline{\mathbf{\Pi}} \underline{\mathbf{x}} = \mathbf{\Pi}(\mathbf{q}_i - \mathbf{q}_j) = \underline{\mathbf{\Pi}} \underline{\mathbf{q}}_i - \underline{\mathbf{\Pi}} \underline{\mathbf{q}}_i$. By the Distributional JL Lemma, with probability $1 - \delta$,

$$(1-\epsilon)$$
 $\|\mathbf{q}_i-\mathbf{q}_j\|_2 \leq \|\mathbf{\Pi}\mathbf{q}_i-\mathbf{\Pi}\mathbf{q}_j\|_2 \leq (1+\epsilon)\|\mathbf{q}_i-\mathbf{q}_j\|_2.$

Finally, set $\delta = \frac{1}{n^2}$. Since there are $< n^2$ total *i*, *j* pairs, by a union bound we have that with probability 9/10, the above will hold <u>for all</u> *i*, *j*, as long as we compress to:

$$k = O\left(\frac{\log(1/(1/n^2))}{\epsilon^2}\right) = O\left(\frac{\log n}{\epsilon^2}\right) \text{ dimensions.} \quad \Box$$

$$\int_{\sigma} \frac{1}{\epsilon} O\left(\frac{1}{2}/n^2\right) = O\left(\frac{\log n}{\epsilon^2}\right) = O\left$$

PROOF OF DISTRIBUTIONAL JL

Want to argue that, with probability $(1 - \delta)$, $(1 - \epsilon) \|\mathbf{x}\|_2^2 \le (\|\mathbf{\Pi}\mathbf{x}\|_2^2 \le (1 + \epsilon) \|\mathbf{x}\|_2^2$

Claim: $\mathbb{E} \| \mathbf{\Pi} \mathbf{x} \|_2^2 = \| \mathbf{x} \|_2^2$.

Some notation:

So each π_i contains $\mathcal{N}(0, 1)$ entries.

PROOF OF DISTRIBUTIONAL JL

Intermediate Claim: Let $\underline{\pi}$ be a length d vector with $\mathcal{N}(0, 1)$ entries.

$$\mathbb{E}\left[\|\|\mathbf{\Pi}\mathbf{x}\|_{2}^{2}\right] = \mathbb{E}\left(\left(\langle \boldsymbol{\pi}, \mathbf{x} \rangle\right)^{2}\right)$$

$$\mathbb{E}\left[\left(\sum_{i=1}^{n} \left(\langle \boldsymbol{\Pi}_{\mathbf{X}} \rangle\right)^{2}\right) = \left[\left(\sum_{i=1}^{n} \left(\sum_{i=1}^{n} \left(\langle \boldsymbol{\pi}, \mathbf{x} \rangle\right)^{2}\right)\right]^{2}\right]$$

$$= \mathbb{E}\left[\left(\sum_{i=1}^{n} \left(\sum_{i=1}^{n} \left(\langle \boldsymbol{\Pi}, \mathbf{x} \rangle\right)^{2}\right)^{2}\right]^{2}\right]$$

$$= \frac{1}{k} \sum_{i=1}^{k} \mathbb{E}\left[\langle \boldsymbol{\Pi}, \mathbf{x} \rangle^{2}\right]$$

$$\mathcal{L}$$

$$\mathcal{L}$$

Goal: Prove $\mathbb{E} \| \mathbf{\Pi} \mathbf{x} \|_{2}^{2} = \| \mathbf{x} \|_{2}^{2}$.

PROOF OF DISTRIBUTIONAL JL

Goal: Prove $\mathbb{E} \| \mathbf{\Pi} \mathbf{x} \|_2^2 = \| \mathbf{x} \|_2^2$. Established: $\mathbb{E} \| \mathbf{\Pi} \mathbf{x} \|_2^2 = \mathbb{E} \left| \left(\langle \boldsymbol{\pi}, \mathbf{x} \rangle \right)^2 \right|$

What type of random variable is $\langle \pi, x \rangle$?

Fact (Stability of Gaussian random variables)

$$\mathcal{N}(\mu_{1},\sigma_{1}^{2}) + \mathcal{N}(\mu_{2},\sigma_{2}^{2}) = \mathcal{N}(\mu_{1} + \mu_{2},\sigma_{1}^{2} + \sigma_{2}^{2})$$

$$\mathcal{N}(\mu_{1},\sigma_{1}^{2}) + \mathcal{N}(\mu_{2},\sigma_{2}^{2}) = \mathcal{N}(\mu_{1} + \mu_{2},\sigma_{1}^{2} + \sigma_{2}^{2})$$

$$\mathcal{N}(\mu_{1},\sigma_{1}^{2}) + \mathcal{N}(\mu_{2},\sigma_{2}^{2}) = \mathcal{N}(\mu_{1},\kappa_{2}^{2}) + \mathcal{N}(\mu_{2},\sigma_{1}^{2}) + \mathcal{N}(\mu_{2},\sigma$$

So $\mathbb{E} \| \mathbf{\Pi} \mathbf{x} \|_{2}^{2} = \mathbb{E} \left[(\langle \pi, \mathbf{x} \rangle)^{2} \right] = \mathbb{E} \left[\mathcal{N}(0, \|\mathbf{x}\|_{2}^{2})^{2} \right] = \|\mathbf{x}\|_{2}^{2}$, as desired. $\frac{\|\mathbf{x}\|_{2}^{2}}{\|\mathbf{v}_{1}(\mathbf{x}, \|\mathbf{v}_{1})^{2})} \sim \mathbb{E} \left[\mathbb{N}(\mathbf{v}, \|\mathbf{x}\|_{2}^{2})^{2} \right] \sim \mathbb{E} \left[\mathbb{N}(\mathbf{v}, \|\mathbf{x}\|_{2}^{2})^{2} \right]^{2}$ 13

1/58

Want to argue that, with probability $(1 - \delta)$,

$$\left((1-\epsilon) \|\mathbf{x}\|_{2}^{2} \le \|\mathbf{\Pi}\mathbf{x}\|_{2}^{2} \le (1+\epsilon) \|\mathbf{x}\|_{2}^{2} \right)$$

1. $\mathbb{E} \| \mathbf{\Pi} \mathbf{x} \|_2^2 = \| \mathbf{x} \|_2^2$.

2. Need to use a concentration bound.

$$\|\mathbf{\Pi}\mathbf{x}\|_{2}^{2} = \frac{1}{k} \sum_{i=1}^{k} (\langle \boldsymbol{\pi}_{i}, \mathbf{x} \rangle)^{2} = \frac{1}{k} \sum_{i=1}^{k} (\mathcal{N}(0, \|\mathbf{x}\|_{2}^{2}))^{2}$$

"Chi-squared random variable with k degrees of freedom."

Lemma

Let Z be a Chi-squared random variable with k degrees of ~ /K Z N(0, 1/x(12)2 freedom. $\Pr[|\mathbb{E}Z - Z| \ge \epsilon \mathbb{E}Z] \le 2e^{-k\epsilon^2/8}$ e-k 22/2 = S/2 -4 42/8 = log (5/2) 442/8 = log (2/8) $k = \frac{8 \log(2/2)}{22} = 0(\log(1/2))$

Goal: Prove $\|\Pi \mathbf{x}\|_2^2$ concentrates within $1 \pm \epsilon$ of its expectation, which equals $\|\mathbf{x}\|_2^2$.

If high dimensional geometry is so different from low-dimensional geometry, why is <u>dimensionality reduction</u> <u>possible?</u> Doesn't Johnson-Lindenstrauss tell us that high-dimensional geometry can be approximated in low dimensions?

CONNECTION TO DIMENSIONALITY REDUCTION

Hard case:
$$x_1, \ldots, x_n \in \mathbb{R}^d$$
 are all mutually orthogonal unit
vectors:
 $\|x_i \|_2^2 = 2$
 $\|x_i \|_2^1 + \|x_j\|_2^2 = 1$
for all i, j .
 $\|x_i - x_j\|_2^2 = 2$

When we reduce to <u>k</u> dimensions with JL, we still expect these vectors to be nearly orthogonal. Why?

$$\frac{\|[\Pi x_{7} - \Pi x_{5}]\|_{2}^{2} - 2}{\frac{1}{5}}$$

$$\frac{\|[\Pi x_{7}]\|_{2}^{2} + \|[\Pi x_{5}]\|_{2}^{2} - 2\langle \Pi x_{7}, \Pi x_{7} \rangle }{\approx \|[X_{7}]\|_{2}^{2} + \|[X_{5}]\|_{2}^{2} - 2\langle \Pi x_{7}, \Pi x_{7} \rangle }$$

Hard case: $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ are all mutually orthogonal unit vectors: $\begin{aligned} & \mathbf{x}_i - \mathbf{x}_j \|_2^2 = 2 & \text{for all } i, j. \quad \text{we find the set of the set$

From our result earlier, in $O(\log n/\epsilon^2)$ dimensions, there exists $2^{O(\epsilon^2 \cdot \log n/\epsilon^2)} \ge n$ unit vectors that are close to mutually orthogonal. $O(\log n/\epsilon^2) = \text{just enough dimensions.}$

Alternative view: Without additional structure, we expect that learning/inference in *d* dimenions requires $2^{O(d)}$ data points. If we really had a data set that large, then the JL bound would be vacous, since $\log(n) = O(d)$.

viders in K due

DIMENSIONALITY REDUCTION

Jaccord Lainty

The Johnson-Lindenstrauss Lemma let us sketch vectors and preserve their ℓ_2 Euclidean distance.

We also have dimensionality reduction techniques that preserve alternative measures of similarity.

How does **Shazam** match a song clip against a library of 8 million songs (32 TB of data) in a fraction of a second?

Given \mathbf{q} , find any nearby "fingerprint" \mathbf{y} in a database – i.e. any \mathbf{y} with dist (\mathbf{y}, \mathbf{q}) small.

Challenges:

- { Database is possibly huge: O(nd) bits.)
- Expensive to compute dist(y, q): O(d) time.

Goal: Design a more compact sketch for comparing $\mathbf{q}, \mathbf{y} \in \{0, 1\}^d$ Ideally $\ll d$ space/time complexity.

As in Johnson-Lindenstrauss compressions, we want that $C(\mathbf{q})$ is similar to $C(\mathbf{y})$ if \mathbf{q} is similar to \mathbf{y} .

JACCARD SIMILARITY

Definition (Jaccard Similarity)

$$J(\underline{q},\underline{y}) = \frac{|\underline{q} \cap \underline{y}|}{|\underline{q} \cup \underline{y}|} = \frac{(\# \text{ of non-zero entries in common })}{\text{total } \# \text{ of non-zero entries}} \frac{2}{7}$$

Natural similarity measure for binary vectors. $0 \le J(q, y) \le 1$.

Can be applied to any data which has a natural binary representation (more than you might think).

"Bag-of-words" model:

How many words do a pair of documents have in common?

How many bigrams do a pair of documents have in common?

JACCARD SIMILARITY FOR SEISMIC DATA

Feature extract pipeline for earthquake data.

(see paper by Rong et al. posted on course website)

- Finding duplicate or new duplicate documents or webpages.
- Change detection for high-speed web caches.
- Finding near-duplicate emails or customer reviews which could indicate spam.

Goal: Design a compact sketch $C : \{0, 1\} \rightarrow \mathbb{R}^k$:

Want to use $C(\mathbf{q}), C(\mathbf{y})$ to approximately compute the Jaccard similarity $J(\mathbf{q}, \mathbf{y}) = \frac{|\mathbf{q} \cap \mathbf{y}|}{|\mathbf{q} \cup \mathbf{y}|}$.

MINHASH

MinHash (Broder, '97):

MINHASH

Claim: For all *i*, $\Pr[c_i(\mathbf{q}) = c_i(\mathbf{y})] = J(\mathbf{q}, \mathbf{y}) = \frac{|\mathbf{q} \cap \mathbf{y}|}{|\mathbf{q} \cup \mathbf{y}|}$.

Proof:

1. For $c_i(\mathbf{q}) = c_i(\mathbf{y})$, we need that $\arg\min_{i \in \mathbf{q}} h(i) = \arg\min_{i \in \mathbf{y}} h(i)$.

MINHASH ANALYSIS

Claim: $Pr[c_i(q) = c_i(y)] = J(q, y).$

2. Every non-zero index in $\mathbf{q} \cup \mathbf{y}$ is equally likely to produce the lowest hash value. $c_i(\mathbf{q}) = c_i(\mathbf{y})$ only if this index is 1 in <u>both</u> \mathbf{q} and \mathbf{y} . There are $\mathbf{q} \cap \mathbf{y}$ such indices. So:

$$\Pr[c_i(\mathbf{q}) = c_i(\mathbf{y})] = \frac{|\mathbf{q} \cap \mathbf{y}|}{|\mathbf{q} \cup \mathbf{y}|} = J(\mathbf{q}, \mathbf{y})$$

Let J = J(q, y) denote the Jaccard similarity between q and y.

Return:
$$\tilde{J} = \frac{1}{k} \sum_{i=1}^{k} \mathbb{1}[\underline{c_i(\mathbf{q})} = c_{\underline{i}}(\underline{y})].$$

Unbiased estimate for Jaccard similarity:

$$\mathbb{E}\tilde{J} = \frac{1}{k} \quad \stackrel{\scriptstyle \leftarrow}{\underset{\scriptstyle i=1}{2}} \quad \mathbb{E}\left(\mathbb{1}\left(c_i(\mathbf{b}) - C_i(\mathbf{j})\right)\right) = \frac{1}{k} \quad \stackrel{\scriptstyle \leftarrow}{\underset{\scriptstyle i=1}{2}} \quad \overline{J}(\mathbf{b},\mathbf{j})$$

$$C(\mathbf{q}) \quad \frac{12}{.24} \quad \frac{.76}{.35} \quad C(\mathbf{y}) \quad \frac{.12}{.98} \quad \frac{.76}{.76} \quad \frac{.11}{.11} \quad \stackrel{\scriptstyle \leftarrow}{} \quad J(\mathbf{b},\mathbf{j})$$

The more repetitions, the lower the variance.

Let $J = J(\mathbf{q}, \mathbf{y})$ denote the true Jaccard similarity. Estimator: $\tilde{J} = \frac{1}{k} \sum_{i=1}^{k} \mathbb{1}[c_i(\mathbf{q}) = c_i(\mathbf{y})]$. $\operatorname{Var}[\tilde{J}] = \frac{1}{k} \gamma \sum_{i=1}^{k} \operatorname{Vec}\left(\mathbb{1}[c_i(\mathbf{q}) = c_i(\mathbf{y})]\right) = \frac{1}{k} \cdot \mathcal{J}$ $\leq \frac{1}{k}$

Plug into Chebyshev inequality. How large does k need to be so that with probability $> 1 - \delta$, $|J - \tilde{J}| \le \epsilon$?

86

Chebyshev inequality: As long as $k = O\left(\frac{1}{\epsilon^2 \delta}\right)$, then with prob. $1 - \delta$,

$$J(\mathsf{q},\mathsf{y}) - \epsilon \leq \tilde{J}(C(\mathsf{q}),C(\mathsf{y})) \leq J(\mathsf{q},\mathsf{y}) + \epsilon.$$

And \tilde{J} only takes O(k) time to compute! Independent of original fingerprint dimension d.

Can be improved to $\log(1/\delta)$ dependence. Can anyone tell me how?

SIMILARITY SKETCHING

BREAK

NEAR NEIGHBOR SEARCH

Common goal: Find all vectors in database $\underline{\mathbf{q}}_1, \ldots, \underline{\mathbf{q}}_n \in \mathbb{R}^d$ that are close to some input query vector $\underline{\mathbf{y}} \in \mathbb{R}^d$. I.e. find all of \mathbf{y} 's "nearest neighbors" in the database.

- The Shazam problem.
- Audio + video search.
- Finding duplicate or near duplicate documents.
- Detecting seismic events.

How does similarity sketching help in these applications?

- Improves runtime of "linear scan" from O(nd) to O(nk).
- Improves space complexity from <u>O(nd)</u> to O(nk). This can be super important – e.g. if it means the linear scan only accesses vectors in fast memory.

BEYOND A LINEAR SCAN

nearst

New goal: Sublinear o(n) ime to find near neighbors.

This problem can already be solved for a small number of dimensions using space partitioning approaches (e.g. kd-tree).

Runtime is roughly $O(d \cdot \min(n, 2^d))$, which is only sublinear for $d = o(\log n)$.

HIGH DIMENSIONAL NEAR NEIGHBOR SEARCH

Only been attacked much more recently:

Locality-sensitive hashing [Indyk, Motwani, 1998]
 Spectral hashing [Weiss, Torralba, and Fergus, 2008]
 (Vector quantization [Jégou, Douze, Schmid, 2009]

Key Insight of LSH: Trade worse space-complexity for better time-complexity. I.e. typically use more than O(n) space.

LOCALITY SENSITIVE HASH FUNCTIONS

Let $h : \mathbb{R}^d \to \{1, \dots, m\}$ be a random hash function. We call h locality sensitive for similarity function $s(\mathbf{q}, \mathbf{y})$ if $\Pr[h(\mathbf{q}) == h(\mathbf{y})]$ is:

- Higher when \mathbf{q} and \mathbf{y} are more similar, i.e. $s(\mathbf{q}, \mathbf{y})$ is higher.
- Lower when **q** and **y** are more dissimilar, i.e. s(q, y) is lower.

LOCALITY SENSITIVE HASH FUNCTIONS

LSH for $s(\mathbf{q}, \mathbf{y})$ equal to Jaccard similarity: $\begin{array}{c} \mathcal{G}(\mathcal{L}(\mathbf{q})) \\ \mathcal{G}(\mathcal{L}$ • Let (g) $[0, 1] \rightarrow \{1, \dots, m\}$ be a uniform random hash h(g)= h(y) with higher prob if)(g,y) is (arge. function. • Let $h(\mathbf{q}) = g(c(\mathbf{q}))$. q 0 1 1 0 1 0 1 0 ٥

LSH for Jaccard similarity:

- Let $c: \{0,1\}^d \rightarrow [0,1]$ be a single instantiation of MinHash.
- Let $g : [0, 1] \rightarrow \{1, \dots, m\}$ be a uniform random hash function.
- · Let $h(\mathbf{x}) = g(c(\mathbf{x}))$. h(g) = h(z) whenever c(g) = c(z)

If $J(\mathbf{q}, \mathbf{y}) = v_{,}$

$$\Pr[h(\mathbf{q}) == h(\mathbf{y})] = \mathbf{v} + (1 - \mathbf{v}) \cdot \frac{1}{\mathbf{v}} \mathbf{y}$$

$$\mathbf{v}_{c, \mathbf{y}} = \mathbf{v}_{c, \mathbf{y}} + \mathbf{v}_{c, \mathbf$$

Basic approach for near neighbor search in a database.

Pre-processing:

- Select random LSH function $h: \{0,1\}^d \rightarrow 1, \dots, m$.
- Create table T with $\underline{m} = O(n)$ slots.¹
- For $i = 1, \ldots, n$, insert \mathbf{q}_i into $T(h(\mathbf{q}_i))$.

Query:

- Want to find near neighbors of input $\mathbf{y} \in \{0,1\}^d$.
- Linear scan through all vectors $\mathbf{q} \in T(h(\mathbf{y}))$ and return any that are close to \mathbf{y} . Time required is $O(d \cdot |T(h(\mathbf{y})|)$.

¹Enough to make the O(1/m) term negligible.

NEAR NEIGHBOR SEARCH

Two main considerations:

False Negative Rate: What's the probability we do not find a vector that is close to y?
 False Positive Rate: What's the probability that a vector in T(h(y)) is not close to y?

A higher false negative rate means we miss near neighbors.

A higher false positive rate means increased runtime – we need to compute $J(\mathbf{q}, \mathbf{y})$ for every $\mathbf{q} \in T(h(\mathbf{y}))$ to check if it's actually close to \mathbf{y} .

Note: The meaning of "close" and "not close" is application dependent. E.g. we might specify that we want to find anything with Jaccard similarity $\geq .4$, but not with Jaccard similarity < .2.

REDUCING FALSE NEGATIVE RATE

Suppose the nearest database point **q** has
$$J(y, q) = .4$$
. = $\sqrt{}$
What's the probability we do not find q?

REDUCING FALSE NEGATIVE RATE

Pre-processing:

- Select t independent LSH's $h_1, \ldots, h_t : \{0, 1\}^d \rightarrow 1, \ldots, m$.
- Create tables T_1, \ldots, T_t , each with *m* slots.
- For i = 1, ..., n, j = 1, ..., t,
 - Insert \mathbf{q}_i into $T_j(h_j(\mathbf{q}_i))$.

REDUCING FALSE NEGATIVE RATE

Query:

- Want to find near neighbors of input $\mathbf{y} \in \{0, 1\}^d$.
- Linear scan through all vectors in $T_1(h_1(\mathbf{y})) \cup T_2(h_2(\mathbf{y})) \cup \dots, T_t(h_t(\mathbf{y})).$

Suppose the nearest database point **q** has $J(\mathbf{y}, \mathbf{q}) = .4$.

What's the probability we find q?

$$(1 - V)^{\dagger}$$
 $1 - .6^{10} = .99$

(10, 99%)

Suppose there is some other database point **z** with $J(\underline{y}, \underline{z}) = .2$. What is the probability we will need to compute $J(\underline{z}, \underline{y})$ in our hashing scheme with one table? I.e. the probability that **y** hashes into at least one bucket containing **z**.

In the new scheme with t = 10 tables? $\int - (I - v)^{+} = \int - .8^{+} = .9^{\circ}$ So we have:

(89%)

q

2

1

Change our locality sensitive hash function.

Tunable LSH for Jaccard similarity:

- Choose parameter $r \in \mathbb{Z}^+$.
- Let $c_1, \ldots, c_r : \{0, 1\}^d \rightarrow [0, 1]$ be random MinHash.
- Let $g: [0,1]^r \to \{1,\ldots,m\}$ be a uniform random hash function.

(Charler)

• Let
$$h(\mathbf{x}) = g(c_1(\mathbf{x}), \ldots, c_r(\mathbf{x})).$$

m

Tunable LSH for Jaccard similarity:

- Choose parameter $r \in \mathbb{Z}^+$.
- Let $c_1, \ldots, c_r : \{0, 1\}^d \rightarrow [0, 1]$ be random MinHash.
- Let $g: [0,1]^r \to \{1,\ldots,m\}$ be a uniform random hash function.

• Let
$$h(\mathbf{x}) = g(c_1(\mathbf{x}), \dots, c_r(\mathbf{x})).$$

If
$$J(q, y) = v$$
 then $\Pr[h(q) == h(y)] = \sqrt{r}$, $\frac{1}{m}$
 $\sqrt{r} + \frac{1}{m}$
 $\sqrt{r} + \frac{1}{m}$

TUNABLE LSH

Full LSH cheme has two parameters to tune:

Probability we check **q** when querying **y** if $J(\mathbf{q}, \mathbf{y}) = v$:

$$\approx 1 - (1 - v^r)^t$$

r = 5, t = 40

Probability we check **q** when querying **y** if $J(\mathbf{q}, \mathbf{y}) = v$:

$$\approx 1 - (1 - v^r)^t$$

r = 40, t = 5

Probability we check **q** when querying **y** if $J(\mathbf{q}, \mathbf{y}) = v$:

 $1 - (1 - v^r)^t$

Increasing both *r* and *t* gives a steeper curve.

Better for search, but worse space complexity.

FIXED THRESHOLD

Use Case 1: Fixed threshold.

- Shazam wants to find match to audio clip **y** in a database of 10 million clips.
- There are 10 true matches with J(y, q) > .9.
- There are 10,000 <u>near matches</u> with $J(y, q) \in [.7, .9]$.
- All other items have J(y, q) < .7.

With r = 25 and t = 40,

- Hit probability for $J(\mathbf{y},\mathbf{q}) > .9$ is $\gtrsim 1 (1 .9^{25})^{40} \ge .95$
- Hit probability for $J(y, q) \in [.7, .9]$ is $\leq 1 (1 .9^{25})^{40} = .95$
- Hit probability for J(y,q) < .7 is $\lesssim 1-(1-.7^{25})^{40}=.005$

Upper bound on total number of items checked:

10 + .95 · 10,000 + .005 · 9,989,990 € 60,000 ≪ 10,000,000.

Space complexity: 40 hash tables $\approx 40 \cdot O(n)$. Directly trade space for fast search.

Near Neighbor Search Problem

Concrete worst case result:

Theorem (Indyk, Motwani, 1998)

If there exists some q with $\|\mathbf{q} - \mathbf{y}\|_0 \le R$, return a vector $\mathbf{\tilde{q}}$ with $\|\mathbf{\tilde{q}} - \mathbf{y}\|_0 \le C \cdot R$ in:

- Time: $O(n^{1/C})$.
- Space: $O(n^{1+1/C})$.

 $\|\boldsymbol{q}-\boldsymbol{y}\|_0=$ "hamming distance" = number of elements that differ between \boldsymbol{q} and $\boldsymbol{y}.$

Theorem (Indyk, Motwani, 1998)

Let q be the closest database vector to y. Return a vector \tilde{q} with $\|\tilde{q} - y\|_0 \leq C \cdot \|q - y\|_0$ in:

- Time: $\tilde{O}(n^{1/C})$.
- Space: Õ (n^{1+1/C}).

Good locality sensitive hash functions exists for other similarity measures.

Cosine similarity $\cos(\theta(\mathbf{x}, \mathbf{y})) = \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{x}\|_2 \|\mathbf{y}\|_2}$:

 $-1 \leq \cos(\theta(\mathbf{x}, \mathbf{y})) \leq 1.$

Cosine similarity is natural "inverse" for Euclidean distance.

Euclidean distance $\|\mathbf{x} - \mathbf{y}\|_2^2$:

• Suppose for simplicity that $\|\mathbf{x}\|_2^2 = \|\mathbf{y}\|_2^2 = 1$.

Locality sensitive hash for cosine similarity:

- Let $\mathbf{g} \in \mathbb{R}^d$ be randomly chosen with each entry $\mathcal{N}(0, 1)$.
- Let $f: \{-1, 1\} \rightarrow \{1, \dots, m\}$ be a uniformly random hash function.
- $h : \mathbb{R}^d \to \{1, \dots, m\}$ is defined $h(\mathbf{x}) = f(\operatorname{sign}(\langle \mathbf{g}, \mathbf{x} \rangle)).$

If $cos(\theta(\mathbf{x}, \mathbf{y})) = v$, what is $Pr[h(\mathbf{x}) == h(\mathbf{y})]$?

SIMHASH ANALYSIS IN 2D

SimHash can be tuned, just like our MinHash based LSH function for Jaccard similarity:

- Let $\mathbf{g}_1, \ldots, \mathbf{g}_r \in \mathbb{R}^d$ be randomly chosen with each entry $\mathcal{N}(0, 1)$.
- Let $f: \{-1,1\}^r \to \{1,\ldots,m\}$ be a uniformly random hash function.

•
$$h : \mathbb{R}^d \to \{1, \dots, m\}$$
 is defined
 $h(\mathbf{x}) = f([\operatorname{sign}(\langle \mathbf{g}_1, \mathbf{x} \rangle), \dots, \operatorname{sign}(\langle \mathbf{g}_r, \mathbf{x} \rangle)]).$

$$\Pr[h(\mathbf{x}) == h(\mathbf{y})] = \left(1 - \frac{\theta}{\Pi}\right)^r$$

SIMHASH ANALYSIS IN 2D

To prove: $\Pr[h(\mathbf{x}) == h(\mathbf{y})] = 1 - \frac{\theta}{\pi}$, where $h(\mathbf{x}) = f(\operatorname{sign}(\langle \mathbf{g}, \mathbf{x} \rangle))$ and *f* is uniformly random hash function.

SIMHASH ANALYSIS 2D

 $Pr[h(\mathbf{x}) == h(\mathbf{y})] \approx$ probability \mathbf{x} and \mathbf{y} are on the same side of hyperplane orthogonal to \mathbf{g} .

SIMHASH ANALYSIS HIGHER DIMENSIONS

There is always some <u>rotation matrix</u> **U** such that **Ux**, **Uy** are spanned by the first two-standard basis vectors and have the same cosine similarity as **x** and **y**.

SIMHASH ANALYSIS HIGHER DIMENSIONS

There is always some <u>rotation matrix</u> **U** such that **x**, **y** are spanned by the first two-standard basis vectors.

Note: A rotation matrix U has the property that $U^T U = I$. I.e., U^T is a rotation matrix itself, which reverses the rotation of U.

Claim:

$$1 - \frac{\theta}{\pi} = \Pr[\operatorname{sign}(\langle \mathbf{g}[1, 2], (\mathbf{U}\mathbf{x})[1, 2] \rangle) == \operatorname{sign}(\langle \mathbf{g}[1, 2], (\mathbf{U}\mathbf{y}[1, 2] \rangle)]$$
$$= \Pr[\operatorname{sign}(\langle \mathbf{g}, \mathbf{U}\mathbf{x} \rangle) == \operatorname{sign}(\langle \mathbf{g}, \mathbf{U}\mathbf{y} \rangle)]$$
$$= \Pr[\operatorname{sign}(\langle \mathbf{g}, \mathbf{x} \rangle) == \operatorname{sign}(\langle \mathbf{g}, \mathbf{y} \rangle)]$$

Why?

MODERN NEAR NEIGBHOR SEARCH

 High-dimensional vector search is exploding as a research area with the rise of machine-learned multi-modal embeddings for images, text, and more.

Web-scale image search is now a vector search problem.

GRAPH BASED NEAR NEIGBHOR