CS-GY 6763: Lecture 5 Dimensionality reduction, near neighbor search in high dimensions

NYU Tandon School of Engineering, Prof. Christopher Musco

PROJECT

- If you are doing a project, find a partner and sign-up to present for reading group slot by Monday, 10/9. We need presenters for next Friday!

EUCLIDEAN DIMENSIONALITY REDUCTION

then w.p. $1-\delta$, a random
Gaussian Π satisfies..

SAMPLE APPLICATION

k-means clustering: For data set $\mathrm{a}_{1}, \ldots, \mathrm{a}_{n}$, find clusters $C_{1}, \ldots, C_{k} \subseteq\{1, \ldots, n\}$ to minimize:

$$
\operatorname{Cost}\left(C_{1}, \ldots, C_{k}\right)=\sum_{j=1}^{k} \frac{1}{2\left|C_{j}\right|} \sum_{u, v \in C_{j}}\left\|a_{u}-a_{v}\right\|_{2}^{2}
$$

a_{2}

SAMPLE APPLICATION

k-means clustering: For data set $\mathbf{a}_{1}, \ldots, a_{n}$, find clusters $C_{1}, \ldots, C_{k} \subseteq\{1, \ldots, n\}$ to minimize:

$$
\operatorname{Cost}\left(C_{1}, \ldots, C_{k}\right)=\sum_{j=1}^{k} \frac{1}{2\left|C_{j}\right|} \sum_{u, v \in C_{j}}\left\|a_{u}-a_{v}\right\|_{2}^{2}
$$

Claim: If I find the optimal clustering for $\boldsymbol{\Pi} \mathbf{a}_{1}, \ldots, \Pi a_{n}$ then its cost is less than $(1+\epsilon)$ times the cost of the best clustering obtained with the original data.

RANDOMIZED JL CONSTRUCTIONS

$$
\pi \pi^{\top} \approx I
$$

 each entry equals $\frac{1}{\sqrt{k}} \pm 1$ with equal probability.

-2.1384	2.9080	-0.3538	0.0229	0.5201	-0.2938	-1.3320	-1.3617	-6.1952
-9.8396	0.8252	-0.8236	-8.2620	-0.0200	-0.8479	-2.3299	0.4550	-0.2176
1.3546	1.3790	-1.5771	-1.7502	-7348	-1.1201	-1.4491	-0.8487	-6.3031
-1.0722	-1.0582	0.5080	-8.2857	\%.7992	2.5260	0.3335	-0.3349	0.0238
0.9610	-0.4686	0.2820	-8.8314	. 017	1.6555	0.3914	0.5528	0.0513
0.1240	-0.2725	0.0335	-0.9792	-.132	0.3075	0.4517	1.0391	0.8261
1.4367	1. 8984	-1.3337	-1.1564	- 9.7145	-1.2571	-0.1303	-1.1176	1.5270
-1.9609	-0.2779	1.1275	-8.5336	1. 3514	-8.8655	0.1837	1.2607	0.4659
-0.1977	0.7015	0.3502	-2.0026	-0.2248	-0.1765	-0.4762	0.6601	-0.2097
-1.2078	-2.0518	-0.2991	8.9642	-0.5890	0.7914	0.8628	-0.0679	0.6252

$\gg P i=\operatorname{randn}(m, d) ;$
$\gg s=(1 / \operatorname{sqrt}(m)) * P i * q ;$

$\gg P i=2 * \operatorname{randi}(2, m, d)-3 ;$
$\gg s=(1 / \operatorname{sqrt}(m)) * \operatorname{Pi} * q ;$

Lots of other constructions work.

RANDOM PROJECTION

Intuition: Multiplying by a random matrix mimics the process of projecting onto a random k dimensional subspace in d dimensions.

EUCLIDEAN DIMENSIONALITY REDUCTION

Intermediate result:
Lemma (Distributional $1 L$ Lempha)
Let $\boldsymbol{\Pi} \in \mathbb{R}^{k \times d}$ be chosen so thlat each entry equals $\frac{1}{\sqrt{k}} \mathcal{N}(0,1)$, where $\mathcal{N}(0,1)$ denotes a stendard Gaussian random variable. If we choose $k=0\left(\frac{\log (1 / \delta)}{\epsilon^{2}}\right)$, then for any vector x , with probability ($1-\delta$):

$$
(1-\epsilon)\|\mathbf{x}\|_{2}^{2} \leq\|\boldsymbol{\Pi} \mathbf{x}\|_{2}^{2} \leq(1+\epsilon)\|\mathbf{x}\|_{2}^{2}
$$

Given this lemma, how do we prove the traditional Johnson-Lindenstrauss lemma?

UL FROM DISTRIBUTIONAL JL

We have a set of vectors $\underline{q_{1}}, \ldots, \underline{q_{n}}$. Fix $i, j \in 1, \ldots, n$.
Let $\underline{x}=\underline{q_{i}-q_{i}}$. By linearity, $\underline{\underline{\Pi x}}=\boldsymbol{\Pi}\left(\mathrm{q}_{i}-\mathrm{q}_{j}\right)=\underline{\Pi \mathrm{q}_{i}}-\underline{\underline{q_{j}}}$.
By the Distributional JL Lemma, with probability $1-\delta$,

Finally, set $\delta=\frac{1}{n^{2}}$. Since there are $<n^{2}$ total i, j pairs, by a union bound we have that with probability $9 / 10$, the above will hold for all i, j, as long as we compress to: we. $1-\frac{1}{10 u^{2}}$

$$
\begin{aligned}
& k=O\left(\frac{\log \left(1 /\left(1 / n^{2}\right)\right)}{\epsilon^{2}}\right)=O\left(\frac{\log n}{\epsilon^{2}}\right) \text { dimensions. } \square \\
& \delta=O\left(1 / n^{2}\right) \quad \log (1 / \delta)=\log \left(u^{2}\right)=O(\log (4))
\end{aligned}
$$

PROOF OF DISTRIBUTIONAL JL

Want to argue that, with probability $(1-\delta)$,

$$
(1-\epsilon)\|\mathbf{x}\|_{2}^{2} \leq\|\boldsymbol{\Pi x}\|_{2}^{2} \leq(1+\epsilon)\|\mathbf{x}\|_{2}^{2}
$$

Claim: $\underbrace{\mathbb{E}\|\Pi x\|_{2}^{2}=\|x\|_{2}^{2}}$.
Some notation:

So each $\boldsymbol{\pi}_{i}$ contains $\mathcal{N}(0,1)$ entries.

PROOF OF DISTRIBUTIONAL IL

Intermediate Claim: Let $\boldsymbol{\pi}$ be a length d vector with $\mathcal{N}(0,1)$ entries.

$$
\begin{aligned}
& \mathbb{E}\left[\sum_{i=1}^{k}\left(\pi_{x}\right)_{i}^{2}\right]= \mathbb{E}\left[\sum_{i=1}^{n}\left(\frac{1}{\sqrt{k}}\left\langle\pi_{i}, x\right)\right)^{2}\right] \\
&=\mathbb{E}\left[\frac{1}{k} \sum_{i=1}^{k}\left\langle\pi_{i}, x\right\rangle^{2}\right] \\
&= \frac{1}{k} \sum_{i=1}^{k} \mathbb{E}\left[\left\langle\pi_{i}, x\right\rangle^{2}\right] \\
& \downarrow \\
& \sim\langle\pi, x\rangle^{2}
\end{aligned}
$$

Goal: Prove $\mathbb{E}\|\boldsymbol{\Pi} x\|_{2}^{2}=\|x\|_{2}^{2}$.

PROOF OF DISTRIBUTIONAL IL

$\sum_{i=1}^{d} \pi[i] \times[i]$
$W(0,1)$

$$
\langle\underline{\pi, x}\rangle=z_{1} \cdot x[1]+z_{2} \cdot x[2]+\ldots+\left(z_{d} \cdot x[d]\right)
$$

where each Z_{1}, \ldots, z_{d} is a standard normal $\mathcal{N}(0,1)$.
We have that $Z_{i} \cdot x[i]$ is a normal $\underline{\mathcal{N}\left(0, x[i]^{2}\right)}$ random variable.

Goal: Prove $\mathbb{E}\|\mathbf{\pi x}\|_{2}^{2}=\|\mathbf{x}\|_{2}^{2}$. Established: $\mathbb{E}\|\mathbf{\pi}\|_{2}^{2}=\mathbb{E}\left[(\langle\boldsymbol{\pi}, \mathbf{x}\rangle)^{2}\right]$

STABLE RANDOM VARIABLES

What type of random variable is $\langle\pi, x\rangle$?
Fact (Stability of Gaussian random variables)

$$
\begin{aligned}
& \underline{\mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right)}+\underline{\left.\mathcal{N}\left(\mu_{2}, \sigma_{2}^{2}\right)=\sqrt{\mathcal{N}} \mu_{1}+\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right)} \\
& \rightarrow \sigma^{2}=\sum_{i=1}^{d} x[i]^{2}=\| x\left(\|_{\boldsymbol{\imath}}^{2}\right. \\
& \underline{\langle\pi, x\rangle}= \\
& =\mathcal{N}\left(0, x[1]^{2}\right)+\mathcal{N}\left(0, x[2]^{2}\right)+\ldots+\mathcal{N}\left(0, x[d]^{2}\right)
\end{aligned}
$$

PROOF OF DISTRIBUTIONAL IL

$$
\log (1 / \alpha)
$$

Want to argue that, with probability $(1-\delta)$,

$$
\left((1-\epsilon)\|\mathbf{x}\|_{2}^{2} \leq\|\boldsymbol{\Pi} \mathbf{x}\|_{2}^{2} \leq(1+\epsilon)\|\mathbf{x}\|_{2}^{2}\right)
$$

1. $\mathbb{E}\|\boldsymbol{\Pi} \boldsymbol{x}\|_{2}^{2}=\|\mathbf{x}\|_{2}^{2} \cdot \boldsymbol{J}$
2. Need to use a concentration bound.

$$
\underline{\underline{\| \boldsymbol{\Pi}} \|_{2}^{2}}=\frac{1}{k} \sum_{i=1}^{k}\left(\left\langle\boldsymbol{\pi}_{i}, \mathbf{x}\right\rangle\right)^{2}=\frac{1}{k} \sum_{i=1}^{k}\left(\mathcal{N}\left(0,\|\mathbf{x}\|_{2}^{2}\right)\right)^{2}
$$

"Chi-squared random variable with k degrees of freedom."

CONCENTRATION OF CHI-SQUARED RANDOM VARIABLES

Lemma
Let Z be a Chi-squared random variable with k degrees of freedom.

$$
e^{-k \varepsilon^{2} / \varepsilon}=\delta / 2
$$

$$
-k \varepsilon^{2} / 8=\log (\delta / \varepsilon) k \varepsilon^{2} / 8=\log (2 / \delta)
$$

$$
k=\frac{8 \log (2 / \delta)}{\varepsilon^{2}}=O(\log (1 / \delta)
$$

Goal: Prove $\|\boldsymbol{\Pi x}\|_{2}^{2}$ concentrates within $1 \pm \epsilon$ of its expectation, which equals $\|x\|_{2}^{2}$.

$$
\begin{aligned}
& \rightarrow 1 / K \sum_{i=1} N\left(0,11 \times 11_{i}^{2}\right)^{2} \\
& \operatorname{Pr}[|\mathbb{E} Z-Z| \geq \epsilon \mathbb{E} \not \subset] \leq 2 e^{-k \epsilon^{2} / 8} \\
& \underset{\|x\|_{2}^{2}}{\|} \underset{\|}{\|}
\end{aligned}
$$

CONNECTION LAST LECTURE

If high dimensional geometry is so different from low-dimensional geometry, why is dimensionality reduction possible? Doesn't Johnson-Lindenstrauss tell us that high-dimensional geometry can be approximated in low dimensions?

CONNECTION TO DIMENSIONALITY REDUCTION

$$
\text { nearly } \quad\|a-b\|_{\sim}^{2}=\langle a-b, a-b\rangle
$$

Hard case: $\mathrm{x}_{1}, \ldots, \mathrm{x}_{n} \in \mathbb{R}^{d}$ are all mutually orthogonal unit

When we reduce to k dimensions with JL, we still expect these vectors to be nearly orthogonal. Why?

$$
\begin{aligned}
& \frac{\left\|\pi x_{i}-\Pi x_{j}\right\|_{2}^{2}}{4} \approx 2 \\
& \left\|\pi_{x_{i}}\right\|_{2}^{2}+\left\|\pi x_{j}\right\|_{i}^{2}-2\left\langle\pi x_{i}, \pi x_{j}\right\rangle \\
& \approx\left\|x_{i}\right\|_{2}^{2}+\left\|x_{j}\right\|_{2}^{2}-2\left\langle\pi x_{i}, \pi x_{j}\right\rangle \\
& \approx 2-2\left\langle\pi x_{i}, \pi_{j}\right\rangle \longrightarrow \varepsilon
\end{aligned}
$$

CONNECTION TO DIMENSIONALITY REDUCTION

Hard case: $\mathrm{x}_{1}, \ldots, \mathrm{x}_{n} \in \mathbb{R}^{d}$ are all mutually orthogonal unit vectors: $2^{0}\left(c^{2} k\right)$

$$
\left\|x_{i}-x_{j}\right\|_{2}^{2}=2
$$

for all i, j. octlogonal
vulors in K dim

From our result earlier, in $O\left(\log n / \epsilon^{2}\right)$ dimensions, there exists space. $2^{0\left(\epsilon^{2} \cdot \log n / \epsilon^{2}\right)} \geq n$ unit vectors that are close to mutually orthogonal. $O\left(\log n / \epsilon^{2}\right)=$ just enough dimensions.

Alternative view: Without additional structure, we expect that learning/inference in d dimenions requires $2^{0(d)}$ data points. If we really had a data set that large, then the JL bound would be vacous, since $\log (n)=O(d)$.

DIMENSIONALITY REDUCTION

$$
\operatorname{saccol}_{S_{\gamma \operatorname{mi}}} \operatorname{aosi}^{-\lambda} \gamma
$$

The Johnson-Lindenstrauss Lemma let us sketch vectors and preserve their ℓ_{2} Euclidean distance.

We also have dimensionality reduction techniques that preserve alternative measures of similarity.

SIMILARITY ESTIMATION

How does Shazam match a song clip against a library of 8 million songs (32 TB of data) in a fraction of a second?

SIMILARITY ESTIMATION

How does Shazam match a song clip against a library of 8 million songs (32 TB of data) in of a second?

Spectrogram extracted
Processed spectrogram: used to construct audio "fingerprint" $q \in\{0,1\}^{d}$.
Each clip is represented by a high dimensional binary vector q .

1	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$

SIMILARITY ESTIMATION

Given q, find any nearby "fingerprint" \underline{y} in a database - i.e. any y with $\operatorname{dist}(\mathrm{y}, \mathrm{q})$ small.

Challenges:
(Database is possibly huge: $O(n d)$ bits.)

- Expensive to compute dist(y, q): O(d) time.

SIMILARITY ESTIMATION

Goal: Desiga more compact sketch for comparing $q, y \in\{0,1\}^{d}$. Ideally $\ll d$ space/time complexity.

As in Johnson-Lindenstrauss compressions, we want that $\mathrm{C(q)}$ is similar to $C(y)$ if q is similar to y.

JACCARD SIMILARITY

$$
\begin{array}{|ccccccc|}
\hline 010 & 1181010 & 1 & 1 & 1 & 1 \\
(2) & 45 & (7) & (9) & 2 & 4 & \text { (10) (11) }
\end{array}
$$

Definition (Jaccard Similarity)

$$
J(\underline{q, y})=\frac{|\mathrm{q} \cap \mathrm{y}|}{|\mathrm{q} \cup \mathrm{y}|}=\frac{(\# \text { of non-zero entries in common) }}{\text { total \# of non-zero entries }} \frac{2}{2}
$$

Natural similarity measure for binary vectors. $0 \leq J(\mathrm{q}, \mathrm{y}) \leq 1$.
Can be applied to any data which has a natural binary representation (more than you might think).

JACCARD SIMILARITY FOR DOCUMENT COMPARISON

"Bag-of-words" model:

How many words do a pair of documents have in common?

JACCARD SIMILARITY FOR DOCUMENT COMPARISON

"Bag-of-words" model:

This is a sentence.

How many bigrams do a pair of documents have in common?

JACCARD SIMILARITY FOR SEISMIC DATA

Feature extract pipeline for earthquake data.
(see paper by Rong et al. posted on course website)

APPLICATIONS: DOCUMENT SIMILARITY

- Finding duplicate or new duplicate documents or webpages.
- Change detection for high-speed web caches.
- Finding near-duplicate emails or customer reviews which could indicate spam.

SIMILARITY ESTIMATION

Goal: Design a compact sketch $C:\{0,1\} \rightarrow \mathbb{R}^{k}$:

Want to use $C(\mathrm{q}), C(\mathrm{y})$ to approximately compute the Jaccard similarity $J(\mathrm{q}, \mathrm{y})=\frac{|\mathrm{q} \cap \mathrm{y}|}{|\mathrm{quy}|}$.

MINHASH

MinHash (Broder, '97):

- Choose krandom hash functions
$h_{1}, \ldots, h_{k}:\{\underline{1, \ldots, n}\} \rightarrow[0,1]$.
- For $i \in 1, \ldots, k$,
- Let $\underline{\underline{c_{i}}}=\min _{j, q_{j}=1} h_{i}(j)$.
- $C(q)=\left[\overline{c_{1}}, \ldots, c_{k}\right]$.

MINHASH

- Choose k random hash functions $h_{1}, \ldots, h_{k}:\{1, \ldots, n\} \rightarrow[0,1]$.
- For $i \in 1, \ldots, k$,

$$
\cdot \text { Let } c_{i}=\min _{j, \mathrm{q}_{\mathrm{j}}=1} h_{i}(j) \text {. }
$$

$$
\left.\begin{array}{l}
C(8)=\left[\begin{array}{lll}
.12 \\
C(y) & .24 & .3 \\
.01
\end{array}\right] \\
.55 \\
.02
\end{array}\right]
$$

- $C(q)=\left[c_{1}, \ldots, c_{k}\right]$.

$$
\approx 1 / 4
$$

MINHASH ANALYSIS

Claim: For all $i, \operatorname{Pr}\left[\underline{c_{i}(\mathrm{q})}=c_{i}(\mathrm{y})\right]=J\left(\underline{\mathrm{q}, \mathrm{y})}=\frac{|\mathrm{q} \cap \mathrm{y}|}{|\mathrm{q} \cup \mathrm{y}|}\right.$.

Proof:

1. For $c_{i}(\mathbf{q})=c_{i}(\mathrm{y})$, we need that $\arg \min _{i \in \mathrm{q}} h(i)=\arg \min _{i \in \mathrm{y}} h(i)$.

MINHASH ANALYSIS

Claim: $\operatorname{Pr}\left[c_{i}(\mathbf{q})=c_{i}(\mathrm{y})\right]=J(\mathbf{q}, \mathrm{y})$.

2. Every non-zero index in $q \cup y$ is equally likely to produce the lowest hash value. $c_{i}(\mathrm{q})=c_{i}(\mathrm{y})$ only if this index is 1 in both q and y. There are $q \cap y$ such indices. So:

$$
\operatorname{Pr}\left[c_{i}(\mathrm{q})=c_{i}(\mathrm{y})\right]=\frac{|\mathbf{q} \cap \mathbf{y}|}{|\mathbf{q} \cup \mathbf{y}|}=J(\mathbf{q}, \mathrm{y})
$$

MINHASH ANALYSIS

Let $J=J(\mathbf{q}, \mathrm{y})$ denote the Jaccard similarity between q and y .

Return: $\tilde{\jmath}=\frac{1}{k} \sum_{i=1}^{k} \mathbb{1}\left[c_{i}(\mathrm{q})=c_{i}(\mathrm{y})\right]$.
Unbiased estimate for Jaccard similarity:

$$
\begin{aligned}
& \mathbb{E} \tilde{J}=\frac{1}{k} \sum_{i=1}^{u} \mathbb{E}\left(\mathbb{1}\left[c_{i}(b)=c_{i}(y)\right)=\frac{1}{k} \sum_{i=1}^{k} J(q, y)\right. \\
& C(q) \begin{array}{|l|l|l|l|l|l}
.12 & .24 & .76 & C(y) & .12 \mid .98 & .76 .11
\end{array}
\end{aligned}
$$

The more repetitions, the lower the variance.

Let $J=J(\mathbf{q}, \mathbf{y})$ denote the true Jaccard similarity.

$$
J-J^{2} \leq J
$$

Estimator:

$$
\begin{aligned}
& \mathrm{r}: \tilde{J}=\frac{1}{k} \sum_{i=1}^{k} \frac{\mathbb{1}\left[c_{i}(\mathrm{q})=c_{i}(\mathrm{y})\right] ;}{} \\
& \operatorname{Var}[\tilde{j}]=\frac{1}{k^{2}} \sum_{i=1}^{n} \operatorname{Var}\left(\mathbb{1}\left[c_{i}(\tilde{q})=c_{i}(\partial)\right]\right)=\frac{1}{k} \cdot J \\
& \leq \frac{1}{k}
\end{aligned}
$$

Plug into Chebyshev inequality. How large does k need to be so that with probability $>1-\delta,|J-\tilde{\jmath}| \leq \epsilon$?

$$
\begin{aligned}
& \operatorname{Pr}[|\tilde{J}-J| \geqslant \underbrace{\alpha \cdot \sigma}_{\varepsilon}] \leq \underbrace{\frac{1}{\alpha^{2}}}_{\delta} \quad \alpha=1 / \sqrt{\delta} \quad \sigma \leq \frac{1}{\sqrt{k}} \\
& \alpha \cdot \sigma=\frac{1}{\sqrt{\delta}} \cdot \frac{1}{\sqrt{k}}=\varepsilon \quad \frac{1}{\varepsilon^{2}}=k \cdot \delta \quad k=\frac{1}{\delta \varepsilon^{2}}
\end{aligned}
$$

MINHASH ANALYSIS

Chebyshev inequality: As long as $k=O\left(\frac{1}{\epsilon \delta \delta}\right)$, then with prob. $1-\delta$,

$$
J(\mathrm{q}, \mathrm{y})-\epsilon \leq \tilde{J}(C(\mathrm{q}), C(\mathrm{y})) \leq J(\mathrm{q}, \mathrm{y})+\epsilon .
$$

And J Jonly takes $O(k)$ time to compute! Independent of original fingerprint dimension d.

Can be improved t $\log (1 / \delta)$ dependence. Can anyone tell me
how?

SIMILARITY SKETCHING

BREAK

NEAR NEIGHBOR SEARCH

Common goal: Find all vectors in database $\underline{q}_{1}, \ldots, \mathbf{q}_{n} \in \mathbb{R}^{d}$ that are close to some input query vector $y \in \mathbb{R}^{d}$. I.e. find all of y 's "nearest neighbors" in the database.

- The Shazam problem.

$$
k=\frac{\log (n)}{\varepsilon^{n}}
$$

- Audio + video search.
- Finding duplicate or near duplicate documents.
- Detecting seismic events.

How does similarity sketching help in these applications?

- Improves runtime of "linear scan" from O(nd) to $O(n k)$.
- Improves space complexity from $O(n d)$ to $O(n k)$. This can be super important - e.g. if it means the linear scan only accesses vectors in fast memory.

BEYOND A LINEAR SCAN

nearet.

New goal: Sublinea o(n) ime to find near neighbors.

BEYOND A LINEAR SCAN

This problem can already be solved for a small number of dimensions using space partitioning approaches (e.g. kd-tree).

Runtime is roughly $O\left(d \cdot \min \left(n, 2^{d}\right)\right.$, which is only sublinear for $d=o(\log n)$.

HIGH DIMENSIONAL NEAR NEIGHBOR SEARCH

$$
\begin{aligned}
& \text { Groph haked nar weistor search } \\
& \text { wethods. }
\end{aligned}
$$

Only been attacked much more recently:
(Locality-sensitive hashing [Indyk, Motwani, 1998])
(Spectral hashing [Weiss, Torralba, and Fergus, 2008])
(Vector quantization [Jégou, Douze, Schmid, 2009])
Key Insight of LSH: Trade worse space-complexity for better time-complexity. I.e. typically use more than $O(n)$ space.

LOCALITY SENSITIVE HASH FUNCTIONS

Let $h: \mathbb{R}^{d} \rightarrow\{\underline{\underline{1}, \ldots, m\}}$ be a random hash function.
We call h locality sensitive for similarity function $s(q, y)$ if $\operatorname{Pr}[h(\mathrm{q})==h(\mathrm{y})]$ is:

- Higher when q and y are more similar, i.e. $s(q, y)$ is higher.
- Lower when q and y are more dissimilar, i.e. $s(q, y)$ is lower.

LOCALITY SENSITIVE HASH FUNCTIONS
LSH for $s(q, y)$ equal to Jaccard similarity: $g(c(q))$

$$
g_{(}\left(c_{1}(q) \ldots c_{r}(\xi)\right)
$$

- Let $\mathrm{c}:\{0,1\}^{d} \rightarrow[0,1]$ be a single instantiation of MinHash.
- Le (g) [0,1] $\rightarrow\{1, \ldots, m\}$ be a uniform random hash function.
- Let $h(\mathrm{q})=g(\mathrm{c}(\mathrm{q}))$.
$h(g)=h(z)$ with higher prob if $)(q, y)$ is

1	0	1	1	0	0	0	1	0	0	0	0	1	1	0	1

LOCALITY SENSITIVE HASH FUNCTIONS

$$
c(z)=c(y)
$$

LSH for Jaccard similarity:

- Let $c:\{0,1\}^{d} \rightarrow[0,1]$ be a single instantiation of MinHash.
- Let $g:[0,1] \rightarrow\{1, \ldots, m\}$ be a uniform random hash function.
- Let $h(x)=g(c(x)) . \quad h(8)=h(y)$ whenever $c(g)=c(y)$ If $J(\mathrm{q}, \mathrm{y})=\mathrm{v}$,

$$
\operatorname{Pr}[h(\mathrm{q})==h(\mathrm{y})]=V+\underbrace{(1-v) \cdot \frac{1}{n}}_{\text {hejt.gadle }}
$$

NEAR NEIGHBOR SEARCH

Basic approach for near neighbor search in a database.

Pre-processing:

- Select random LSH function $h:\{0,1\}^{d} \rightarrow 1, \ldots, m$.
- Create table T with $m=O(n)$ slots. ${ }^{1}$
- For $i=1, \ldots, n$, insert q_{i} into $T\left(h\left(\mathrm{q}_{i}\right)\right)$.

Query:

- Want to find near neighbors of input $y \in\{0,1\}^{d}$.
- Linear scan through all vectors $\mathrm{q} \in T(h(y))$ and return any that are close to y . Time required is $O(d \cdot \mid T(h(\mathrm{y}) \mid)$.

[^0]NEAR NEIGHBOR SEARCH

return $\operatorname{argmax}\left(s\left(y, q_{2}\right), S\left(y, q_{3}\right)\right)$

NEAR NEIGHBOR SEARCH

Two main considerations:
(False Negative Rate: What's the probability we do not find a vector tha is clos) to y ?
False Positive Rate: What's the probability that a vector in $T(h(y))$ is not close to y ?

A higher false negative rate means we miss near neighbors.
A higher false positive rate means increased runtime - we need to compute $J(\mathbf{q}, \mathrm{y})$ for every $\mathbf{q} \in T(h(y))$ to check if it's actually close to y.

Note: The meaning of "close" and "not close" is application dependent. E.g. we might specify that we want to find anything with Jaccard similarity $\geq .4$, but not with Jaccard similarity $<.2$.

REDUCING FALSE NEGATIVE RATE

REDUCING FALSE NEGATIVE RATE

Pre-processing:

- Select t independent LSH's $h_{1}, \ldots, h_{t}:\{0,1\}^{d} \rightarrow 1, \ldots, m$.
- Create tables T_{1}, \ldots, T_{t}, each with m slots.
- For $i=1, \ldots, n, j=1, \ldots, t$,
- Insert q_{i} into $T_{j}\left(h_{j}\left(\mathrm{q}_{\mathrm{i}}\right)\right)$.

REDUCING FALSE NEGATIVE RATE

Query:

- Want to find near neighbors of input $y \in\{0,1\}^{d}$.
- Linear scan through all vectors in $T_{1}\left(h_{1}(\mathrm{y})\right) \cup T_{2}\left(h_{2}(\mathrm{y})\right) \cup \ldots, T_{t}\left(h_{t}(\mathrm{y})\right)$.

Suppose the nearest database point q has $J(\mathrm{y}, \mathrm{q})=.4$.

What's the probability we find q?

$$
1-(1-v)^{t} 1-.6^{10}=.99
$$

(10, 99\%)

WHAT HAPPENS TO FALSE POSITIVES?

Suppose there is some other database point \mathbf{z} with $J(y, z)=.2$.
What is the probability we will need to compute $J(z, y)$ in our hashing scheme with one table? I.e. the probability that y hashes into at least one bucket containing z.

In the new scheme with $t=10$ tables?

$$
1-(1-v)^{+}=1-\underbrace{.8^{+}}_{\text {Gu.11 }}=.84
$$

(89\%)

REDUCING FALSE POSITIVES

Change our locality sensitive hash function.
Tunable LSH for Jaccard similarity:

- Choose parameter $r \in \mathbb{Z}^{+}$.

$$
\left(c_{1} \ldots . . \cdot c_{r}\right)
$$

- Let $c_{1}, \ldots, c_{r}:\{0,1\}^{d} \rightarrow[0,1]$ be random MinHash.
- Let g. $[0,1]^{r} \rightarrow \underline{\{1, \ldots, m\}}$ be a uniform random hash function.
- Let $h(x)=g\left(c_{1}(\mathrm{x}), \ldots, c_{r}(\mathrm{x})\right)$.
r"bands"

REDUCING FALSE POSITIVES

Tunable LSH for Jaccard similarity:

- Choose parameter $r \in \mathbb{Z}^{+}$.
- Let $c_{1}, \ldots, c_{r}:\{0,1\}^{d} \rightarrow[0,1]$ be random MinHash.
- Let $g:[0,1]^{r} \rightarrow\{1, \ldots, m\}$ be a uniform random hash function.
- Let $h(\mathbf{x})=g\left(c_{1}(\mathbf{x}), \ldots, c_{r}(\mathbf{x})\right)$.

nestigoble.

TUNABLE LSH

TUNABLE LSH

Full LSH cheme has two parameters to tune:

TUNABLE LSH

Effect of increasing number of tables t on:

False Negatives
False Positives
$\downarrow \quad \uparrow$

Effect of increasing number of bands r on:

False Negatives
False Positives
\uparrow

$$
1
$$

Probability we check q when querying y if $\rho(q, y)=v$:
$\operatorname{Pr}(q$ lands in som table with $y)=1-\left(1-v^{r}\right)^{+}$
 \geqslant

$$
r=5, t=5
$$

S-CURVE TUNING

Probability we check q when querying y if $J(q, y)=v$:

$$
\approx 1-\left(1-v^{r}\right)^{t}
$$

$$
r=5, t=40
$$

S-CURVE TUNING

Probability we check q when querying y if $J(q, y)=v$:

$$
\approx 1-\left(1-v^{r}\right)^{t}
$$

$$
r=40, t=5
$$

S-CURVE TUNING

Probability we check q when querying y if $J(q, y)=v$:

$$
1-\left(1-v^{r}\right)^{t}
$$

Increasing both r and t gives a steeper curve.

FIXED THRESHOLD

Use Case 1: Fixed threshold.

- Shazam wants to find match to audio clip y in a database of 10 million clips.
- There are 10 true matches with $J(\mathrm{y}, \mathrm{q})>$.9.)
- There are 10,000 near matches with $J(y, q) \in[.7, .9]$.
- All other items have $J(\mathrm{y}, \mathrm{q})<.7$.

With $r=25$ and $t=40$,

- Hit probability for $J(\mathrm{y}, \mathrm{q}) \geq .9$ is $\gtrsim \underline{1-\left(1-.9^{25}\right)^{40} \geqslant .95}$
- Hit probability for $J(\mathrm{y}, \mathrm{q}) \in[.7, .9]$ is $\left.\lesssim \underline{1-\left(1-.9^{25}\right)^{40}}=.95\right)$
- Hit probability for $J(\mathrm{y}, \mathrm{q})<.7$ is $\lesssim 1-\left(1-.7^{25}\right)^{40}=.005$ Upper bound on total number of items checked:

FIXED THRESHOLD

Space complexity: 40 hash tables $\approx 40 \cdot O(n)$.

Directly trade space for fast search.

FIXED THRESHOLD R

Near Neighbor Search Problem

Concrete worst case result:
Theorem (Indyk, Motwani, 1998)
If there exists some q with $\|\mathrm{q}-\mathrm{y}\|_{0} \leq R$, return a vector $\tilde{\mathrm{q}}$ with $\|\tilde{q}-\mathrm{y}\|_{0} \leq C \cdot R$ in:

- Time: O ($\left.n^{1 / C}\right)$.
- Space: $O\left(n^{1+1 / C}\right)$.
$\|\mathrm{q}-\mathrm{y}\|_{0}=$ "hamming distance" $=$ number of elements that differ between q and y.

APPROXIMATE NEAREST NEIGHBOR SEARCH

Theorem (Indyk, Motwani, 1998)
Let q be the closest database vector to y . Return a vector \tilde{q} with $\|\tilde{\mathrm{q}}-\mathrm{y}\|_{0} \leq C \cdot\|\mathrm{q}-\mathrm{y}\|_{0}$ in:

- Time: $\tilde{O}\left(n^{1 / C}\right)$.
- Space: $\tilde{O}\left(n^{1+1 / C}\right)$.

OTHER LSH FUNCTIONS

Good locality sensitive hash functions exists for other similarity measures.

Cosine similarity $\cos (\theta(x, y))=\frac{\langle x, y\rangle}{\|x\|_{2}\|y\|_{2}}:$

$-1 \leq \cos (\theta(x, y)) \leq 1$.

COSINE SIMILARITY

Cosine similarity is natural "inverse" for Euclidean distance.

Euclidean distance $\|x-y\|_{2}^{2}$:

- Suppose for simplicity that $\|x\|_{2}^{2}=\|y\|_{2}^{2}=1$.

SIMHASH

Locality sensitive hash for cosine similarity:

- Let $g \in \mathbb{R}^{d}$ be randomly chosen with each entry $\mathcal{N}(0,1)$.
- Let $f:\{-1,1\} \rightarrow\{1, \ldots, m\}$ be a uniformly random hash function.
- $h: \mathbb{R}^{d} \rightarrow\{1, \ldots, m\}$ is definied $h(x)=f(\operatorname{sign}(\langle g, x\rangle))$.

$$
\text { If } \cos (\theta(x, y))=v, \text { what is } \operatorname{Pr}[h(x)==h(y)] ?
$$

SIMHASH ANALYSIS IN 2D

Theorem (to be prove): If $\cos (\theta(x, y))=v$, then

SIMHASH

SimHash can be tuned, just like our MinHash based LSH function for Jaccard similarity:

- Let $g_{1}, \ldots, g_{r} \in \mathbb{R}^{d}$ be randomly chosen with each entry $\mathcal{N}(0,1)$.
- Let $f:\{-1,1\}^{r} \rightarrow\{1, \ldots, m\}$ be a uniformly random hash function.
- $h: \mathbb{R}^{d} \rightarrow\{1, \ldots, m\}$ is defined $h(\mathbf{x})=f\left(\left[\operatorname{sign}\left(\left\langle\mathbf{g}_{1}, \mathbf{x}\right\rangle\right), \ldots, \operatorname{sign}\left(\left\langle g_{r}, \mathbf{x}\right\rangle\right)\right]\right)$.

$$
\operatorname{Pr}[h(x)==h(y)]=\left(1-\frac{\theta}{\Pi}\right)^{r}
$$

SIMHASH ANALYSIS IN DD

To prove: $\operatorname{Pr}[h(x)==h(\mathrm{y})]=1-\frac{\theta}{\pi}$, where $h(\mathrm{x})=f(\operatorname{sign}(\langle\mathrm{~g}, \mathrm{x}\rangle))$ and f is uniformly random hash function.

$$
\operatorname{Pr}[h(x)==h(y)]=z+\frac{1-v}{m} \approx z .
$$

where $z=\operatorname{Pr}[\operatorname{sign}(\langle\mathrm{g}, \mathrm{x}\rangle)==\operatorname{sign}(\langle\mathrm{g}, \mathrm{y}\rangle)]$

SIMHASH ANALYSIS 2D

$\operatorname{Pr}[h(x)==h(y)] \approx$ probability x and y are on the same side of hyperplane orthogonal to g.

SIMHASH ANALYSIS HIGHER DIMENSIONS

There is always some rotation matrix \mathbf{U} such that $\mathbf{U x}, \mathbf{U y}$ are spanned by the first two-standard basis vectors and have the same cosine similarity as x and y.

SIMHASH ANALYSIS HIGHER DIMENSIONS

There is always some rotation matrix \mathbf{U} such that \mathbf{x}, \mathbf{y} are spanned by the first two-standard basis vectors.

Note: A rotation matrix U has the property that $U^{\top} U=$ I. I.e., U^{\top} is a rotation matrix itself, which reverses the rotation of U.

SIMHASH ANALYSIS HIGHER DIMENSIONS

Claim:

$$
\begin{aligned}
1-\frac{\theta}{\pi} & =\operatorname{Pr}[\operatorname{sign}(\langle\mathrm{g}[1,2],(\mathrm{Ux})[1,2]\rangle)==\operatorname{sign}(\langle\mathrm{g}[1,2],(\mathrm{Uy}[1,2]\rangle)] \\
& =\operatorname{Pr}[\operatorname{sign}(\langle\mathrm{g}, \mathrm{Ux}\rangle)==\operatorname{sign}(\langle\mathrm{g}, \mathrm{Uy}\rangle)] \\
& =\operatorname{Pr}[\operatorname{sign}(\langle\mathrm{g}, \mathrm{x}\rangle)==\operatorname{sign}(\langle\mathrm{g}, \mathrm{y}\rangle)]
\end{aligned}
$$

Why?

MODERN NEAR NEIGBHOR SEARCH

- High-dimensional vector search is exploding as a research area with the rise of machine-learned multi-modal embeddings for images, text, and more.

GRAPH BASED NEAR NEIGBHOR

[^0]: ${ }^{1}$ Enough to make the $O(1 / m)$ term negligible.

