CS-GY 6763: Lecture 5
Dimensionality reduction, near neighbor search in high dimensions

NYU Tandon School of Engineering, Prof. Christopher Musco

PROJECT

- If you are doing a project, find a partner and sign-up to present for reading group slot by Monday, 10/9. We need presenters for next Friday!

EUCLIDEAN DIMENSIONALITY REDUCTION

Lemma (Johnson-Lindenstrauss, 1984)

For any set of n data points $q_{1}, \ldots, q_{n} \in \mathbb{R}^{d}$ there exists a linear map $\Pi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}$ where $k=O\left(\frac{\log n}{\epsilon^{2}}\right)$ such that for all i,j,

$$
(1-\epsilon)\left\|q_{i}-q_{j}\right\|_{2} \leq\left\|\Pi q_{i}-\Pi q_{j}\right\|_{2} \leq(1+\epsilon)\left\|q_{i}-q_{j}\right\|_{2}
$$

SAMPLE APPLICATION

k-means clustering: For data set $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$, find clusters
$C_{1}, \ldots, C_{k} \subseteq\{1, \ldots, n\}$ to minimize:

$$
\operatorname{Cost}\left(C_{1}, \ldots, C_{k}\right)=\sum_{j=1}^{k} \frac{1}{2\left|C_{j}\right|} \sum_{u, v \in C_{j}}\left\|a_{u}-a_{v}\right\|_{2}^{2}
$$

SAMPLE APPLICATION

k-means clustering: For data set $\mathbf{a}_{1}, \ldots, a_{n}$, find clusters $C_{1}, \ldots, C_{k} \subseteq\{1, \ldots, n\}$ to minimize:

$$
\operatorname{Cost}\left(C_{1}, \ldots, C_{k}\right)=\sum_{j=1}^{k} \frac{1}{2\left|C_{j}\right|} \sum_{u, v \in C_{j}}\left\|a_{u}-a_{v}\right\|_{2}^{2}
$$

Claim: If I find the optimal clustering for $\boldsymbol{\Pi} \mathbf{a}_{1}, \ldots, \Pi a_{n}$ then its cost is less than $(1+\epsilon)$ times the cost of the best clustering obtained with the original data.

RANDOMIZED JL CONSTRUCTIONS

$\boldsymbol{\Pi} \in \mathbb{R}^{k \times d}$ can chosen so that each entry equals $\frac{1}{\sqrt{k}} \mathcal{N}(0,1)$, or each entry equals $\frac{1}{\sqrt{k}} \pm 1$ with equal probability.

-2.1384	2.9080	-0.3538	0.0229	0.5201	-0.2938	-1.3320	-1.3617	-0.1952
-0.8396	0.8252	-0.8236	-0.2620	-0.0200	-0.8479	-2.3299	0.4550	-0.2176
1.3546	1.3790	-1.5771	-1.7502	-0.0348	-1.1201	-1.4491	-0.8487	-0.3031
-1.0722	-1.0582	0.5080	-0.2857	-0.7982	2.5260	0.3335	-0.3349	0.0230
0.9610	-0.4686	0.2820	-0.8314	1.0187	1.6555	0.3914	0.5528	0.0513
0.1240	-0.2725	0.0335	-0.9792	-0.1332	0.3075	0.4517	1.0391	0.8261
1.4367	1.0984	-1.3337	-1.1564	-0.7145	-1.2571	-0.1303	-1.1176	1.5278
-1.9609	-0.2779	1.1275	-0.5336	1.3514	-0.8655	0.1837	1.2687	0.4669
-0.1977	0.7015	0.3502	-2.0026	-0.2248	-0.1765	-0.4762	0.6601	-0.2097
-1.2078	-2.0518	-0.2991	0.9642	-0.5890	0.7914	0.8620	-0.0679	0.6252

$\gg P i=\operatorname{randn}(m, d)$;
$>s=(1 / s q r t(m)) *$ Pi*q;

$\gg \mathrm{Pi}=2 * \operatorname{randi}(2, \mathrm{~m}, \mathrm{~d})-3$;
$>s=(1 / \operatorname{sqrt}(m)) * P i * q$;

Lots of other constructions work.

RANDOM PROJECTION

Intuition: Multiplying by a random matrix mimics the process of projecting onto a random k dimensional subspace in d dimensions.

EUCLIDEAN DIMENSIONALITY REDUCTION

Intermediate result:

Lemma (Distributional JL Lemma)

Let $\Pi \in \mathbb{R}^{k \times d}$ be chosen so that each entry equals $\frac{1}{\sqrt{k}} \mathcal{N}(0,1)$, where $\mathcal{N}(0,1)$ denotes a standard Gaussian random variable. If we choose $k=O\left(\frac{\log (1 / \delta)}{\epsilon^{2}}\right)$, then for any vector \mathbf{x}, with probability $(1-\delta)$:

$$
(1-\epsilon)\|\mathbf{x}\|_{2}^{2} \leq\|\boldsymbol{\Pi}\|_{2}^{2} \leq(1+\epsilon)\|\mathbf{x}\|_{2}^{2}
$$

Given this lemma, how do we prove the traditional Johnson-Lindenstrauss lemma?

JL FROM DISTRIBUTIONAL JL

We have a set of vectors q_{1}, \ldots, q_{n}. Fix $i, j \in 1, \ldots, n$.
Let $\mathrm{x}=\mathrm{q}_{i}-\mathrm{q}_{j}$. By linearity, $\boldsymbol{\Pi} \mathbf{x}=\boldsymbol{\Pi}\left(\mathrm{q}_{i}-\mathrm{q}_{j}\right)=\Pi \mathrm{q}_{i}-\Pi \mathrm{q}_{j}$.
By the Distributional JL Lemma, with probability $1-\delta$,

$$
(1-\epsilon)\left\|\mathbf{q}_{i}-\mathrm{q}_{j}\right\|_{2} \leq\left\|\boldsymbol{\Pi} \mathbf{q}_{i}-\boldsymbol{\Pi} \mathbf{q}_{j}\right\|_{2} \leq(1+\epsilon)\left\|\mathrm{q}_{i}-\mathrm{q}_{j}\right\|_{2} .
$$

Finally, set $\delta=\frac{1}{n^{2}}$. Since there are $<n^{2}$ total i, j pairs, by a union bound we have that with probability $9 / 10$, the above will hold for all i, j, as long as we compress to:

$$
k=O\left(\frac{\log \left(1 /\left(1 / n^{2}\right)\right)}{\epsilon^{2}}\right)=O\left(\frac{\log n}{\epsilon^{2}}\right) \text { dimensions. } \square
$$

PROOF OF DISTRIBUTIONAL JL

Want to argue that, with probability $(1-\delta)$,

$$
\begin{gathered}
(1-\epsilon)\|x\|_{2}^{2} \leq \mid \boldsymbol{\Pi x}\left\|_{2}^{2} \leq(1+\epsilon)\right\| x \|_{2}^{2} \\
\text { Claim: } \mathbb{E}\|\boldsymbol{\Pi x}\|_{2}^{2}=\|x\|_{2}^{2} .
\end{gathered}
$$

Some notation:

So each $\boldsymbol{\pi}_{i}$ contains $\mathcal{N}(0,1)$ entries.

PROOF OF DISTRIBUTIONAL JL

Intermediate Claim: Let $\boldsymbol{\pi}$ be a length d vector with $\mathcal{N}(0,1)$ entries.

$$
\mathbb{E}\left[\|\boldsymbol{\Pi}\|_{2}^{2}\right]=\mathbb{E}\left[(\langle\boldsymbol{\pi}, \mathbf{x}\rangle)^{2}\right] .
$$

Goal: Prove $\mathbb{E}\|\boldsymbol{\Pi} \boldsymbol{x}\|_{2}^{2}=\|\mathbf{x}\|_{2}^{2}$.

PROOF OF DISTRIBUTIONAL JL

$$
\langle\boldsymbol{\pi}, \mathbf{x}\rangle=Z_{1} \cdot \mathbf{x}[1]+Z_{2} \cdot \mathbf{x}[2]+\ldots+Z_{d} \cdot \mathbf{x}[d]
$$

where each Z_{1}, \ldots, Z_{d} is a standard normal $\mathcal{N}(0,1)$.
We have that $Z_{i} \cdot x[i]$ is a normal $\mathcal{N}\left(0, x[i]^{2}\right)$ random variable.

Goal: Prove $\mathbb{E}\|\boldsymbol{\Pi} \mathbf{x}\|_{2}^{2}=\|\mathbf{x}\|_{2}^{2}$. Established: $\mathbb{E}\|\boldsymbol{\Pi} \mathbf{x}\|_{2}^{2}=\mathbb{E}\left[(\langle\boldsymbol{\pi}, \mathbf{x}\rangle)^{2}\right]$

STABLE RANDOM VARIABLES

What type of random variable is $\langle\pi, x\rangle$?

Fact (Stability of Gaussian random variables)

$$
\mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right)+\mathcal{N}\left(\mu_{2}, \sigma_{2}^{2}\right)=\mathcal{N}\left(\mu_{1}+\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right)
$$

$$
\begin{aligned}
\langle\boldsymbol{\pi}, \mathrm{x}\rangle & =\mathcal{N}\left(0, \mathrm{x}[1]^{2}\right)+\mathcal{N}\left(0, \mathrm{x}[2]^{2}\right)+\ldots+\mathcal{N}\left(0, \mathrm{x}[d]^{2}\right) \\
& =\mathcal{N}\left(0,\|\mathrm{x}\|_{2}^{2}\right)
\end{aligned}
$$

So $\mathbb{E}\|\boldsymbol{\Pi} \mathbf{x}\|_{2}^{2}=\mathbb{E}\left[(\langle\boldsymbol{\pi}, \mathbf{x}\rangle)^{2}\right]=\mathbb{E}\left[\mathcal{N}\left(0,\|\mathbf{x}\|_{2}^{2}\right)\right]=\|\mathbf{x}\|_{2}^{2}$, as desired.

PROOF OF DISTRIBUTIONAL JL

Want to argue that, with probability $(1-\delta)$,

$$
(1-\epsilon)\|\mathbf{x}\|_{2}^{2} \leq\|\boldsymbol{\Pi x}\|_{2}^{2} \leq(1+\epsilon)\|\mathbf{x}\|_{2}^{2}
$$

1. $\mathbb{E}\|\boldsymbol{\Pi x}\|_{2}^{2}=\|x\|_{2}^{2}$.
2. Need to use a concentration bound.

$$
\|\boldsymbol{\Pi}\|_{2}^{2}=\frac{1}{k} \sum_{i=1}^{k}\left(\left\langle\boldsymbol{\pi}_{i}, \mathbf{x}\right\rangle\right)^{2}=\frac{1}{k} \sum_{i=1}^{k} \mathcal{N}\left(0,\|\mathbf{x}\|_{2}^{2}\right)
$$

"Chi-squared random variable with k degrees of freedom."

CONCENTRATION OF CHI-SQUARED RANDOM VARIABLES

Lemma

Let Z be a Chi-squared random variable with k degrees of freedom.

$$
\operatorname{Pr}[|\mathbb{E} Z-Z| \geq \epsilon \mathbb{E} Z] \leq 2 e^{-k \epsilon^{2} / 8}
$$

Goal: Prove $\|\boldsymbol{\Pi} \boldsymbol{x}\|_{2}^{2}$ concentrates within $1 \pm \epsilon$ of its expectation, which equals $\|x\|_{2}^{2}$.

CONNECTION LAST LECTURE

If high dimensional geometry is so different from low-dimensional geometry, why is dimensionality reduction possible? Doesn't Johnson-Lindenstrauss tell us that high-dimensional geometry can be approximated in low dimensions?

CONNECTION TO DIMENSIONALITY REDUCTION

Hard case: $\mathrm{x}_{1}, \ldots, \mathrm{x}_{n} \in \mathbb{R}^{d}$ are all mutually orthogonal unit vectors:

$$
\left\|x_{i}-x_{j}\right\|_{2}^{2}=2 \quad \text { for all } i, j
$$

When we reduce to k dimensions with JL, we still expect these vectors to be nearly orthogonal. Why?

CONNECTION TO DIMENSIONALITY REDUCTION

Hard case: $\mathrm{x}_{1}, \ldots, \mathrm{x}_{n} \in \mathbb{R}^{d}$ are all mutually orthogonal unit vectors:

$$
\left\|x_{i}-x_{j}\right\|_{2}^{2}=2 \quad \text { for all } i, j
$$

From our result earlier, in $O\left(\log n / \epsilon^{2}\right)$ dimensions, there exists $2^{O\left(\epsilon^{2} \cdot \log n / \epsilon^{2}\right)} \geq n$ unit vectors that are close to mutually orthogonal. $O\left(\log n / \epsilon^{2}\right)=$ just enough dimensions.

Alternative view: Without additional structure, we expect that learning/inference in d dimenions requires $2^{O(d)}$ data points. If we really had a data set that large, then the JL bound would be vacous, since $\log (n)=O(d)$.

DIMENSIONALITY REDUCTION

The Johnson-Lindenstrauss Lemma let us sketch vectors and preserve their ℓ_{2} Euclidean distance.

We also have dimensionality reduction techniques that preserve alternative measures of similarity.

SIMILARITY ESTIMATION

How does Shazam match a song clip against a library of 8 million songs (32 TB of data) in a fraction of a second?

SIMILARITY ESTIMATION

How does Shazam match a song clip against a library of 8 million songs (32 TB of data) in a fraction of a second?

Spectrogram extracted from audio clip.

Processed spectrogram: used to construct audio "fingerprint" $q \in\{0,1\}^{d}$.

Each clip is represented by a high dimensional binary vector q .

1	0	1	1	0	0	0	1	0	0	0	0	1	1	0	1

SIMILARITY ESTIMATION

Given q, find any nearby "fingerprint" y in a database - i.e. any y with $\operatorname{dist}(y, q)$ small.

Challenges:

- Database is possibly huge: $O(n d)$ bits.
- Expensive to compute $\operatorname{dist}(\mathrm{y}, \mathrm{q}): O(d)$ time.

SIMILARITY ESTIMATION

Goal: Design a more compact sketch for comparing $\mathbf{q}, \mathbf{y} \in\{0,1\}^{d}$. Ideally $\ll d$ space/time complexity.

$$
\begin{aligned}
& C(\mathrm{q}) \in \mathbb{R}^{k} \\
& C(\mathrm{y}) \in \mathbb{R}^{k}
\end{aligned}
$$

As in Johnson-Lindenstrauss compressions, we want that $C(q)$ is similar to $C(y)$ if q is similar to y .

JACCARD SIMILARITY

Definition (Jaccard Similarity)

$$
J(\mathrm{q}, \mathrm{y})=\frac{|\mathrm{q} \cap \mathrm{y}|}{|\mathrm{q} \cup \mathrm{y}|}=\frac{\# \text { of non-zero entries in common }}{\text { total \# of non-zero entries }}
$$

Natural similarity measure for binary vectors. $0 \leq J(q, y) \leq 1$.

Can be applied to any data which has a natural binary representation (more than you might think).

JACCARD SIMILARITY FOR DOCUMENT COMPARISON

"Bag-of-words" model:

How many words do a pair of documents have in common?

JACCARD SIMILARITY FOR DOCUMENT COMPARISON

"Bag-of-words" model:

This is a sentence.

How many bigrams do a pair of documents have in common?

JACCARD SIMILARITY FOR SEISMIC DATA

Feature extract pipeline for earthquake data.
(see paper by Rong et al. posted on course website)

APPLICATIONS: DOCUMENT SIMILARITY

- Finding duplicate or new duplicate documents or webpages.
- Change detection for high-speed web caches.
- Finding near-duplicate emails or customer reviews which could indicate spam.

SIMILARITY ESTIMATION

Goal: Design a compact sketch $C:\{0,1\} \rightarrow \mathbb{R}^{k}$:

Want to use $C(q), C(y)$ to approximately compute the Jaccard similarity $J(q, y)=\frac{|q \cap y|}{|q \cup y|}$.

MINHASH

MinHash (Broder, '97):

- Choose k random hash functions $h_{1}, \ldots, h_{k}:\{1, \ldots, n\} \rightarrow[0,1]$.
- For $i \in 1, \ldots, k$,
- Let $c_{i}=\min _{j, q_{j}=1} h_{i}(j)$.
- $C(q)=\left[c_{1}, \ldots, c_{k}\right]$.

MINHASH

- Choose k random hash functions $h_{1}, \ldots, h_{k}:\{1, \ldots, n\} \rightarrow[0,1]$.
- For $i \in 1, \ldots, k$,
- Let $c_{i}=\min _{j, \mathbf{q}_{j}=1} h_{i}(j)$.
- $C(q)=\left[c_{1}, \ldots, c_{k}\right]$.

MINHASH ANALYSIS

Claim: For all $i, \operatorname{Pr}\left[c_{i}(\mathbf{q})=c_{i}(\mathrm{y})\right]=J(\mathbf{q}, \mathrm{y})=\frac{|\mathrm{q} \cap \mathrm{y}|}{|\mathrm{q} u \mathrm{y}|}$.

Proof:

1. For $c_{i}(q)=c_{i}(y)$, we need that $\arg \min _{i \in q} h(i)=\arg \min _{i \in y} h(i)$.

MINHASH ANALYSIS

Claim: $\operatorname{Pr}\left[c_{i}(\mathrm{q})=c_{i}(\mathrm{y})\right]=J(\mathrm{q}, \mathrm{y})$.

2. Every non-zero index in $q \cup y$ is equally likely to produce the lowest hash value. $c_{i}(\mathrm{q})=c_{i}(\mathrm{y})$ only if this index is 1 in both q and y . There are $\mathrm{q} \cap \mathrm{y}$ such indices. So:

$$
\operatorname{Pr}\left[c_{i}(\mathrm{q})=c_{i}(\mathrm{y})\right]=\frac{|\mathbf{q} \cap \mathrm{y}|}{|\mathbf{q} \cup \mathbf{y}|}=J(\mathbf{q}, \mathrm{y})
$$

Let $J=J(\mathbf{q}, \mathrm{y})$ denote the Jaccard similarity between q and y .
Return: $\tilde{J}=\frac{1}{k} \sum_{i=1}^{k} \mathbb{1}\left[c_{i}(\mathrm{q})=c_{i}(\mathrm{y})\right]$.
Unbiased estimate for Jaccard similarity:

$$
\begin{aligned}
& \mathbb{E} \tilde{J}= \\
& C(\mathbf{q}) \begin{array}{|l|l|l|l|l|l|l|l|}
\hline .12 & .24 & .76 & .35 & C(y) & .12 & .98 & .76 \\
\hline
\end{array} \\
& \hline
\end{aligned}
$$

The more repetitions, the lower the variance.

MINHASH ANALYSIS

Let $J=J(\mathrm{q}, \mathrm{y})$ denote the true Jaccard similarity.
Estimator: $\tilde{\jmath}=\frac{1}{k} \sum_{i=1}^{k} \mathbb{1}\left[c_{i}(\mathrm{q})=c_{i}(\mathrm{y})\right]$.

$$
\operatorname{Var}[\tilde{j}]=
$$

Plug into Chebyshev inequality. How large does k need to be so that with probability $>1-\delta,|J-\tilde{J}| \leq \epsilon$?

Chebyshev inequality: As long as $k=O\left(\frac{1}{\epsilon^{2} \delta}\right)$, then with prob. $1-\delta$,

$$
J(\mathrm{q}, \mathrm{y})-\epsilon \leq \tilde{J}(C(\mathrm{q}), C(\mathrm{y})) \leq J(\mathrm{q}, \mathrm{y})+\epsilon .
$$

And $\tilde{\jmath}$ only takes $O(k)$ time to compute! Independent of original fingerprint dimension d.

Can be improved to $\log (1 / \delta)$ dependence. Can anyone tell me how?

SIMILARITY SKETCHING

BREAK

NEAR NEIGHBOR SEARCH

Common goal: Find all vectors in database $\mathrm{q}_{1}, \ldots, \mathrm{q}_{n} \in \mathbb{R}^{d}$ that are close to some input query vector $y \in \mathbb{R}^{d}$. I.e. find all of y 's "nearest neighbors" in the database.

- The Shazam problem.
- Audio + video search.
- Finding duplicate or near duplicate documents.
- Detecting seismic events.

How does similarity sketching help in these applications?

- Improves runtime of "linear scan" from $O(n d)$ to $O(n k)$.
- Improves space complexity from $O(n d)$ to $O(n k)$. This can be super important - e.g. if it means the linear scan only accesses vectors in fast memory.

BEYOND A LINEAR SCAN

New goal: Sublinear o(n) time to find near neighbors.

BEYOND A LINEAR SCAN

This problem can already be solved for a small number of dimensions using space partitioning approaches (e.g. kd-tree).

Runtime is roughly $O\left(d \cdot \min \left(n, 2^{d}\right)\right)$, which is only sublinear for $d=o(\log n)$.

HIGH DIMENSIONAL NEAR NEIGHBOR SEARCH

Only been attacked much more recently:

- Locality-sensitive hashing [Indyk, Motwani, 1998]
- Spectral hashing [Weiss, Torralba, and Fergus, 2008]
- Vector quantization [Jégou, Douze, Schmid, 2009]

Key Insight of LSH: Trade worse space-complexity for better time-complexity. I.e. typically use more than $O(n)$ space.

LOCALITY SENSITIVE HASH FUNCTIONS

Let $h: \mathbb{R}^{d} \rightarrow\{1, \ldots, m\}$ be a random hash function.
We call h locality sensitive for similarity function $s(q, y)$ if $\operatorname{Pr}[h(\mathrm{q})==h(\mathrm{y})]$ is:

- Higher when q and y are more similar, i.e. $s(q, y)$ is higher.
- Lower when q and y are more dissimilar, i.e. $s(q, y)$ is lower.

LOCALITY SENSITIVE HASH FUNCTIONS

LSH for $s(q, y)$ equal to Jaccard similarity:

- Let $c:\{0,1\}^{d} \rightarrow[0,1]$ be a single instantiation of MinHash.
- Let $g:[0,1] \rightarrow\{1, \ldots, m\}$ be a uniform random hash function.
- Let $h(q)=g(c(q))$.

LOCALITY SENSITIVE HASH FUNCTIONS

LSH for Jaccard similarity:

- Let $c:\{0,1\}^{d} \rightarrow[0,1]$ be a single instantiation of MinHash.
- Let $g:[0,1] \rightarrow\{1, \ldots, m\}$ be a uniform random hash function.
- Let $h(\mathbf{x})=g(c(\mathbf{x}))$.

If $\mathrm{f}(\mathrm{q}, \mathrm{y})=\mathrm{v}$,

$$
\operatorname{Pr}[h(\mathbf{q})==h(\mathbf{y})]=
$$

NEAR NEIGHBOR SEARCH

Basic approach for near neighbor search in a database.

Pre-processing:

- Select random LSH function $h:\{0,1\}^{d} \rightarrow 1, \ldots, m$.
- Create table T with $m=O(n)$ slots. ${ }^{1}$
- For $i=1, \ldots, n$, insert q_{i} into $T\left(h\left(\mathrm{q}_{i}\right)\right)$.

Query:

- Want to find near neighbors of input $y \in\{0,1\}^{d}$.
- Linear scan through all vectors $\mathrm{q} \in T(h(\mathrm{y}))$ and return any that are close to y . Time required is $O(d \cdot \mid T(h(\mathrm{y}) \mid)$.
${ }^{1}$ Enough to make the $O(1 / \mathrm{m})$ term negligible.

NEAR NEIGHBOR SEARCH

NEAR NEIGHBOR SEARCH

Two main considerations:

- False Negative Rate: What's the probability we do not find a vector that is close to y ?
- False Positive Rate: What's the probability that a vector in $T(h(y))$ is not close to y ?

A higher false negative rate means we miss near neighbors.
A higher false positive rate means increased runtime - we need to compute $J(\mathrm{q}, \mathrm{y})$ for every $\mathrm{q} \in T(h(\mathrm{y}))$ to check if it's actually close to y.

Note: The meaning of "close" and "not close" is application dependent. E.g. we might specify that we want to find anything with Jaccard similarity $>.4$, but not with Jaccard similarity $<.2$.

REDUCING FALSE NEGATIVE RATE

Suppose the nearest database point q has $J(\mathrm{y}, \mathrm{q})=.4$.

What's the probability we do not find q?

REDUCING FALSE NEGATIVE RATE

Pre-processing:

- Select t independent LSH's $h_{1}, \ldots, h_{t}:\{0,1\}^{d} \rightarrow 1, \ldots, m$.
- Create tables T_{1}, \ldots, T_{t}, each with m slots.
- For $i=1, \ldots, n, j=1, \ldots, t$,
- Insert q_{i} into $T_{j}\left(h_{j}\left(\mathrm{q}_{i}\right)\right)$.

REDUCING FALSE NEGATIVE RATE

Query:

- Want to find near neighbors of input $y \in\{0,1\}^{d}$.
- Linear scan through all vectors in
$T_{1}\left(h_{1}(\mathrm{y})\right) \cup T_{2}\left(h_{2}(\mathrm{y})\right) \cup \ldots, T_{t}\left(h_{t}(\mathrm{y})\right)$.

Suppose the nearest database point q has $J(\mathrm{y}, \mathrm{q})=.4$.

What's the probability we find q?

WHAT HAPPENS TO FALSE POSITIVES?

Suppose there is some other database point \mathbf{z} with $J(\mathbf{y}, \mathbf{z})=.2$.
What is the probability we will need to compute $J(z, y)$ in our hashing scheme with one table? I.e. the probability that y hashes into at least one bucket containing z.

In the new scheme with $t=10$ tables?

REDUCING FALSE POSITIVES

Change our locality sensitive hash function.
Tunable LSH for Jaccard similarity:

- Choose parameter $r \in \mathbb{Z}^{+}$.
- Let $c_{1}, \ldots, c_{r}:\{0,1\}^{d} \rightarrow[0,1]$ be random MinHash.
- Let $g:[0,1]^{r} \rightarrow\{1, \ldots, m\}$ be a uniform random hash function.
- Let $h(\mathrm{x})=g\left(c_{1}(\mathrm{x}), \ldots, c_{r}(\mathrm{x})\right)$.

> r"bands"

REDUCING FALSE POSITIVES

Tunable LSH for Jaccard similarity:

- Choose parameter $r \in \mathbb{Z}^{+}$.
- Let $c_{1}, \ldots, c_{r}:\{0,1\}^{d} \rightarrow[0,1]$ be random MinHash.
- Let $g:[0,1]^{r} \rightarrow\{1, \ldots, m\}$ be a uniform random hash function.
- Let $h(\mathbf{x})=g\left(c_{1}(\mathbf{x}), \ldots, c_{r}(\mathbf{x})\right)$.

If $J(\mathbf{q}, \mathrm{y})=v$, then $\operatorname{Pr}[h(\mathrm{q})==h(\mathrm{y})]=$

TUNABLE LSH

TUNABLE LSH

Full LSH cheme has two parameters to tune:

TUNABLE LSH

Effect of increasing number of tables t on:

False Negatives
False Positives

Effect of increasing number of bands r on:

False Negatives
False Positives

Probability we check q when querying y if $J(q, y)=v$:

$$
r=5, t=5
$$

Probability we check q when querying y if $J(q, y)=v$:

$$
\approx 1-\left(1-v^{r}\right)^{t}
$$

$$
r=5, t=40
$$

Probability we check q when querying y if $J(q, y)=v$:

$$
\approx 1-\left(1-v^{r}\right)^{t}
$$

$$
r=40, t=5
$$

Probability we check q when querying y if $J(q, y)=v$:

$$
1-\left(1-v^{r}\right)^{t}
$$

Increasing both r and t gives a steeper curve.
Better for search, but worse space complexity.

FIXED THRESHOLD

Use Case 1: Fixed threshold.

- Shazam wants to find match to audio clip y in a database of 10 million clips.
- There are 10 true matches with $\lrcorner(\mathrm{y}, \mathrm{q})>.9$.
- There are 10,000 near matches with $J(y, q) \in[.7, .9]$.
- All other items have $J(\mathrm{y}, \mathrm{q})<.7$.

With $r=25$ and $t=40$,

- Hit probability for $J(\mathrm{y}, \mathrm{q})>.9$ is $\gtrsim 1-\left(1-.9^{25}\right)^{40}=.95$
- Hit probability for $J(\mathrm{y}, \mathrm{q}) \in[.7, .9]$ is $\lesssim 1-\left(1-.9^{25}\right)^{40}=.95$
- Hit probability for $J(\mathrm{y}, \mathrm{q})<.7$ is $\lesssim 1-\left(1-.7^{25}\right)^{40}=.005$

Upper bound on total number of items checked:

$$
10+.95 \cdot 10,000+.005 \cdot 9,989,990 \approx 60,000 \ll 10,000,000
$$

FIXED THRESHOLD

Space complexity: 40 hash tables $\approx 40 \cdot O(n)$.
Directly trade space for fast search.

FIXED THRESHOLD R

Near Neighbor Search Problem

Concrete worst case result:
Theorem (Indyk, Motwani, 1998)
If there exists some q with $\|\mathrm{q}-\mathrm{y}\|_{0} \leq R$, return a vector $\tilde{\mathrm{q}}$ with $\|\tilde{q}-\mathrm{y}\|_{0} \leq C \cdot R \mathrm{in}:$

- Time: $O\left(n^{1 / C}\right)$.
- Space: $O\left(n^{1+1 / C}\right)$.
$\|\mathrm{q}-\mathrm{y}\|_{0}=$ "hamming distance" $=$ number of elements that differ between q and y.

APPROXIMATE NEAREST NEIGHBOR SEARCH

Theorem (Indyk, Motwani, 1998)
Let q be the closest database vector to y . Return a vector \tilde{q} with $\|\tilde{q}-\mathrm{y}\|_{0} \leq C \cdot\|\mathrm{q}-\mathrm{y}\|_{0}$ in:

- Time: $\tilde{O}\left(n^{1 / C}\right)$.
- Space: $\tilde{O}\left(n^{1+1 / C}\right)$.

OTHER LSH FUNCTIONS

Good locality sensitive hash functions exists for other similarity measures.

Cosine similarity $\cos (\theta(x, y))=\frac{\langle x, y\rangle}{\|x\|_{2}\|y\|_{2}}:$

$-1 \leq \cos (\theta(x, y)) \leq 1$.

COSINE SIMILARITY

Cosine similarity is natural "inverse" for Euclidean distance.

Euclidean distance $\|x-y\|_{2}^{2}$:

- Suppose for simplicity that $\|x\|_{2}^{2}=\|y\|_{2}^{2}=1$.

SIMHASH

Locality sensitive hash for cosine similarity:

- Let $g \in \mathbb{R}^{d}$ be randomly chosen with each entry $\mathcal{N}(0,1)$.
- Let $f:\{-1,1\} \rightarrow\{1, \ldots, m\}$ be a uniformly random hash function.
- $h: \mathbb{R}^{d} \rightarrow\{1, \ldots, m\}$ is definied $h(x)=f(\operatorname{sign}(\langle g, x\rangle))$.

$$
\text { If } \cos (\theta(x, y))=v, \text { what is } \operatorname{Pr}[h(x)==h(y)] ?
$$

SIMHASH ANALYSIS IN 2D

Theorem (to be prove): If $\cos (\theta(x, y))=v$, then

$$
\operatorname{Pr}[h(x)==h(y)]=1-\frac{\theta}{\pi}+\frac{1}{m}=1-\frac{\cos ^{-1}(v)}{\pi}+\frac{1}{m}
$$

SIMHASH

SimHash can be tuned, just like our MinHash based LSH function for Jaccard similarity:

- Let $g_{1}, \ldots, g_{r} \in \mathbb{R}^{d}$ be randomly chosen with each entry $\mathcal{N}(0,1)$.
- Let $f:\{-1,1\}^{r} \rightarrow\{1, \ldots, m\}$ be a uniformly random hash function.
$\cdot h: \mathbb{R}^{d} \rightarrow\{1, \ldots, m\}$ is defined $h(x)=f\left(\left[\operatorname{sign}\left(\left\langle\mathbf{g}_{1}, \mathbf{x}\right\rangle\right), \ldots, \operatorname{sign}\left(\left\langle\mathbf{g}_{r}, \mathbf{x}\right\rangle\right)\right]\right)$.

$$
\operatorname{Pr}[h(\mathrm{x})==h(\mathrm{y})]=\left(1-\frac{\theta}{\Pi}\right)^{r}
$$

SIMHASH ANALYSIS IN DD

To prove: $\operatorname{Pr}[h(x)==h(y)]=1-\frac{\theta}{\pi}$, where $h(x)=f(\operatorname{sign}(\langle g, x\rangle))$ and f is uniformly random hash function.

$$
\operatorname{Pr}[h(x)==h(y)]=z+\frac{1-v}{m} \approx z .
$$

where $z=\operatorname{Pr}[\operatorname{sign}(\langle\mathrm{g}, \mathrm{x}\rangle)==\operatorname{sign}(\langle\mathrm{g}, \mathrm{y}\rangle)]$

SIMHASH ANALYSIS 2D

$\operatorname{Pr}[h(x)==h(y)] \approx$ probability x and y are on the same side of hyperplane orthogonal to g.

SIMHASH ANALYSIS HIGHER DIMENSIONS

There is always some rotation matrix \mathbf{U} such that $\mathbf{U x}, \mathbf{U y}$ are spanned by the first two-standard basis vectors and have the same cosine similarity as x and y.

SIMHASH ANALYSIS HIGHER DIMENSIONS

There is always some rotation matrix \mathbf{U} such that x, y are spanned by the first two-standard basis vectors.

Note: A rotation matrix \mathbf{U} has the property that $\mathbf{U}^{\top} \mathbf{U}=$ I. I.e., \mathbf{U}^{\top} is a rotation matrix itself, which reverses the rotation of U.

SIMHASH ANALYSIS HIGHER DIMENSIONS

Claim:

$$
\begin{aligned}
1-\frac{\theta}{\pi} & =\operatorname{Pr}[\operatorname{sign}(\langle g[1,2],(\mathrm{Ux})[1,2]\rangle)==\operatorname{sign}(\langle\mathrm{g}[1,2],(\mathrm{Uy}[1,2]\rangle)] \\
& =\operatorname{Pr}[\operatorname{sign}(\langle\mathrm{g}, \mathrm{Ux}\rangle)==\operatorname{sign}(\langle\mathrm{g}, \mathrm{Uy}\rangle)] \\
& =\operatorname{Pr}[\operatorname{sign}(\langle\mathrm{g}, \mathrm{x}\rangle)==\operatorname{sign}(\langle\mathrm{g}, \mathrm{y}\rangle)]
\end{aligned}
$$

Why?

MODERN NEAR NEIGBHOR SEARCH

- High-dimensional vector search is exploding as a research area with the rise of machine-learned multi-modal embeddings for images, text, and more.

Web-scale image search is now a vector search problem.

GRAPH BASED NEAR NEIGBHOR

