
CS-GY 6763: Lecture 5
Dimensionality reduction, near neighbor
search in high dimensions

NYU Tandon School of Engineering, Prof. Christopher Musco
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PROJECT

• If you are doing a project, find a partner and sign-up to
present for reading group slot by Monday, 10/9. We need
presenters for next Friday!
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EUCLIDEAN DIMENSIONALITY REDUCTION

Lemma (Johnson-Lindenstrauss, 1984)
For any set of n data points q1, . . . ,qn ∈ Rd there exists a
linear map Π : Rd → Rk where k = O

(
log n
ϵ2

)
such that for all

i, j,

(1− ϵ)∥qi − qj∥2 ≤ ∥Πqi −Πqj∥2 ≤ (1+ ϵ)∥qi − qj∥2.
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SAMPLE APPLICATION

k-means clustering: For data set a1, . . . , an, find clusters
C1, . . . , Ck ⊆ {1, . . . ,n} to minimize:

Cost(C1, . . . , Ck) =
k∑

j=1

1
2|Cj|

∑
u,v∈Cj

∥au − av∥22.
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SAMPLE APPLICATION

k-means clustering: For data set a1, . . . , an, find clusters
C1, . . . , Ck ⊆ {1, . . . ,n} to minimize:

Cost(C1, . . . , Ck) =
k∑

j=1

1
2|Cj|

∑
u,v∈Cj

∥au − av∥22.

Claim: If I find the optimal clustering for Πa1, . . . ,Πan then its
cost is less than (1+ ϵ) times the cost of the best clustering
obtained with the original data. 5



RANDOMIZED JL CONSTRUCTIONS

Π ∈ Rk×d can chosen so that each entry equals 1√
k
N (0, 1), or

each entry equals 1√
k
± 1 with equal probability.

Lots of other constructions work.
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RANDOM PROJECTION

Intuition: Multiplying by a random matrix mimics the process
of projecting onto a random k dimensional subspace in d
dimensions. 7



EUCLIDEAN DIMENSIONALITY REDUCTION

Intermediate result:
Lemma (Distributional JL Lemma)
Let Π ∈ Rk×d be chosen so that each entry equals 1√

k
N (0, 1),

where N (0, 1) denotes a standard Gaussian random variable.

If we choose k = O
(
log(1/δ)

ϵ2

)
, then for any vector x, with

probability (1− δ):

(1− ϵ)∥x∥22 ≤ ∥Πx∥22 ≤ (1+ ϵ)∥x∥22

Given this lemma, how do we prove the traditional
Johnson-Lindenstrauss lemma?
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JL FROM DISTRIBUTIONAL JL

We have a set of vectors q1, . . . ,qn. Fix i, j ∈ 1, . . . ,n.

Let x = qi − qj. By linearity, Πx = Π(qi − qj) = Πqi −Πqj.

By the Distributional JL Lemma, with probability 1− δ,

(1− ϵ)∥qi − qj∥2 ≤ ∥Πqi −Πqj∥2 ≤ (1+ ϵ)∥qi − qj∥2.

Finally, set δ = 1
n2 . Since there are < n2 total i, j pairs, by a

union bound we have that with probability 9/10, the above will
hold for all i, j, as long as we compress to:

k = O
(
log(1/(1/n2))

ϵ2

)
= O

(
log n
ϵ2

)
dimensions.
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PROOF OF DISTRIBUTIONAL JL

Want to argue that, with probability (1− δ),

(1− ϵ)∥x∥22 ≤ |Πx∥22 ≤ (1+ ϵ)∥x∥22

Claim: E∥Πx∥22 = ∥x∥22.
Some notation:

So each πi contains N (0, 1) entries. 10



PROOF OF DISTRIBUTIONAL JL

Intermediate Claim: Let π be a length d vector with N (0, 1)
entries.

E
[
∥Πx∥22

]
= E

[
(⟨π, x⟩)2

]
.

Goal: Prove E∥Πx∥22 = ∥x∥22.
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PROOF OF DISTRIBUTIONAL JL

⟨π, x⟩ = Z1 · x[1] + Z2 · x[2] + . . .+ Zd · x[d]

where each Z1, . . . , Zd is a standard normal N (0, 1).

We have that Zi · x[i] is a normal N (0, x[i]2) random variable.

Goal: Prove E∥Πx∥22 = ∥x∥22. Established: E∥Πx∥22 = E
[
(⟨π, x⟩)2

]
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STABLE RANDOM VARIABLES

What type of random variable is ⟨π, x⟩?

Fact (Stability of Gaussian random variables)

N (µ1, σ
2
1 ) +N (µ2, σ

2
2) = N (µ1 + µ2, σ

2
1 + σ2

2)

⟨π, x⟩ = N (0, x[1]2) +N (0, x[2]2) + . . .+N (0, x[d]2)
= N (0, ∥x∥22).

So E∥Πx∥22 = E
[
(⟨π, x⟩)2

]
= E

[
N (0, ∥x∥22)

]
= ∥x∥22, as desired.
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PROOF OF DISTRIBUTIONAL JL

Want to argue that, with probability (1− δ),

(1− ϵ)∥x∥22 ≤ ∥Πx∥22 ≤ (1+ ϵ)∥x∥22

1. E∥Πx∥22 = ∥x∥22.
2. Need to use a concentration bound.

∥Πx∥22 =
1
k

k∑
i=1

(⟨πi, x⟩)2 =
1
k

k∑
i=1

N (0, ∥x∥22)

“Chi-squared random variable with k degrees of freedom.”
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CONCENTRATION OF CHI-SQUARED RANDOM VARIABLES

Lemma
Let Z be a Chi-squared random variable with k degrees of
freedom.

Pr[|EZ− Z| ≥ ϵEZ] ≤ 2e−kϵ2/8

Goal: Prove ∥Πx∥22 concentrates within 1± ϵ of its expectation,
which equals ∥x∥22. 15



CONNECTION LAST LECTURE

If high dimensional geometry is so different from
low-dimensional geometry, why is dimensionality reduction
possible? Doesn’t Johnson-Lindenstrauss tell us that
high-dimensional geometry can be approximated in low
dimensions?
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CONNECTION TO DIMENSIONALITY REDUCTION

Hard case: x1, . . . , xn ∈ Rd are all mutually orthogonal unit
vectors:

∥xi − xj∥22 = 2 for all i, j.

When we reduce to k dimensions with JL, we still expect these
vectors to be nearly orthogonal. Why?
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CONNECTION TO DIMENSIONALITY REDUCTION

Hard case: x1, . . . , xn ∈ Rd are all mutually orthogonal unit
vectors:

∥xi − xj∥22 = 2 for all i, j.

From our result earlier, in O(log n/ϵ2) dimensions, there exists
2O(ϵ2·log n/ϵ2) ≥ n unit vectors that are close to mutually
orthogonal. O(log n/ϵ2) = just enough dimensions.

Alternative view: Without additional structure, we expect that
learning/inference in d dimenions requires 2O(d) data points. If
we really had a data set that large, then the JL bound would be
vacous, since log(n) = O(d).
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DIMENSIONALITY REDUCTION

The Johnson-Lindenstrauss Lemma let us sketch vectors and
preserve their ℓ2 Euclidean distance.

We also have dimensionality reduction techniques that
preserve alternative measures of similarity.
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SIMILARITY ESTIMATION

How does Shazam match a song clip against a library of 8
million songs (32 TB of data) in a fraction of a second?

Spectrogram extracted
from audio clip.

Processed spectrogram:
used to construct audio
“fingerprint” q ∈ {0, 1}d.

Each clip is represented by a high dimensional binary vector q.
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SIMILARITY ESTIMATION

Given q, find any nearby “fingerprint” y in a database – i.e. any
y with dist(y,q) small.

Challenges:

• Database is possibly huge: O(nd) bits.
• Expensive to compute dist(y,q): O(d) time.
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SIMILARITY ESTIMATION

Goal: Design a more compact sketch for comparing
q, y ∈ {0, 1}d. Ideally ≪ d space/time complexity.

C(q) ∈ Rk

C(y) ∈ Rk

As in Johnson-Lindenstrauss compressions, we want that C(q)
is similar to C(y) if q is similar to y.
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JACCARD SIMILARITY

Definition (Jaccard Similarity)

J(q, y) = |q ∩ y|
|q ∪ y| =

# of non-zero entries in common
total # of non-zero entries

Natural similarity measure for binary vectors. 0 ≤ J(q, y) ≤ 1.

Can be applied to any data which has a natural binary
representation (more than you might think).
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JACCARD SIMILARITY FOR DOCUMENT COMPARISON

“Bag-of-words” model:

How many words do a pair of documents have in common?
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JACCARD SIMILARITY FOR DOCUMENT COMPARISON

“Bag-of-words” model:

How many bigrams do a pair of documents have in common?
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JACCARD SIMILARITY FOR SEISMIC DATA

Feature extract pipeline for earthquake data.

(see paper by Rong et al. posted on course website)
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APPLICATIONS: DOCUMENT SIMILARITY

• Finding duplicate or new duplicate documents or
webpages.

• Change detection for high-speed web caches.
• Finding near-duplicate emails or customer reviews which
could indicate spam.
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SIMILARITY ESTIMATION

Goal: Design a compact sketch C : {0, 1} → Rk:

Want to use C(q), C(y) to approximately compute the Jaccard
similarity J(q, y) = |q∩y|

|q∪y| .
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MINHASH

MinHash (Broder, ’97):

• Choose k random hash functions
h1, . . . ,hk : {1, . . . ,n} → [0, 1].

• For i ∈ 1, . . . , k,
• Let ci = minj,qj=1 hi(j).

• C(q) = [c1, . . . , ck].
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MINHASH

• Choose k random hash functions
h1, . . . ,hk : {1, . . . ,n} → [0, 1].

• For i ∈ 1, . . . , k,
• Let ci = minj,qj=1 hi(j).

• C(q) = [c1, . . . , ck].
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MINHASH ANALYSIS

Claim: For all i, Pr[ci(q) = ci(y)] = J(q, y) = |q∩y|
|q∪y| .

Proof:

1. For ci(q) = ci(y), we need that argmini∈q h(i) = argmini∈y h(i).
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MINHASH ANALYSIS

Claim: Pr[ci(q) = ci(y)] = J(q, y).

2. Every non-zero index in q ∪ y is equally likely to produce the
lowest hash value. ci(q) = ci(y) only if this index is 1 in both q
and y. There are q ∩ y such indices. So:

Pr[ci(q) = ci(y)] =
|q ∩ y|
|q ∪ y| = J(q, y)
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MINHASH ANALYSIS

Let J = J(q, y) denote the Jaccard similarity between q and y.

Return: J̃ = 1
k
∑k

i=1 1[ci(q) = ci(y)].

Unbiased estimate for Jaccard similarity:

ẼJ =

The more repetitions, the lower the variance.
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MINHASH ANALYSIS

Let J = J(q, y) denote the true Jaccard similarity.

Estimator: J̃ = 1
k
∑k

i=1 1[ci(q) = ci(y)].

Var[̃J] =

Plug into Chebyshev inequality. How large does k need to be
so that with probability > 1− δ, |J− J̃| ≤ ϵ?
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MINHASH ANALYSIS

Chebyshev inequality: As long as k = O
( 1
ϵ2δ

)
, then with prob.

1− δ,

J(q, y)− ϵ ≤ J̃ (C(q), C(y)) ≤ J(q, y) + ϵ.

And J̃ only takes O(k) time to compute! Independent of
original fingerprint dimension d.

Can be improved to log(1/δ) dependence. Can anyone tell me
how?
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SIMILARITY SKETCHING

36



BREAK
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NEAR NEIGHBOR SEARCH

Common goal: Find all vectors in database q1, . . . ,qn ∈ Rd that
are close to some input query vector y ∈ Rd. I.e. find all of y’s
“nearest neighbors” in the database.

• The Shazam problem.
• Audio + video search.
• Finding duplicate or near duplicate documents.
• Detecting seismic events.

How does similarity sketching help in these applications?

• Improves runtime of “linear scan” from O(nd) to O(nk).
• Improves space complexity from O(nd) to O(nk). This can
be super important – e.g. if it means the linear scan only
accesses vectors in fast memory.
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BEYOND A LINEAR SCAN

New goal: Sublinear o(n) time to find near neighbors.
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BEYOND A LINEAR SCAN

This problem can already be solved for a small number of
dimensions using space partitioning approaches (e.g. kd-tree).

Runtime is roughly O(d ·min(n, 2d)), which is only sublinear for
d = o(log n).
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HIGH DIMENSIONAL NEAR NEIGHBOR SEARCH

Only been attacked much more recently:

• Locality-sensitive hashing [Indyk, Motwani, 1998]
• Spectral hashing [Weiss, Torralba, and Fergus, 2008]
• Vector quantization [Jégou, Douze, Schmid, 2009]

Key Insight of LSH: Trade worse space-complexity for better
time-complexity. I.e. typically use more than O(n) space.
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LOCALITY SENSITIVE HASH FUNCTIONS

Let h : Rd → {1, . . . ,m} be a random hash function.

We call h locality sensitive for similarity function s(q, y) if
Pr [h(q) == h(y)] is:

• Higher when q and y are more similar, i.e. s(q, y) is higher.
• Lower when q and y are more dissimilar, i.e. s(q, y) is
lower.
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LOCALITY SENSITIVE HASH FUNCTIONS

LSH for s(q, y) equal to Jaccard similarity:

• Let c : {0, 1}d → [0, 1] be a single instantiation of MinHash.
• Let g : [0, 1] → {1, . . . ,m} be a uniform random hash
function.

• Let h(q) = g(c(q)).
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LOCALITY SENSITIVE HASH FUNCTIONS

LSH for Jaccard similarity:

• Let c : {0, 1}d → [0, 1] be a single instantiation of MinHash.
• Let g : [0, 1] → {1, . . . ,m} be a uniform random hash
function.

• Let h(x) = g(c(x)).

If J(q, y) = v,

Pr [h(q) == h(y)] =
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NEAR NEIGHBOR SEARCH

Basic approach for near neighbor search in a database.

Pre-processing:

• Select random LSH function h : {0, 1}d → 1, . . . ,m.
• Create table T with m = O(n) slots.1

• For i = 1, . . . ,n, insert qi into T(h(qi)).

Query:

• Want to find near neighbors of input y ∈ {0, 1}d.
• Linear scan through all vectors q ∈ T(h(y)) and return any
that are close to y. Time required is O(d · |T(h(y)|).

1Enough to make the O(1/m) term negligible.
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NEAR NEIGHBOR SEARCH
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NEAR NEIGHBOR SEARCH

Two main considerations:

• False Negative Rate: What’s the probability we do not find
a vector that is close to y?

• False Positive Rate: What’s the probability that a vector in
T(h(y)) is not close to y?

A higher false negative rate means we miss near neighbors.

A higher false positive rate means increased runtime – we
need to compute J(q, y) for every q ∈ T(h(y)) to check if it’s
actually close to y.

Note: The meaning of “close” and “not close” is application
dependent. E.g. we might specify that we want to find anything
with Jaccard similarity > .4, but not with Jaccard similarity < .2.
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REDUCING FALSE NEGATIVE RATE

Suppose the nearest database point q has J(y,q) = .4.

What’s the probability we do not find q?
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REDUCING FALSE NEGATIVE RATE

Pre-processing:

• Select t independent LSH’s h1, . . . ,ht : {0, 1}d → 1, . . . ,m.
• Create tables T1, . . . , Tt, each with m slots.
• For i = 1, . . . ,n, j = 1, . . . , t,

• Insert qi into Tj(hj(qi)).
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REDUCING FALSE NEGATIVE RATE

Query:

• Want to find near neighbors of input y ∈ {0, 1}d.
• Linear scan through all vectors in
T1(h1(y)) ∪ T2(h2(y)) ∪ . . . , Tt(ht(y)).

Suppose the nearest database point q has J(y,q) = .4.

What’s the probability we find q?

(10, 99%)
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WHAT HAPPENS TO FALSE POSITIVES?

Suppose there is some other database point z with J(y, z) = .2.

What is the probability we will need to compute J(z, y) in our
hashing scheme with one table? I.e. the probability that y
hashes into at least one bucket containing z.

In the new scheme with t = 10 tables?

(89%)
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REDUCING FALSE POSITIVES

Change our locality sensitive hash function.

Tunable LSH for Jaccard similarity:

• Choose parameter r ∈ Z+.

• Let c1, . . . , cr : {0, 1}d → [0, 1] be random MinHash.

• Let g : [0, 1]r → {1, . . . ,m} be a uniform random hash function.

• Let h(x) = g(c1(x), . . . , cr(x)).
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REDUCING FALSE POSITIVES

Tunable LSH for Jaccard similarity:

• Choose parameter r ∈ Z+.

• Let c1, . . . , cr : {0, 1}d → [0, 1] be random MinHash.

• Let g : [0, 1]r → {1, . . . ,m} be a uniform random hash function.

• Let h(x) = g(c1(x), . . . , cr(x)).

If J(q, y) = v, then Pr [h(q) == h(y)] =
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TUNABLE LSH
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TUNABLE LSH

Full LSH cheme has two parameters to tune:
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TUNABLE LSH

Effect of increasing number of tables t on:

False Negatives False Positives

Effect of increasing number of bands r on:

False Negatives False Positives
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s-CURVE TUNING

Probability we check q when querying y if J(q, y) = v:

r = 5, t = 5
56



s-CURVE TUNING

Probability we check q when querying y if J(q, y) = v:

≈ 1− (1− vr)t

r = 5, t = 40
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s-CURVE TUNING

Probability we check q when querying y if J(q, y) = v:

≈ 1− (1− vr)t

r = 40, t = 5
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s-CURVE TUNING

Probability we check q when querying y if J(q, y) = v:

1− (1− vr)t

Increasing both r and t gives a steeper curve.

Better for search, but worse space complexity. 59



FIXED THRESHOLD

Use Case 1: Fixed threshold.

• Shazam wants to find match to audio clip y in a database of 10
million clips.

• There are 10 true matches with J(y,q) > .9.

• There are 10,000 near matches with J(y,q) ∈ [.7, .9].

• All other items have J(y,q) < .7.

With r = 25 and t = 40,

• Hit probability for J(y,q) > .9 is ≳ 1− (1− .925)40 = .95

• Hit probability for J(y,q) ∈ [.7, .9] is ≲ 1− (1− .925)40 = .95

• Hit probability for J(y,q) < .7 is ≲ 1− (1− .725)40 = .005

Upper bound on total number of items checked:

10+ .95 · 10, 000+ .005 · 9, 989, 990 ≈ 60, 000 ≪ 10, 000, 000. 60



FIXED THRESHOLD

Space complexity: 40 hash tables ≈ 40 · O(n).

Directly trade space for fast search.
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FIXED THRESHOLD R

Near Neighbor Search Problem

Concrete worst case result:
Theorem (Indyk, Motwani, 1998)
If there exists some q with ∥q− y∥0 ≤ R, return a vector q̃ with
∥q̃− y∥0 ≤ C · R in:

• Time: O
(
n1/C).

• Space: O
(
n1+1/C).

∥q− y∥0 = “hamming distance” = number of elements that
differ between q and y.
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APPROXIMATE NEAREST NEIGHBOR SEARCH

Theorem (Indyk, Motwani, 1998)
Let q be the closest database vector to y. Return a vector q̃
with ∥q̃− y∥0 ≤ C · ∥q− y∥0 in:

• Time: Õ
(
n1/C).

• Space: Õ
(
n1+1/C).
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OTHER LSH FUNCTIONS

Good locality sensitive hash functions exists for other
similarity measures.

Cosine similarity cos (θ(x, y)) = ⟨x,y⟩
∥x∥2∥y∥2 :

−1 ≤ cos (θ(x, y)) ≤ 1.
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COSINE SIMILARITY

Cosine similarity is natural “inverse” for Euclidean distance.

Euclidean distance ∥x− y∥22:

• Suppose for simplicity that ∥x∥22 = ∥y∥22 = 1.
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SIMHASH

Locality sensitive hash for cosine similarity:

• Let g ∈ Rd be randomly chosen with each entry N (0, 1).
• Let f : {−1, 1} → {1, . . . ,m} be a uniformly random hash
function.

• h : Rd → {1, . . . ,m} is definied h(x) = f (sign(⟨g, x⟩)).

If cos(θ(x, y)) = v, what is Pr[h(x) == h(y)]?
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SIMHASH ANALYSIS IN 2D

Theorem (to be prove): If cos(θ(x, y)) = v, then

Pr[h(x) == h(y)] = 1− θ

π
+

1
m = 1− cos−1(v)

π
+

1
m
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SIMHASH

SimHash can be tuned, just like our MinHash based LSH
function for Jaccard similarity:

• Let g1, . . . , gr ∈ Rd be randomly chosen with each entry
N (0, 1).

• Let f : {−1, 1}r → {1, . . . ,m} be a uniformly random hash
function.

• h : Rd → {1, . . . ,m} is defined
h(x) = f ([sign(⟨g1, x⟩), . . . , sign(⟨gr, x⟩)]).

Pr[h(x) == h(y)] =
(
1− θ

Π

)r
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SIMHASH ANALYSIS IN 2D

To prove: Pr[h(x) == h(y)] = 1− θ
π , where h(x) = f (sign(⟨g, x⟩))

and f is uniformly random hash function.

Pr[h(x) == h(y)] = z+ 1− v
m ≈ z.

where z = Pr[sign(⟨g, x⟩) == sign(⟨g, y⟩)] 69



SIMHASH ANALYSIS 2D

Pr[h(x) == h(y)] ≈ probability x and y are on the same side of
hyperplane orthogonal to g.
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SIMHASH ANALYSIS HIGHER DIMENSIONS

There is always some rotation matrix U such that Ux,Uy are
spanned by the first two-standard basis vectors and have the
same cosine similarity as x and y.
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SIMHASH ANALYSIS HIGHER DIMENSIONS

There is always some rotation matrix U such that x, y are
spanned by the first two-standard basis vectors.

Note: A rotation matrix U has the property that UTU = I. I.e., UT

is a rotation matrix itself, which reverses the rotation of U.
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SIMHASH ANALYSIS HIGHER DIMENSIONS

Claim:

1− θ

π
= Pr[sign(⟨g[1, 2], (Ux)[1, 2]⟩) == sign(⟨g[1, 2], (Uy[1, 2]⟩)]

= Pr[sign(⟨g,Ux⟩) == sign(⟨g,Uy⟩)]
= Pr[sign(⟨g, x⟩) == sign(⟨g, y⟩)]

Why?
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MODERN NEAR NEIGBHOR SEARCH

• High-dimensional vector search is exploding as a research
area with the rise of machine-learned multi-modal
embeddings for images, text, and more.

Web-scale image search is now a vector search problem. 74



GRAPH BASED NEAR NEIGBHOR
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