CS-GY 6763: Lecture 3
 Exponential Concentration Inequalities,
 Fingerprinting

NYU Tandon School of Engineering, Prof. Christopher Musco

LAST TIME

Lemma (Chebyshev's Inequality)

Let X be a random variable with expectation $\mathbb{E}[X]$ and variance $\sigma_{\Omega}^{2}=\operatorname{Var}[X]$. Then for any $k>0$,

$$
\operatorname{Pr}[|X-\mathbb{E}[X]| \geq k \cdot \sigma] \leq \frac{1}{k^{2}}
$$

One application: Proved that if you throw n balls into n bins, the maximum loaded bin has $O(\sqrt{n})$ balls. We used Chebyshevs: Union Bound

This lecture, we'll prove a bound of $O(\underline{(\log n)}$ using stronger tools.

BEYOND CHEBYSHEV

Motivating question: Is Chebyshev's Inequality tight?
It is the worst case, but often not in reality.

68-95-99 rule for Gaussian bell-curve. $X \sim \mathrm{~N}\left(0, \sigma^{2}\right)$

Chebyshev's Inequality:

$$
\begin{aligned}
& \operatorname{Pr}(|X-\mathbb{E}[X]| \geq 1 \sigma) \leq 100 \% \\
& \operatorname{Pr}(|X-\mathbb{E}[X]| \geq 2 \sigma) \leq 25 \% \\
& \operatorname{Pr}(|X-\mathbb{E}[X]| \geq 3 \sigma) \leq 11 \% \\
& \operatorname{Pr}(|X-\mathbb{E}[X]| \geq 4 \sigma) \leq 6 \% .
\end{aligned}
$$

Truth:

$$
\begin{aligned}
& \operatorname{Pr}(|X-\mathbb{E}[X]| \geq 1 \sigma) \approx \frac{32 \%}{} \\
& \operatorname{Pr}(|X-\mathbb{E}[X]| \geq 2 \sigma) \approx \frac{5 \%}{} \\
& \operatorname{Pr}(|X-\mathbb{E}[X]| \geq 3 \sigma) \approx \frac{1 \%}{} \\
& \operatorname{Pr}(|X-\mathbb{E}[X]| \geq 4 \sigma) \approx .01 \%
\end{aligned}
$$

GAUSSIAN CONCENTRATION

For $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$:

$$
\operatorname{Pr}[X=\underline{\mu} \pm x] \sim\left(\frac{1}{\sigma \sqrt{2 \pi}} \mathrm{e}^{-x^{2} / 2 \sigma^{2}}\right)
$$

Lemma (Gaussian Tail Bound)
For $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$:

$$
\underset{\sim}{\operatorname{Pr}[|X-\mathbb{E} X| \geq k \cdot \sigma]} 2 e^{-k^{2} / 2}
$$

Compare this to:
Lemma (Chebyshev's Inequality)
For $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$:

$$
\operatorname{Pr}[|X-\mathbb{E} X| \geq k \cdot \sigma]=\frac{1}{k^{2}}
$$

GAUSSIAN CONCENTRATION

Takeaway: Gaussian random variables concentrate much tighter around their expectation than variance alone (i.e. Chebyshevs's inequality) predicts.

Why does this matter for algorithm design?

CENTRAL LIMIT THEOREM

Theorem (CLT - Informal)

Any sum of mutually independent, (identically distributed)

 r.v.'s X_{1}, \ldots, X_{k} with mean μ and finite variance σ^{2} converges to a Gaussian r.v. with mean $k \cdot \mu$ and variance $k \cdot \sigma^{2}$, as $k \rightarrow \infty$.$$
S=\sum_{i=1}^{\mathbb{K}} X_{i} \Longrightarrow \mathcal{N}\left(k \cdot \mu, k \cdot \sigma^{2}\right)
$$

(a) Distribution of $\#$ of heads after 10 coin flips, compared to a Gaussian.

(b) Distribution of \# of heads after 50 coin flips, compared to a Gaussian.

INDEPENDENCE

Recall:

Definition (Mutual Independence)

Random variables X_{1}, \ldots, X_{k} are mutually independent if, for all possible values v_{1}, \ldots, v_{k},

$$
\operatorname{Pr}\left[X_{1}=v_{1}, \ldots, X_{k}=v_{k}\right]=\operatorname{Pr}\left[X_{1}=v_{1}\right] \cdot \ldots \cdot \operatorname{Pr}\left[X_{k}=v_{k}\right]
$$

Strictly stronger than pairwise independence.

EXERCISE

$$
\operatorname{Var}\left(x_{i}\right]=\mathbb{E}\left[x_{i}^{2}\right] \cdot \operatorname{F}\left(x_{i}\right)^{2}
$$

If I flip a fair coin 100 times, lower bound the chance I get between

$$
50
$$

30 and 70 heads?

$$
\operatorname{Pr}\left[|S-|E S| \geqslant 20] \leq 2 e^{-k^{2} / 2}\right.
$$

For this problem, we will assume the limit of the CLT holds exactly $-\underset{ }{\sim}$ ie., that this sum looks exactly like a Gaussian random variable. $\quad 20=k \cdot \sigma$

$$
\begin{aligned}
& \text { Lemma (Gaussian Tail Bound) } \\
& \text { For } X \sim \mathcal{N}\left(\mu, \sigma^{2}\right) \text { : } \\
& 2 e^{-4^{2} / 2} \\
& \operatorname{Pr}[|X-\mathbb{E} X| \geq k \cdot \sigma] \leq 2 e^{-k^{2} / 2} . \\
& S: \sum_{i=1}^{n} X_{i} \rightarrow X_{i}: \mathbb{1}[i \text { th } 60 \text { in } 1>\text { heads }) \quad \mathbb{F}\left(X_{i}\right)=1 / 2 \\
& \operatorname{IE}(S]=n / 2=50 \quad \operatorname{Var}[S 3: n / y=25 \quad \sigma=5 . \\
& \operatorname{Var}\left(x_{i}\right]=y_{4} \\
& 2 e^{-8}=.06 \% \text {. Chebyshev's inequality gave a bound of } 6.25 \% \text {. }
\end{aligned}
$$

QUANTITATIVE VERSIONS OF THE CLT

These back-of-the-envelop calculations can be made rigorous! Lots of different "versions" of bound which do so.

- Chernoff bound)
- Bernstein bound)
- Hoeffding bound)

Different assumptions on random varibles (e.g. binary vs. bounded), different forms (additive vs. multiplicative error), etc. Wikipedia is your friend.

QUANTITATIVE VERSIONS OF THE CLT

Theorem (Chernoff Bound)

Let $X_{1}, X_{2}, \ldots, X_{k}$ be independent $\{0,1\}$-valued random variables and let $\underline{p}_{i}=\mathbb{E}\left[X_{i}\right]$, where $0<p_{i}<1$. Then the sum $S=\sum_{i=1}^{k} x_{i}$, which has mean $\mu=\underline{\sum_{i=1}^{k} p_{i}}$, satisfies

$$
\operatorname{Pr}[S \geq(1+\epsilon) \mu] \leq e^{\frac{-\epsilon^{2} \mu}{2+\epsilon}} .
$$

and for $0<\epsilon<1$

$$
\operatorname{Pr}[S \leq(1-\epsilon) \mu] \leq e^{\frac{-\epsilon^{2} \mu}{2}}
$$

CHERNOFF BOUND

Theorem (Chernoff Bound Corollary)
Let $X_{1}, X_{2}, \ldots, X_{k}$ be independent $\{0,1\}$-valued random variables and let $p_{i}=\mathbb{E}\left[X_{i}\right]$, where $0<p_{i}<1$. Let $S=\sum_{i=1}^{k} X_{i}$ and $\mathbb{E}[S]=\mu$. For $\epsilon \in(0,1)$,

$$
\sigma=O(\sqrt{\mu})
$$

$$
\operatorname{Pr}[|S-\mu| \geq \epsilon \mu] \leq 2 e^{-\epsilon^{2} \mu / 3}
$$

$$
\operatorname{Pr}[|S-\mu| \geqslant 4 / \sqrt{\mu} \cdot \sqrt{k} \mu] \leq 2 e^{-\varepsilon^{2} \mu / 3}=2 e^{-u^{2} / 3}
$$

Why does this look like the Gaussian tail bound of $\operatorname{Pr}[|S-\mu| \geq k \cdot \sigma] \lesssim 2 e^{-k^{2} / 2}$? What is $\sigma(S)$?

$$
\begin{aligned}
& k=\varepsilon \sqrt{\mu} \\
& k^{2}=\varepsilon^{2} \mu
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Var}[s]=\sum_{i=1}^{k} \operatorname{Vor}\left[x_{i}\right] & =\sum_{i=1}^{k} \mathbb{E}\left(x_{i}^{2}\right]-\underline{\mathbb{E}\left(x_{i}\right]^{2}} \\
\operatorname{Var}(s)=O(\mu)=\mu & \leq \sum_{i=1}^{k} \mathbb{E}\left[x_{i}^{2}\right]=\sum_{i=1}^{k} \mathbb{E}\left[x_{i}\right]=\underline{\underline{\mu}}
\end{aligned}
$$

QUANTITATIVE VERSIONS OF THE GLT

Theorem (Bernstein Inequality)
Let $X_{1}, X_{2}, \ldots, X_{k}$ be independent random variables with each $X_{i} \in[-1,1]$. Let $\mu_{i}=\mathbb{E}\left[X_{i}\right]$ and $\sigma_{i}^{2}=\operatorname{Var}\left[X_{i}\right]$. Let $(\mu)=\sum_{i} \mu_{i}$ and $\sigma^{2}=\sum_{i} \sigma_{i}^{2}$. Then, for $k \leq \frac{1}{2} \sigma, S=\sum_{i} X_{i}$ satisfies

$$
\operatorname{Pr}[|S-\mu|>k \cdot \sigma] \leq 2 e^{-k^{2} / 4}
$$

QUANTITATIVE VERSIONS OF THE CLT

Theorem (Hoeffding Inequality)

Let $X_{1}, X_{2}, \ldots, X_{k}$ be independent random variables with each $x_{i} \in\left[a_{i}, b_{j}\right]$. Let $\mu_{i}=\mathbb{E}\left[X_{i}\right]$ and $\mu=\sum_{i} \mu_{i}$. Then, for any $k>0$, $S=\sum_{i} X_{i}$ satisfies:

$$
a_{i} \quad b_{i}
$$

$$
\begin{aligned}
& \begin{array}{l}
\frac{\operatorname{Pr}[|S-\mu|>k]}{} \leq 2 e^{-\frac{k^{2}}{\sum_{i=1}^{k}\left(b_{i}-a_{i}\right)^{2}}} .
\end{array} \\
& O\left(\sigma^{2}\right)
\end{aligned}
$$

HOW ARE THESE BOUNDS PROVEN?

Variance is a natural measure of central tendency, but there are others.

$$
b=4
$$

$$
q^{\text {th }} \text { central moment: } \mathbb{E}\left[(X-\mathbb{E} X)^{q}\right]
$$

$q=2$ gives the variance. Proof of Chebyshev's applies Markov's inequality to the random variable $\left.(X-\mathbb{E} X)^{2}\right)$.

Idea in brief: Apply Markov's inequality to $\mathbb{E}\left[(X-\mathbb{E} X)^{q}\right]$ for larger q, or more generally to $f(X-\mathbb{E} X)$ for some other non-negative function f. E.g., to $\exp (X-\mathbb{E} X)$.

EXERCISE

If I flip a fair coin 100 times, lower bound the chance I get between 30 and 70 heads?
$\#$ hoods
Corollary of Chernoff bound: Let $S=\sum_{i=1}^{k} X_{i}$ and $\mu=\mathbb{E}[S]$. For $0<\epsilon<1$,

6.25%
1.4%.
$.06 \%$

CHERNOFF BOUND APPLICATION

General Statement: Flip biased coin k times: ie. the coin is heads with probability b As long as $k \geq 0\left(\frac{\log (1 / \delta)}{\epsilon^{2}}\right)$,

$$
\operatorname{Pr}[\mid \# \text { heads }-b \cdot k \mid \geq \epsilon k] \leq \delta, \quad \mu=b k
$$

From chernoff, for an g $\varepsilon^{\prime} \in(0,1) \xrightarrow{\longrightarrow} \mu \cdot \varepsilon^{\prime} \mu \varepsilon^{\prime}=\varepsilon / b$

$$
\operatorname{Pr}\left[\mid \nmid \text { haas }-b \cdot k \mid \geqslant \varepsilon^{\prime} b k\right] \leqslant 2 e^{-\varepsilon^{\prime 2} b k / 3}
$$

Set $\varepsilon^{\prime}=\varepsilon / b$, * need $\varepsilon \leq 1 / b$.

$$
\operatorname{Pr}(\mid \forall h i c d)-b k \mid \geqslant \varepsilon k] \leq 2 e^{-\varepsilon^{2} k / 3 b} \leq 2 e^{-\varepsilon^{2} k / 3}
$$

setting $h: O\left(\log _{\frac{c^{2}}{}(v /)}\right)$ gives $2 e^{-\varepsilon^{2} k / 3}$
Pay very little for higher probability - if you increase the $\leq \delta$ number of coin flips by $4 x, \delta$ goes from

$$
1 / 10 \rightarrow 1 / 100 \rightarrow 1 / 10000
$$

LOAD BALANCING

Recall: n jobs are distributed randomly to n servers using a hash function. Le S_{i})e the number of jobs sent to server i. What's the smallest B for which we can prove.

Recall: Suffices to prove that, for any $i, \operatorname{Pr}\left[S_{i} \geq B\right] \leq 1 / 10 n$:

$$
\begin{aligned}
\underbrace{\operatorname{Pr}\left[\max _{i} S_{i} \geq \mathrm{B}\right]}_{i} & =\operatorname{Pr}\left[\mathrm{S}_{1} \geq \mathrm{B} \text { or } \ldots \text { or } S_{1} \geq \mathrm{B}\right] \\
& \leq \underline{\operatorname{Pr}\left[S_{1} \geq \mathrm{B}\right]}+\ldots+\operatorname{Pr}\left[S_{n} \geq \mathrm{B}\right] \quad \text { (union bound). } .
\end{aligned}
$$

LOAD BALANCING

Theorem (Chernoff Bound)

$$
2+\operatorname{cog}(n) \leqslant 2 \log (n)
$$

Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent $\{0,1\}$-valued random variables and let $p_{i}=\mathbb{E}\left[X_{i}\right]$, where $0<p_{i}<1$. Then the sum $S=\sum_{j=1}^{n} X_{i}$, which has mean $\mu=\sum_{j=1}^{n} p_{i}$, satisfies

$$
\operatorname{Pr} \geq(1+\epsilon) \mu] \leq e^{\frac{-\epsilon^{2} \pi}{2+\epsilon}} .
$$

$\mu=1$
Consider a single bin. Let $X_{j}=\mathbb{1}$ [ball j lands in bin] ${ }^{i}$.

$$
\begin{aligned}
& S_{i}=\sum_{j=1}^{n} x_{j} \quad \mathbb{E}\left[x_{j}\right]=1 / n \quad \mathbb{E}\left[s_{i}\right]=\sum_{j \div 1}^{n} \mathbb{E}\left[x_{i}\right]=\sum_{j=1}^{1} 1 / n=1
\end{aligned}
$$

for sufficiently large c

$$
e^{-2 \log (n)}-\frac{1}{n^{2}} \leq \frac{1}{10 n} 18
$$

LOAD BALANCING

So max load for randomized load balancing is $O(\log n)$! Best we could prove with Chebyshev's was $O(\sqrt{n})$.

POWER OF TWO CHOICES

(Power of 2 Choices:) Instead of assigning job to random server, choose 2 random servers and assign to the least loaded. With probability $1 / 10$ the maximum load is bounded by:
(a) $O(\log n)$
(b) $O(\sqrt{\log n})$
(c) $O(\log \log n)$
(d) $\underline{O(1)}$

$$
\log _{d} \log (4)
$$

Lolelelelelel level

BREAK

PSEUDORANDOM HASH FUNCTIONS

Recall from last class: $u(x) \sim U_{\text {ni }}(1, \ldots, m)$
Definition (Universal hash function)
A random hash function $h: \mathcal{U} \rightarrow\{1, \ldots, m\}$ is universal if, for any fixed $x, y \in \mathcal{U}$,

$$
\operatorname{Pr}[\underline{h(x)=h(y)}] \leq \frac{1}{m} .=\frac{1}{u_{m}}
$$

Efficient construction: Let be a prime number between $|\mathcal{U}|$ and $2|\mathcal{U}|$. Let a, b be random numbers in $0, \ldots, p, a \neq 0$.

$$
h(x)=\left[\begin{array}{lll}
a \cdot x+b & (\bmod p)] & (\bmod m) \\
\end{array}\right.
$$

is universal.
We're not going to prove this, but this year I want to give a flavor for what tools are used.

PRIME NUMBER CHECKING

One of the most famous applications of randomness in algorithm design.

Computational Problem: Given a number x, is x prime? Recall:

- A number is prime if it can only be divided evenly by 1 and itself.
- The first few primes are $2,3,5,7,11,13,17,19, \ldots$..
- Is 2023 prime? x :input length
- What about 49301977064557719291?

$$
2^{n} \sqrt{2^{n}}=2^{0(n)}
$$

How would you design a generic algorithm to check?

PRIME NUMBER CHECKING

Suppose we have an integer represented as a length n binary string.

$$
x=0110100010110101 \ldots 1010001110
$$

The naive prime checking algorithm runs in $O\left(2^{n}\right)$ time.
NYU Greene Super Computer has 2 petaFLOPS of throughput. When $n=128$, would need 1 million Greene Super computers running for 1 million years to check is x is prime.

RANDOMIZED PRIMALITY TEST

$$
2^{0(4)} \quad 2^{0\left(n^{1 / n}\right)}
$$

(Miller-Rabin 1976, 1980:) There is a randomized algorithm running in $O\left(n^{3} \log _{2}(1 / \delta)\right)$ time that, with probability $1-\delta$ determines if an n-bit integer x is prime.

- $n=128$
- $\delta=10^{-9}$ (chance of winning the Powerball Jackpot)
- $n^{3} \log _{2}(1 / \delta) \approx 60$ million operations.

Could check in $<.1$ second on my laptop.
This was a really big break through!

RANDOMIZED PRIMALITY TEST

Took over 20 more years to find a deterministic polynomial time primality test.

PRIMES is in P

Manindra Agrawal Neeraj Kayal
Nitin Saxena*

Department of Computer Science \& Engineering
Indian Institute of Technology Kanpur Kanpur-208016, INDIA
Email: \{manindra,kayaln, nitinsa\}@iitk.ac.in

Abstract

We present an unconditional deterministic polynomial-time algorithm that determines whether an input number is prime or composite.

WHY DO PRIMES MATTER?

Basis for modern public-key cryptography.

Goal: Bobwants to send Alice an email. Wants to encrypt it in some way so that even if it is intercepted, no one can read it besides Alice.

fsxtwdrweodautbeiqxnhmwtnhzutzgf orzjfbryvokrtggbyeofchfyafekoyia gcdfndzqyunfwgwfivfzvzlrehcgxctj pcerkwdeysaruspsutecqvrbcetoiocg oqnajpsslcjdlcwbdcaxcglbtevfzhiu eutxubpmqnmxylonkaplmmqcvblbfltl dbjasqnsavwlgbazbmkbphezgeavtmet desrgtomtjrsxsrlshikycbpmhvncuhm ipzzwehmjnmriareccuxfqhjjezdsuqt zhnwmyummpzimvydkvscsbtjrciquyfn

WHY DO PRIMES MATTER?

Basis for modern public-key cryptography.
Goal: Bob wants to send Alice an email. Wants to encrypt it in some way so that even if it is intercepted, no one can read it besides Alice.

Option 1: Share some sort of secret key/codebook in advance.

Impractical if you have a large number of uncoordinated senders and receivers.

PUBLIC-KEY CRYPTOGRAPHY

Option 2: Create a 1-way lock box.

Anyone can deliver, only Alice can open/read the messages.

WHY DO PRIMES MATTER?

RSA crytosystem (Rivest, Shamir, Adleman 1977):

- Private key: Two large (e.g. 128 bit) prime number P, q.
- Public key: Based or $z=p \times q$.

Even though checking if a number of prime can be done quickly, we do not have efficient algorithms for factoring numbers. E.g. for finding p, q based on $z .{ }^{1}$

[^0]
FROM PRIME TESTING TO PRIME GENERATION

How to find a 128 bit prime number p ? Use randomness, twice.

- (Pick a random 128 bit number.)
- (Check if it's prime (using randomized primality test).)
- If not, repeat.

Roughly how many tries do you expect this to take?

PRIME NUMBER THEOREM

Let $\pi(x)$ denote the number of primes less than some integer x. Informally:

$$
\pi(x) \sim \frac{x}{\log (x)}
$$

PRIME NUMBER THEOREM

$$
x / \log (x)
$$

Formally: For $x>17$,

$$
\frac{x}{\log (x)} \leq \pi(x)=\frac{x}{\log (x)-4}
$$

$$
x
$$

$$
=\frac{1}{\log (x)}
$$

So if we select a random 128 bit number p, the chance that it is prime is great than:

$$
\frac{1}{\underline{\log \left(2^{128}\right)}} \geq \frac{1}{90}=O\left(\frac{1}{128}\right)
$$

After a few hundred tries, we will almost definitely find a prime number. In general, need $O(n)$ tries to find a prime with n bits.

PRIME NUMBERS AND HASHING

Finding large prime numbers is also a critical step in constructing efficiently computable universal hash.
(Remainder of lecture: Discuss a simple but really important application of prime numbers to hashing.

FINGERPRINTING

Goal: Construct a compact "fingerprint" $h(f)$ for any given file f with two properties:

- The fingerprints $h\left(f_{1}\right)$ and $h\left(f_{2}\right)$ should be different with high probability if the contents of $\underline{f_{1}}$ and $\underline{f_{2}}$ differ at all.
- If the contents of f_{1} and f_{2} are identical, we should have $h\left(f_{1}\right)=h\left(f_{2}\right)$.

APPLICATIONS OF FINGER PRINTING

- Quickly check if two versions of the same file are identical (e.g. in version control systems like Git). Do not need to communicate the entire file between servers. Also used in webcaching and content delivery networks.
- Check that a file pieced together from multiple parts is not missing anything.

APPLICATIONS OF FINGER PRINTING

APPLICATIONS OF FINGER PRINTING

REDFIN

Images from databases of local real estate agencies.

Fingerprints used as file names for the images to make sure we did not reupload new images that we already had, and to detect duplicate images and listings.

FINGERPRINTING

Goal: Construct a compact "fingerprint" function $h(f)$ such that:

- $h\left(f_{1}\right) \neq h\left(f_{2}\right)$ if $f_{1} \neq f_{2}$ with high probability.

Ideally, length of $h\left(f_{1}\right)$ (i.e. the size of the integers hashed to) is much less than the file size.
(Rabin Fingerprint) (1981): Let file $f=\underline{010 \ldots 1101}$ of length n be interpreted as an n bit integer. So something between 0 and 2^{n}.

Construct h randomly: Choose random prime number p between 2 and $t n \log (t n)$ for a constant t.

$$
h(f)=\underline{\underline{f}}(\underline{\bmod p})
$$

$$
\theta\left(\log _{2} t+\log n\right)
$$

How many bits does $h(f)$ take to store?
$\log (p)$ bits to store

$$
\leq \log \left(t_{n} \log \left(t_{n}\right)\right) \leq \log \left(\left(t_{n}\right)^{2}\right)=O\left(\log _{39}\left(t_{n}\right)\right)
$$

RANDOM FINGERPRINTING

$$
h(f)=f(\bmod p) \quad \text { for prime } p \in\{2, \ldots, \text { tn } \log (t n)\}
$$

Claim: If $f_{1} \neq f_{2}$ then $h\left(f_{1}\right)=h\left(f_{2}\right)$ with probability $\leq \frac{2}{t}$.

Since our fingerprint only takes $O(\log n+\underline{\underline{\log t} t})$ space, we can set t to be super large, so effectively the probability of $h\left(f_{1}\right)$ and $h\left(f_{2}\right)$ colliding is negligible for all real-world applications.
E.g. set fingerprint length to $\log n+28$ bits and you are more likely to win the Powerball.

RANDOM FINGERPRINTING

$$
h(f)=f \quad(\bmod p) \quad \text { for prime } p \in\{2, \ldots, \text { tn } \log (t n)\}
$$

Claim: If $f_{1} \neq f_{2}$ then $h\left(f_{1}\right)=h\left(f_{2}\right)$ with probability just $\frac{2}{t}$.

$$
f_{1}(\operatorname{nod} p)=f_{2}(\operatorname{uod} p)
$$

First observation: If $h\left(f_{1}\right)=h\left(f_{2}\right)$, then:

$$
\left(f_{1}-f_{2}\right)(\bmod p)=0 .
$$

In other words, we only fail if the $f_{1}-f_{2}$ is divisible by p.

RANDOM FINGERPRINTING

Question: What is the chance that $f_{1}-f_{2}$, which is an integer less than 2^{n}, is divisible by a random prime
$p \in\{2, \ldots, t n \log (t n)\}$?

RANDOM FINGERPRINTING
$\rightarrow I$
Number of distinct prime factors of $f_{1}-f_{2}$: At most n. $I=2 \cdot 3^{2} \cdot 5 \cdot 7^{7} \cdot \ldots \quad I \geqslant \overline{2 \# \text { of prime factors }}$ Number of primes between $\{2, \ldots$, tn $\log (t n)\}$: At least $\frac{t n \log (t n)}{\log (t n \log (t n))}$ via prime number theorem.
= prime number
$=$ prime factors of $\mathrm{f}_{1}-\mathrm{f}_{2}$
at most n -

2345 ...

$$
\text { tnlog(tn) }=x
$$

Chance we pick a prime factor of $f_{1}-f_{2}$ is less than:

$$
\frac{\square}{\frac{t(\log (t n)}{\log (t n \log (t n))}}=\frac{\log (t n \log (t n))}{t \log (t n)} \leq \frac{2 \log (\not t n)}{t \log (t n)}=\frac{2}{f}
$$

RANDOM FINGERPRINTING

Conclusion: The chance that a random prime $p \in\{2, \ldots$, tn $\log (t n)\}$ is a factor of $f_{1}-f_{2}$ is $\leq \frac{2}{t}$.
So, for two files $f_{1} \neq f_{2}$, the chance that $h\left(f_{1}\right)=h\left(f_{2}\right) \leq \frac{2}{t}$.

Set $t=10^{18}$ (the chance you win the Powerball twice in a row).
Fingerprint size: At most $2 \log _{2}(n t)=2 \log (n)+2 \log _{2}\left(10^{18}\right)$ bits.
Suppose we are fingerprinting 1 mb image files. $n \approx 8 \cdot 10^{6}$, so our fingerprint has size:

166 bits

This amounts to a $50,000 \times$ reduction over sending and comparing the original files.

[^0]: ${ }^{1}$ At least on classical computers we don't... different story on quantum computers.

