
CS-GY CS-UY/ࠂࠅࠆࠅ :ࠂࠃ9ࠂ Lecture ࠀ
Course introduction, concentration of random
variable, applications

NYU Tandon School of Engineering, Prof. Christopher Musco

ࠀ

ALGORITHMS IN THE AGE OF DATA SCIENCE

Algorithmic Machine Learning and Data Science

Statistics, machine learning, and data science study how
to use data to make better decisions or discoveries.

In this class, we study how to do so as quickly as
possible, or with limited computational resources.

ࠁ

APPLICATIONS BY THE NUMBERS

• X (Twitter) receives ߿߿߿,ࠅ tweets every second.
• Google receives ≈ ߿߿߿,߿ࠁ Maps queries every second.
• NASA collects ࠃ.ࠅ TB of satallite images every day.
• Rubin Observatory in Chile will collect ߿ࠁ TB of images
every night.

• MIT/Harvard Broad Institute sequences ࠃࠁ TB of genetic
data every day.

ࠂ

ROLE OF ALGORITHMS

Growing demands of data science and machine learning have
ushered in a new “golden age” for algorithms research.

• Bolstered by our limited ability to build faster computers
(or to access computational resources with a limited
financial budget).

• Typical data applications require combining a diverse set
of algorithmic tools. Most are not heavily covered in your
traditional algorithms curriculum.

ࠃ

CLASS TOPICS

(ࠀ) Randomized methods.
(ࠁ) Optimization.
(ࠂ) Spectral methods and linear algebra.
(ࠃ) Touch on Fourier methods.

Focus is on teaching tools to design algorithms, not just the
algorithms themselves.

ࠄ

RANDOMIZED METHODS

Section :ࠀ Randomized Algorithms.

It is hard to find an algorithms paper in ࠂࠁ߿ࠁ that does not use
randomness in some way, but this wasn’t always the case!

• Probability tools and concentration of random variables
(Markovs, Chebyshev, Chernoff/Bernstein inequalities).

• Random hashing for fast data search, load balancing, and more.
Locality sensitive hashing, MinHash, SimHash, etc.

• Sketching and streaming algorithms for compressing and
processing data on the fly.

• High-dimensional geometry and the Johnson-Lindenstrauss
lemma for compressing high dimensional vectors.

ࠅ

CONTINUOUS OPTIMIZATION

Section :ࠁ Optimization.

Optimization has become the algorithmic workhorse of modern
machine learning.

• Gradient descent, stochastic gradient descent, coordinate
descent, and how to analyze these methods.

• Acceleration, conditioning, preconditioning, adaptive gradient
methods.

• Constrained optimization, linear programming. Ellipsoid and
interior point methods.

• Discrete optimization, relaxation, submodularity and greedy
methods.

ࠆ

SPECTRAL METHODS

Section :ࠂ Spectral methods and linear algebra.

“Complex math operations (machine learning, clustering, trend
detection) [are] mostly specified as linear algebra on array data” –
Michael Stonebraker, Turing Award Winner

• How to compute singular value decompositions and
eigendecomposition.

• Spectral graph theory: i.e. how to use linear algebara to
understanding large graphs through linear algebra (social
networks, interaction graphs, etc.).

• Spectral clustering and non-linear dimensionality reduction.

• Random sampling and sketching methods for matrix
computations.

ࠇ

FOURIER METHODS

Section :ࠃ Fourier methods.

• Compressed sensing, sparse recovery, and their applications.

• Fast Fourier Transform inspired methods in linear algebra and
dimensionality reduction.

• Fourier perspective on machine learning techniques like kernel
methods, and the algorithmic benefits.

ࠈ

WHAT WE WON’T COVER

Software tools or frameworks. Spark, Tensorflow, etc. If you
are interested, CS-GY ࠂࠀࠄࠅ might be a good course.

Machine Learning Models + Techniques. Neural nets,
reinforcement learning, Bayesian methods, unsupervised
learning, etc. I assume you have already had a course in ML
and the focus of this class is on computational considerations.

But if your research is in machine learning, I think you will find
the theoretical tools we learn are more broadly applicable

than in designing faster algorithms.

߿ࠀ

OUR APPROACH

This is primarily a theory course.

• Emphasis on proofs of correctness, bounding asymptotic
runtimes, convergence analysis, etc. Why?

• Learn how to model complex problems in simple ways.

• Learn general mathematical tools that can be applied in a wide
variety of problems (in your research, in industry, etc.)

• The homework requires creative problem solving and thinking
beyond what was covered in class. You will not be able to solve
many problems on your first try!

You will need a good background in probability and linear algebra.
See the syllabus for more details. Ask me is you are still unsure.

ࠀࠀ

COURSE STRUCTURE AND LOGISTICS

All of this information is on the course webpage
https://www.chrismusco.com/amlds2023/ and in the

syllabus posted there! Please take a look.

Class structure:

• Lecture once a week. You can attend on Zoom, but I
recommend coming in person.

• Office hours from me and TAs once a week.

Tech tools:

• Website for up-to-date info, lecture notes, readings.
• Ed Discussion for questions about material.
• Gradescope for turning in assignments. Sign up using
course code.

ࠁࠀ

=

https://www.chrismusco.com/amlds2023/

COURSE STRUCTURE AND LOGISTICS

Class work:

• ࠄ problem sets %߿ࠄ) of course grade).
• These are challenging, and the most effective way to
learn the material. I recommend you start early, work
with others, ask questions on Ed, etc.

• You must write-up solutions on your own.ࠀ

• Midterm (Oct. (th߿ࠁ %߿ࠁ of course grade).

%߿ࠀࠀ bonus on first problem set for using Markdown or LaTex. It should
save you time in the long run!

ࠂࠀ

- 1

COURSE STRUCTURE AND LOGISTICS

Final project or final exam %߿ࠁ) of grade):

• Final exam will be similar to midterm and problem sets.
• Final project can be based on a recent algorithms paper,
and can be either an experimental or theoretical project.
Must work in a pair.

• We will hold a reading group outside of class for those
who decide to complete a final project to workshop topics
and papers.

• Others can join as well – it’s a great opportunity to get
better at reading and presenting papers.

ࠃࠀ

COURSE STRUCTURE AND LOGISTICS

Class participation %߿ࠀ) of grade):

• My goal is to know you all individually by the end of this
course.

• Lots of ways to earn the full grade: participation in lecture,
office hours, or Ed discussion. Participation in the reading
group. Effort on the project.

Important note:

• This is a mixed undergraduate/graduate course.
• Workload is the same, but undergraduates are graded on
a different “curve”.

ࠄࠀ

ROCKSTAR COURSE TEAM

Things to look forward to:

• Teal’s typeset lecture notes.
• Apoorv and Raphael’s “proof writing sessions”.
• Feyza’s guest lecture on “fine grained complexity”.

ࠅࠀ

QUESTIONS?

ࠅࠀ

THIS CLASS

Goal: Demonstrate how even the simplest tools from
probability can lead to a powerful algorithmic results.

Lecture applications:

• Estimating set size from samples.
• Finding frequent items with small space.

Problem set applications:

• Group testing for COVID-ࠈࠀ.
• Smarter load balancing.

ࠆࠀ

PROBABILITY REVIEW

Let X be a random variable taking value in some set S . I.e. for a
dice, S = ,ࠀ} . . . , .{ࠅ For a continuous r.v., we might have S = R.

• Expectation: E[X] =
∑

s∈S Pr[X = s] · s

For continuous r.v., E[X] =
∫
s∈S Pr(s) · s ds.

• Variance: Var[X] = E[(X− E[X])ࠁ]

Exercise: For any scalar α, E[αX] = αE[X]. Var[αX] = αࠁ Var[X]. ࠇࠀ

= =

→
)

- - -

- -

¥
-

PROBABILITY REVIEW

Let A and B be random events.

• Joint Probability: Pr(A ∩ B). Probability that both
events happen.

• Conditional Probability: Pr(A | B) = Pr(A∩B)
Pr(B) . Probability

A happens conditioned on the event that B happens.
• Independence: A and B are independent events if:
Pr(A | B) = Pr(A).

Alternative definition of independence:

Pr(A ∩ B) = Pr(A) · Pr(B).

ࠈࠀ

¥ 0
-

P (Asb)= P r(Al¥ 3) = PCA).P r(B)

PROBABILITY REVIEW

Example: What is the probability that for two independent dice
rolls taking values uniformly in ,ࠀ} ,ࠁ ,ࠂ ,ࠃ ,ࠄ ,{ࠅ the first roll
comes up odd and the second is < ?ࠂ

Let X and Y be random variables. X and Y are independent if,
for all events s, t, the random events [X = s] and [Y = t] are
independent.

߿ࠁ

÷

÷ . ÷ . . @
0

= - -

THE MOST POWERFUL THEOREM IN ALL OF PROBABILITY?

Linearity of expectation:

E[X+ Y] = E[X] + E[Y]

ࠀࠁ

€
True atoms.

No
assumptions

needed.

RELATED EQUATIONS

Always, sometimes, or never?

For random variables X, Y:

• E[XY] = E[X] · E[Y].

• Var[X+ Y] = Var[X] + Var[Y].

• Var[X] = E[Xࠁ]− E[X]ࠁ.

ࠁࠁ

Trueifindependat

(t) ° " ¥ * '

- True fo r uncorrelated
and a s a special case,independent.

Always,

5 *4 2 3

FIRST APPLICATION

You run a web company that is considering contracting with a
vendor that provides CAPTCHAs for logins.

They claim to have a data base of n = ߿߿߿,߿߿߿,ࠀ unique
CAPTCHAs in their database, and a random one will be shown
on each API call to their service. They give you access to a test
API so you can try it out.

Question: Roughly how many queries to the API, m, would you
need to independently verify the claim that there are ∼ ࠀ
million unique puzzles? ࠂࠁ

0

I

FIRST APPLICATION

First attempt: Count how many unique CAPTCHAs you see, until
you find ,ࠀ ,߿߿߿ ߿߿߿ or close to it. Declare that you are satisfied.

As a function of n, roughly how many API queries m do you
need?

ࠃࠁ

-

0 (n) O(rn)
= 1000=000 I 0 0 £

A DIFFERENT APPROACH

Clever alternative: Count how many duplicate CAPTCHAs you
see.

If you see the same CAPTCHA on query i and j, that’s one
duplicate. If you see the same CAPTCHA on queries i, j, and k,
that’s three duplicates: (i, j), (i, k), (j, k).

ࠄࠁ

±
O

- - -

FORMALIZING THE PROBLEM

Question: How many duplicates do we expect to see?

Let Di,j = ࠀ if queries i, j return the same CAPTCHA, and ߿
otherwise.

This is called an indicator random variable.
Di,j = [CAPTCHA i equals CAPTCHA j].

Number of duplicates D is :

D =
∑

i,j∈{ࠀ,...,m}
i<j

Di,j.

What is E[D]?

ࠅࠁ

- - -

- - - I
=

FORMALIZING THE PROBLEM

Question: How many duplicates do we expect to see? Formally,
what is E[D]?

E[D] =

n = number of CAPTCHAS in database, m = number of test queries.
Di,j = indicator for event CAPTCHA i and j collide.

ࠆࠁ

life.....
, . ,

ElDi;]
, , ,

Did] = i§ei,...,
I

goutefo r al l ; j
= Yu

i .;

"" = "¥".tn =fY÷I/= §fi,..."

SOME HARD NUMBERS

Suppose you take m = ߿߿߿ࠀ queries and see ߿ࠀ duplicates.
How does this compare to the expectation if the database
actually has n = ,ࠀ ,߿߿߿ ߿߿߿ unique CAPTCHAs?

E[D] =

Something seems wrong... this random variable D came up
much larger than it’s expectation.

Can we say something formally?

n = number of CAPTCHAS in database, m = number of test queries. ࠇࠁ

-

O -
¥ .o o = .4 4 2

CONCENTRATION INEQUALITY

One of the most important tools in analyzing randomized
algorithms. Tell us how likely it is that a random variable X
deviates a certain amount from its expectation E[X].

We will learn three fundamental concentration inequalities:

.ࠀ Markov’s Inequality.
• Applies to non-negative random variables.

.ࠁ Chebyshev’s Inequality.
• Applies to random variables with bounded variance.

.ࠂ Hoeffding/Bernstein/Chernoff bounds.
• Apply to sums of independent random variables.

ࠈࠁ

÷

MARKOV’S INEQUALITY

Theorem (Markov’s Inequality): For any random variable X
which only takes non-negative values, and any positive t,

Pr[X ≥ t] ≤ E[X]
t

.

Equivalently,

Pr[X ≥ α · E[X]] ≤ ࠀ
α
.

Proof:

߿ࠂ

=

O t = a telex)f o r
s o m e 0 7 1 .

0 = 2 o r 0 = 1 0 .

5¥12 Prat t]
I I Ix) = § P r(x .s) i s
•

= s qP rExes].s t ,{+P r[xi s] .s

t o t { +P rhas] - t
= t . § ,+Prats) = t - P r[xa t]

APPLICATION TO CAPTCHA PROBLEM

Suppose you take m = ߿߿߿ࠀ queries and see ߿ࠀ duplicates.
How does this compare to the expectation if the database
actually has n = ,ࠀ ,߿߿߿ ߿߿߿ unique CAPTCHAs?

E[D] = m(m− (ࠀ
nࠁ

= .ࠄࠈࠈࠃ.

By Markov’s:

Pr[D ≥ [߿ࠀ ≤ E[D]
߿ࠀ

< ࠄ߿. if n actually equals ࠀ million.

We can be pretty sure we’re being scammed...

n = number of CAPTCHAS in database, m = number of test queries.

ࠀࠂ

- -

- -
-

GENERAL BOUND

Alternative view: If E[D] = m(m−ࠀ)
nࠁ , then a natural estimator for

n is:

ñ =
m(m− (ࠀ

Dࠁ
.

With a little more work it is possible to show the following:

Claim: If m = Ω
(√

n
ε

)
, then with probability ,߿ࠀ/ࠈ

−ࠀ) ε)n ≤ ñ ≤ +ࠀ) ε)n. This is a two-sided multiplicative error
guarantee.

This is a lot better than our original method that required
O(n) queries!

n = number of CAPTCHAS in database, m = number of test queries.

ࠁࠂ

-

n--Y¥#
a I

' o
-

MARK AND RECAPTCHA

Fun facts:

• Known as the “mark-and-recapture” method in ecology.
• Can also be used by webcrawlers to estimate the size of
the internet, a social network, etc.

This is also closely related to the birthday paradox.

ࠂࠂ

p
- t

FIRST SET OF TOOLS

Linearity of Expectation + Markov’s Inequality

Primitive but powerful toolkit, which can be applied to a wide
variety of applications!

ࠃࠂ

THE FREQUENT ITEMS PROBLEM

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream of n
items xࠀ, . . . , xn with duplicates. Assume there are u ≤ n unique
items in the stream. Return any item at appears at least n

k times.

xࠀ, xࠁ, xࠂ, xࠃ, xࠄ, xࠅ, . . .
v߿ࠀ, v߿ࠀ, vࠁ, vࠄ, v߿ࠀ, vࠁ . . .

• Finding top/viral items (i.e., products on Amazon, videos
watched on Youtube, Google searches, etc.)

• Finding very frequent IP addresses sending requests (to detect
DoS attacks/network anomalies).

• ‘Iceberg queries’ for all items in a database with frequency
above some threshold.

Want very fast detection, without having to scan through
database/logs. I.e., want to maintain a running list of frequent items
that appear in a stream of data items. ࠄࠂ

O

- - - - - -

I

THE FREQUENT ITEMS PROBLEM

k-Frequent Items (Heavy-Hitters) Problem: Consider a stream of n
items xࠀ, . . . , xn with duplicates. Assume there are u ≤ n unique
items in the stream. Return any item that appears at least n

k times.

• Trivial with O(u) space – store the count for each item and
return the one that appears ≥ n/k times.

ࠅࠂ

0 0

FREQUENT SUBSET MINING

Example where linear dependence on u is too large: Find common
subsets within a collection of sets. Each subset is an “item”.

• For product recommendations, the number of pairs of products
might grow quadratically with the number of products. Amazon
has ࠁࠀ million products. ࠁࠀ) million)× ࠃ bytes = ࠇࠃ megabytes .
ࠁࠀ) million)ࠁ × ࠃ bytes = ࠅࠆࠄ terabytes to maintain counts.

• For social media recommendations, we might have a set of
followers for each Twitter user and want to count frequent
subsets of who they follow. Even higher complexity. ࠆࠂ

= - =
a

APPROXIMATE FREQUENT ELEMENTS

Issue: Can prove that no algorithm using o(u) space can
output just the items with frequency ≥ n/k. We will only be
able to solve the problem approximately.

(ε, k)-Frequent Items Problem: Consider a stream of n items
xࠀ, . . . , xn. Return a set of items F, including all items that
appear ≥ n

k times and only items that appear ≥ −ࠀ) ε) · n
k

times.

• For items with frequencies in −ࠀ)] ε)nk ,
n
k], no output

guarantee.

ࠇࠂ

§
A # " " " 8 "

F -

FREQUENT ELEMENTS WITH COUNT-MIN SKETCH

Today: Count-Min Sketch – a random hashing based method
for the frequent elements problem.

Due to a ࠄ߿߿ࠁ paper by Graham Cormode and Muthu
Muthukrishnan.

Solves the slightly different point query problem. Given any
value v, let f(v) =

∑n
i=ࠀ [xi = v] be the number of times v

appears in the stream.

Goal: Return estimate f̃(v) such that f(v) ≤ f̃(v) ≤ f(v) + ε
kn

with high probability.

Solving Frequent items: Just return all items for which f̃(v) ≥ n
k .

ࠈࠂ

-

= I

= ¥

F € k f (o)2 I i-En-a-e)he

RANDOM HASH FUNCTION

Let h be a random function from |U| → ,ࠀ} . . . ,m}. This means
that h is constructed by an algorithm using a seed of random
numbers, but then the function is fixed. Given input x ∈ U , it
always returns the same output, h(x).

Definition: Uniformly Random Hash Function. A random
function h : U → ,ࠀ} . . . ,m} is called uniformly random if:

• Pr[h(x) = i] = ࠀ
m for all x ∈ U , i ∈ ,ࠀ} . . . ,m}.

• h(x) and h(y) are independent r.v.’s for all x, y ∈ U .

• Which implies that Pr[h(x) = h(y)] =

U = universe of possible keys, m = number of values hashed to. ߿ࠃ

£ 4 -

÷
P r(hex)=h ey# I

RANDOM HASH FUNCTION

Caveat: It is not possible to efficiently implement uniform
random hash functions! But:

• In practice “random looking” functions like MDࠄ, SHAࠅࠄࠁ,
etc. often suffice.

• If we have time, we will discuss weaker hash functions (in
particular, universal functions) which suffice for our
application, and are efficient to implement.

For now, assume we have access to a uniformly random hash
function. This is an assumption we will use in future lectures
as well.

ࠀࠃ

I - -

I

COUNT-MIN SKETCH

Count-Min Update:

• Choose random hash function h mapping to ,ࠀ} . . . ,m}.
• For i = ,ࠀ . . . ,n

• Given item xi, set A[h(xi)] = A[h(xi)] + ࠀ

h: random hash function. m: size of Count-Min sketch array.
ࠁࠃ

=.:¥÷÷.:
- - -

COUNT-MIN SKETCH

We want to estimate the frequency of item v,
f(v) =

∑n
i=ࠀ [xi = v]. To do this using our small space “sketch”

A, return f̃(v) = A[h(v)].

Claim :ࠀ We always have A[h(v)] ≥ f(v). Why?

f(v): frequency of v in the stream. h: random hash function. m: size
of Count-Min sketch array. ࠂࠃ

-

→
9

Itv)

COUNT-MIN SKETCH ACCURACY

A[h(v)] = f(v) +
∑

y%=v
[h(y) = h(v)] · f(y)

︸ ︷︷ ︸
error in frequency estimateExpected Error:

E




∑

y !=v

[h(y) = h(v)] · f(y)



 =

ࠃࠃ

p
EE.. I
choose m=¥

- = l -)

¥ , I I (11hly):
h lD). f b))

-

=,IEHD
E l11hb)ahh)))

film
= In§,u f lu) E (Fn)

COUNT-MIN SKETCH ACCURACY

A[h(v)] = f(v) +
∑

y%=v
[h(y) = h(v)] · f(y)

︸ ︷︷ ︸
error in frequency estimate

Expected Error:

E




∑

y%=v
[h(y) = h(v)] · f(y)



 ≤ n
m

What is a bound on probability that the error is ≥ nࠁ
m ?

Markov’s inequality: Pr
[∑

y%=x:h(y)=h(x) f(y) ≥
nࠁ
m

]
≤

f(v): frequency of v in the stream. h: random hash function. m: size
of Count-Min sketch array. ࠄࠃ

[Y a

COUNT-MIN SKETCH ACCURACY

Claim: For any v, with probability at least ,ࠁ/ࠀ

f(v) ≤ A[h(v)] ≤ f(v) + nࠁ
m

.

To solve the point query problem with error ε
kn, set m =

How can we improve the success probability?

f(v): frequency of v in the stream. h: random hash function. m: size
of Count-Min sketch array.

ࠅࠃ

6¥

¥

COUNT-MIN SKETCH ACCURACY

f(v): frequency of v in the stream. hࠀ, . . . ,ht: multiple random hash
functions. m: size of t Count-Min sketch arrays. ࠆࠃ

÷
-

Q .

COUNT-MIN SKETCH ACCURACY

f(v): frequency of v in the stream. hࠀ, . . . ,ht: multiple random hash
functions. m: size of t Count-Min sketch arrays. ࠇࠃ

O o
O

COUNT-MIN SKETCH ACCURACY

f(v): frequency of v in the stream. hࠀ, . . . ,ht: multiple random hash
functions. m: size of t Count-Min sketch arrays. ࠈࠃ

COUNT-MIN SKETCH ACCURACY

Estimate f(v) with f̃(v) = mini∈[t] Ai[hi(v)]. (Count-Min sketch)

Why min instead of mean or median?

߿ࠄ

o.O
=

°

COUNT-MIN SKETCH ACCURACY

Estimate f(v) with f̃(v) = mini∈[t] Ai[hi(v)].

• For every v and i and m = kࠁ
ε , we know that with prob. ≥ :ࠁ/ࠀ

f(v) ≤ Ai[hi(v)] ≤ f(v) + εn
k
.

• Pr[f(v) ≤ f̃(v) ≤ f(v) + εn
k] ≥

• To get a good estimate with probability ≥ −ࠀ δ,

set t =

.

ࠀࠄ

prob

g u y
flu)"-E

0

""¥,
,

" = " "

storage
= m - t

=@(Ee-log
(is)

- .

-

I - (1)t

1082418)

COUNT-MIN SKETCH

Upshot: Count-Min sketch lets us estimate the frequency of
each item in a stream up to error ε

kn with probability ≥ −ࠀ δ in
O
(
log(ࠀ/δ) · k

ε

)
space.

Caveat: This is a for each v guarantee. We actually want a for
all v guarantee: i.e. the bound should hold simultaneously for
all v.

ࠁࠄ

USE A UNION BOUND

Lemma (Union Bound)
For any random events Aࠀ, . . . , Ak:

Pr[Aࠀ ∪ Aࠁ ∪ . . . ∪ Ak] ≤ Pr[Aࠀ] + Pr[Aࠁ] + . . .+ Pr[Ak].

Here Pr[Aࠀ ∪ Aࠁ ∪ . . . ∪ Ak] means Pr[Aࠀ “or” Aࠁ . . . “or” Ak]

Proof by picture.
ࠂࠄ

USE A UNION BOUND

The algorithm fails if |f(v)− f̃(v)| > ε
kn for any v ∈ {vࠀ, . . . , vn}.

By union bound:

Pr[(fail for vࠀ) or (fail for vࠁ) or . . . or(fail for vn)] =

ࠃࠄ

FINAL RESULT

Set δ = ࠀ
n߿ࠀ . With probability ,߿ࠀ/ࠈ Count-Min sketch lets us

estimate the frequency of all items in a stream up to error ε
kn.

• Accurate enough to solve the (ε, k)-Frequent elements
problem – just return all v with estimated frequency
≥ n/k.

ࠄࠄ

IDENTIFYING FREQUENT ITEMS

How do we identify the frequent items without having to look
up the estimated frequency for all elements in the stream?

One approach:

• When a new item comes in at step i, check if its estimated
frequency is ≥ i/k and store it if so.

• At step i remove any stored items whose estimated
frequency drops below i/k.

• Store at most O(k) items at once and have all items with
estimated frequency ≥ n/k stored at the end of the
stream.

ࠅࠄ

NOTE ON RANDOM HASH FUNCTIONS

Can we weaken our assumption that h is uniformly random?

Definition (Universal hash function)
A random hash function h : U → ,ࠀ} . . . ,m} is universal if, for
any fixed x, y ∈ U ,

Pr[h(x) = h(y)] ≤ ࠀ
m
.

Claim: A uniformly random hash-function is universal.

Efficient alternative: Let p be a prime number between |U| and
.|U|ࠁ Let a,b be random numbers in ,߿ . . . ,p, a += .߿

h(x) = [a · x+ b (mod p)] (mod m)

is universal. Lecture notes with proof posted on website.
ࠆࠄ

NOTE ON RANDOM HASH FUNCTIONS

Another definition you might come across:

Definition (Pairwise independent hash function)
A random hash function h : U → ,ࠀ} . . . ,m} is pairwise
independent if, for any fixed x, y ∈ U , i, j ∈ ࠀ} . . . ,m},

Pr[h(x) = i ∩ h(y) = j] = ࠀ
mࠁ .

We can naturally extended to k-wise independence for k > ,ࠁ
which is strictly stronger, and needed for some applications.

ࠇࠄ

