CS-GY 6763: Lecture 14

Finish Sparse Recovery and Compressed
Sensing, Introduction to Leverage Score
Sampling

NYU Tandon School of Engineering, Prof. Christopher Musco



ADMINISTRATIVE

This is our last class!

- Final project due next Tuesday.

- Exam study guide was released. Same rules as midterm
(cheat sheet allowed). will be a 1.5 hour test.

- Solutions for last problem sets will be released tonight.



COURSE FEEDBACK

This course is taught every year and is now one of the primary
ways of filling the theory breadth requirement for Ph.D.
students, so it is important that we keep improving it.
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SPARSITY RECOVERY/COMPRESSED SENSING

Design A € R™*" with m < n rows so that we can recover k
sparse vector x € R" from b = Ax.
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RESTRICTED ISOMETRY PROPERTY
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Definition ((g, €)-Restricted Isometry Property)f
A matrix A satisfies (g, ¢)-RIP if, for all x with ||x|lo < g,
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(1= )lIxllz < IAX[IZ < (1 + €)lIx][3-
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RESTRICTED ISOMETRY PROPERTY FROM JL

Theorem (Subspace Embedding from JL)
Let U C R" be a q-dimensional linear subspace in R". If

N € R™*" js chosen from any dlstr/but/on D satisfying the
Distributional JL obability 1 — 9,

T=olvli3 < INvii < (1 +€)IvIi3 _/7
forallveU, aslongasm =0 (%}Vﬂ)

of linear subspaces.

(3} =9

We will use union bound to apply this theorem to a collection
,)%



RESTRICTED ISOMETRY PROPERTY FROM JL

Le pe the collection of all g sparse vectors.

S=UuU...ulr,
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RESTRICTED ISOMETRY PROPERTY FROM JL

Theorem (Subspace Embedding from JL)

(XL)" < (w%‘> ¢ (g>%

LetUd C R" be a g-dimensional linear subspgpce inR". If ®
N € R™*" js chosen from any distribution D satisfying the g
Distributional JL Lemma, then with probability 1—96, T& |eM

L

(=B < Iv3 < 1+ V3 [og(T) € g lesls

forallv e U, as long as m = O (%}V@)
As long as we take a JL matrix with O(%+&(0

preserve the norm of all vectors in § =14 U
probability.
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FIRST SPARSE RECOVERY RESULT

Theorem (¢o-minimization)

Suppose we are given A € R™*" and b = Ax for an unknown
R-sparse x € R". If Ais (2R, €)-RIP for any e < 1then x is the
unigue minimizer of:

min||z||o subject to
rppee F g Iyl ¢ Wi, Q

Qud Ab_\’
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POLYNOMIAL TIME SPARSE RECOVERY

Convex relaxation of the /y minimization problem:

Problem (Basis P it+e: fimjzation.)

- Objective is convex. =
2

- Optimizing overconw é(t«@.f)

Can be solved in poly(n) time using a linear program or using

e.g. projected gradient descent. Other similar relaxations also
- —

work. E.g. Lasso regularization min; ||Az — bl + A||z]}1.

I



BASIS PURSUIT ANALYSIS

Theorem
If Ais (3R, €)-RIP for e < .17 and ||X|lo = k, then x is the unique
optimal solution of the Basis Pursuit optimization problem.

Two surprising things about this result:

- Exponentially improve computational complexity with only
a constant factor overhead in measurement complexity.

- Typical “relax-and-round” algorithm, but rounding is not
even necessary! Just return the solution of the relaxed
problem.

Why ¢4 norm instead of ¢, norm?



BASIS PURSUIT INTUITION

Suppose A is ##4, so b is just a scalarjgnd x is a
2-dimensionalwector.

I g l—;:aA B AIX\")S»X‘v:\O

Vertices of level sets of £ norm This is not the case e.g. for the 4,
correspond to sparse solutions. norm. -
p p G (0,

2
min||z||; subject to Az =b.
z 13



BASIS PURSUIT ANALYSIS

Theorem i k44 A=y
If Ais (3R, €)-RIP for e < .17 and ||x||o = R, then x is the unique
optimal solution of the Basis Pursuit LP). S\y)pere 3 9
o L L5\ -
Similar proof to £g minimization: "D“'I eftaly md ,43 v
_ —
=Ax
- By way of contradiction, assume x is not the optimal
solution. Then there exists some non-zero A such that:
X+ Al < [|x]

CAx+A)=Ax e AA=0. Ax :Ax+AA AA-O

Difference is that we can no longer assume that A is sparse.

14



TOOLS NEEDED

1
First tool: /7 /7

3
For an({-sparse vectorwi ) wl <l < valw

-

: IE o llw\\,,;@? .‘W-‘J’T
; g lelly ~ 2w g
Second tool:
For any norm and vectors a, b, lla+ b|| ZfHaH — HbH}
Tymm&k iw—%\m\x(}. losbly 2 v -fial
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BASIS PURSUIT ANALYSIS

Some definitions: S is the set of k non-zero indices in x. T is the set
of 2k indices not in S with largest magnitude in A. T is the set of 2k
indices not in S with next largest magnitudes, etc.
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BASIS PURSUIT ANALYSIS

Recall: By way of contradiction, if x is not the minimizer of the
¢1 problem, then there is some A such that A(x + A) = b and
[+ Ally < X[

Claim 1 (approximate sparsity of A): ||As|; > HA5||1

“/l/ y xseall, = Ixs+.A00, Asly
“[)5“4, 7/{(&;—]]

e
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BASIS PURSUIT ANALYSIS

= ———

Claim 2 (¢, approximate sparsity);/||As|, > M

We have:

So it suffices to show tha{. A7 [ > V2RI|A7,.Il2 )

1As]l> > |1Ag]lr =

\fHASHw > \f

185 1y > Ve wor (Ar;,)

qm/)«r / )L £ {’Tk e (/_L)—J.M>
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BASIS PURSUIT ANALYSIS

Finish up proof by contradiction: Recall that A is assumed to
have the (3R, €) RIP property. And by way of contradiction

A(x+ A)=b. AA-D
= [AA||2)> [[ADsur |2 — > [LYSAE
AA: AAS\DT, 'rAAT\, to.- A'AT‘
o 7 (- ser, , - (1O 2 WAL
by ¥ 201 1AL, ~(O1e)ID, ).
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BASIS PURSUIT ANALYSIS

We have that (1 —€) — % > 0 whenever e < .17.

JE——

(0.1716,0)

Theorem

If Ais (3R, €)-RIP for e < 17 and ||x||o = R, then X is the unique
optimal solution of the Basis Pursuit optimization problem,
which can be solved in polynomial time.

O k1ot )) N
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FASTER METHODS

N >
A lot of interest in developing even faster algoriths—+th

avoid using the “heavy hammer” of linear programming, which
runs in roughly Q(n3°) time.

l Iterative Hard Thresholding: Looks a lot like projected
gradient descent. Solve min, |[Az — b|| with gradient
descent while continually projecting to the set of
k-sparse vectors. Runs in time € O(nklog n)Jor Gaussian
measurement matrices and O(n logm) for subsampled
FW

- Other “first order” type methods: Orthogonal Matching
Pursuit, CoSaMP, Subspace Pursuit, etc.

21



FASTER METHODS

R

Cj,‘\7\“ e ™S —

When A is a subsampled Fourier matrix, there are now
methods that run infO(klog® n) time [Hassanieh, Indyk,

Kapralov, Katabi, Price, Shi, etc. 2012+].

==

Wait a minute...

8

b
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SPARSE FOURIER TRANSFORM

Corollary: When x is k-sparse, we can compute the inverse
Fourier transform F*Fx of Fx in O(klog® n) time! F‘*
p— = s

- Randomly subsample Fx. 9. f:@
- Feed that input into our sparse recovery algorithm to
extract x.

Fourier and inverse Fourier transforms in sublinear time when
the output is Sparse)

gl 1|10 T | M

100 200 300 400 500 600 700 800 900 1000
Normalized frequency

e

o

Applications in: Wireless communications, GPS, protein
imaging, radio astronomy, etc. etc. 23



COMPRESSED SENSING FOR IMAGES

Compressed sensing for image data is based on the idea that
“natural images” are sparse if some basis. E.g. the DCT or
Wavelet basis.

j—iﬁﬁﬁﬁﬁ L DEEEN
====Z=EE INERNERER

l.e. there is some representation of the image that requires
many fewer numbers than explicitly writing down the pixels.

24



COMPRESSED SENSING RELATED TO MODERN DEEP LEARNING METHOD
METHODS

Compressed Sensing using Generative Models

Ashish Bora* Ajil Jalal Eric Price! Alexandros G. Dimakis®

Abstract

The goal of compressed sensing is to estimate a vector from an underdetermined system of noisy linear measure-
ments, by making use of prior knowledge on the structure of vectors in the relevant domain. For almost all results
in this literature, the structure is represented by sparsity in a well-chosen basis. We show how to achieve guarantees
similar to standard compressed sensing but without employing sparsity at all. Instead, we suppose that vectors lic
near the range of a generative model G : R¥ — R™. Our main theorem is that, if G is L-Lipschitz, then roughly
O(klog L) random Gaussian measurements suffice for an £, /¢, recovery guarantee. We demonstrate our results
using generative models from published variational autoencoder and generative adversarial networks. Our method
can use 5-10x fewer measurements than Lasso for the same accuracy.

Lesky ReLU
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COMPRESSED SENSING FROM GENERATIVE MODELS

For most generative models (e.g., GANs) output is
parameterized by d short seed vector z.
II E
EENEER]
R el B Sk om P
EE] ER)

Process: measure image x by computing b = Ax for a random

matrix A. Use gradient descent to find z € R* to minimize:
e

1Ag(z) —b].

2
Return G(z). °



A LITTLE ABOUT MY RESEARCH



SUBSPACE EMBEDDINGS REWORDED

Theorem (Subspace Embedding) ‘1(} AX
Lef A R”@e a matrix. If M € R™*" js choseh from any
distribution D satisfying the Distributional /L Lemma, then

with probability 1 — 6,

(1= e)llAx|z < (“AXﬁz (1+ e)IAX[13

forallx e RY as longasm =0 (M)

€2

/\/

Implies regression result, and more.

Example: Any singular value &; of I'IA |s a (1+¢) approximation
to the true singular value o; of B.

27



SUBSAMPLING METHODS

Recurring research interest: Replace random projection
methods with random sampling methods. Prove that for
essentially all problems of interest, can obtain same

asymptotic runtimes.

E

Sampling has the added benefit of preserving matrix sparsity)
or structure} and can be applied in a wider variety of settings
where random projections are too expensive.

28



SUBSAMPLING METHODS

Goal: Can we use sampling to obtain subspace embeddings?
l.e. for a given A find A whose rows are a (weighted) subset of
rows in A and:

(1= )lIAX]J3 < IAX]I3 < (1+ ) |Ax]3.
%

29



EXAMPLE WHERE STRUCTURE MATTERS

Let B be the edge-vertex incidence matrix of a graph G with
vertex set V, |V| = d. Recall thatL/,./

Recall that if x € {=1,1}" is the cut indicator vector fora cut S
in the graph, then 2(|Bx||3 = cut(S, V'\ S). 30




LINEAR ALGEBRAIC VIEW OF CUTS

2@

x € {—1,1}9 is the cut indicator vector for a cut S in the graph,
then 1||Bx||3 = cut(S,V\ S) =1 &

—

31



WEIGHTED CUTS

Extends to weighted graphs, as long as square root of weights
is included in B. Still have the B'B = L.

+wy, -V, ‘

+VW, g -V 3

)’GM ’L.T;W

’ +wyg -Viyg
B

And still have that if x € {—1,1}¢ is the cut indicator vector for
a cut Sin the graph, then 1{|Bx||3 = cut(S, V'\ S).

32



SPECTRAL SPARSIFICATION

Goal: Approximate B by a weighted subsample. l.e. by B with
m < |E| rows, each of which is a scaled copy of a row from B.

subsampling matrix
[ |
e =

Wy

® |

Natural goal: B is a subspace embedding for B. In other words,
B has ~ O(d) rows and for al@
33



HISTORY SPECTRAL SPARSIFICATION

B is itself edge—vemmcmr__l?_ﬂc%tﬁx for some sparser
graph 5(@} called afspectral sparsiﬁerjor G.

For example-we have that for any set S,
(1—¢€) cutg(;\_{/\é) < c‘lig(s, VA\S) < (1+¢€)cuts(S,V\S).
So G can ' in solving e.g. max/min cut

problems, balanced cut problems, etc.
In contrast MB would look nothing like an edge-vertex

incidence matrix if M is a JL matrix.

34



HISTORY OF SPECTRAL SPARSIFICATION

Spectral sparsifiers were introduced in 2004 by Spielman and
Teng in an influential paper on faster algorithms for solving
Laplacian linear systems.

- Generalize the cut sparsifiers of Benczur, Karger ‘96.

- Further developed in work by Spielman, Srivastava +
Batson, ‘08.

- Have had huge influence in algorithms, and other areas of
mathematics - this line of work lead to the 2013 resolution
of the Kadison-Singer problem in functional analysis by
Marcus, Spielman, Srivastava.

Rest of class: Learn about an important random sampling
algorithm for constructing spectral sparsifiers, and subspace

embeddings for matrices more generally. i,



ANOTHER APPLICATION: ACTIVE REGRESSION

In many applications, computational costs are second order to
data collection costs) We have a huge range of possible data
points aq, ..., an that we can collect labels/values by, ..., b,
for. Goal is to learn x such that:

a,Tx ~ b,‘.

Want to do so after observing as few bs, ..., b, as possible.
Applications include healthcare, environmental science, etc.

36




ANOTHER APPLICATION: ACTIVE REGRESSION

arwing frequency

- Tons of applications in computational science (e.g. we

have a DOE award on learning basg >eks for
parametric PDES).

ariving frequency
ariving frequency

00
Vo 1S 30

20
spring constant

spring constant

(a) Target Function (b) Bernoulli Sampling ) Pivotal Sampling (our methgfl)
—_—
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ANOTHER APPLICATION: ACTIVE REGRESSION

Can be solved via random sampling for linear models.

NS INES W

{

[ TAx - LB g

Claim: Let A is an O(1)-factor subspace embedding for A
(obtained via leverage score sampling). Then
X = arg min ||Ax — b|[3 satisfies:
~— _/v
A% — b|j3 < O(1)|AX" — b3,
—_—— ———

Computing % only requires collecting O(d) labels!

38



NATURAL FIRST ATTEMPT

Goal: Find A such that ||Ax||3 = (1+ €)||Ax|}3 for all x.

Can check that this approach fails even for the special case of
a graph vertex-edge incidence matrix. 39



IMPORTANCE SAMPLING FRAMEWORK

Key idea: Importance sampling. Select some rows with higher
probability.

Suppose A has n rows a;....,an. Le [0,1] be
sampling probabilities. Construct A as follows:
Fori=1,.
Select W|th probability Di.
- Ifa;jis selected add the scaled rovvo A.

Remember, ultimately want that ||Ax|)3 = (1 + €)||Ax][3 for all x.
p—
i )= o
n
S x4y ) Mzl "Y = VAKD

Clalm 2 Expected number of rows in A is Z, o
2 L=l

40



LECTURE OUTLINE

How should we choose the probabilities p, ..., Bt

41



MAIN RESULT

Fori=1,...,n, define the statistical leverage score Js:
-_’_d

Theorem (Subspace Embedding from Subsampling)

For each i, and fixed constant ¢, let p; = min (1, Let
A have rows sampled from A with pﬁbabilities P1,. .., Pn.
With probability 9/10,

(1= e)llAx3 < [|AX]|3 < (1+ €)l|AX]13,

and A has O(d log d/€?) rows in expectation.
——

4



VECTOR SAMPLING

How should we choose the probabilities pq,...,pn?

As usual, consider a single vector x and understand how to
sample to preserve norm ofl/
1AX]|3 = [|SAX|I3 = [ISylI3 ~ [lyl3 = [lAx]j.
— —

Then we can union bound over an e-net to extend to all x.

43



VECTOR SAMPLING

As discussed a few lectures ago, uniform sampling only works
well if y = Ax is “flat”.

v y o Y
easy hard ery hard
J5lNs (1)
Instead consider sampling with probabilities at least l\D(L

proportional to the magnitude of y's entries:
2

p.
LA T o 3L e

Lt



VARIANCE ANALYSIS

Using a Bernstein bound (or Chebyshev's inequality if you don’t
care about the § dependence) we have that if c = "’giw then:

PrIIFIIZ — lIvl2] > ellyllz] < a.

550>

The number of samples we take in expectation is:

y? log(1/d
Zp/ - Z Hy,”2 g(ez/ )

45



MAJOR CAVEAT!

We don't know y4,...,y,! And in fact, these values aren't fixed.
We wanted to prove a bound fory = Ax for any x.

Idea behind leverage scores: Sample row i from A using the
worst case (largest necessary) sampling probability:

where y = AX.

If we sample with probability p; = 27 - 7;, then we will be
i
CTIvIB

sampling by at least 2—2 no matter what y is.

46



CLOSED FORM EXPRESSION FOR LEVERAGE SCORES

A little messy algebra shows that x* = (ATA)™"a;.
u

v (AT @

47



LEVERAGE SCORE SAMPLING

Leverage score sampling:

- Fori=1,...,n,
- Compute 7, = a/ (ATA)a;.
. Set p; = CIB(/9)

- Add row a; to A with probability p; and reweight by ﬁ.
For any fixed x, we will have that
(1— e)|AX|13 < [|AX]|3 < (1 + €)||AX||3 with probability (1 — §).
Two remaining concerns:
1) How do we extend from any x to all x?

R
2) The number of samples we take will be roughly >"7, 7;. How
do we bound this?

CL/ 48



SUM OF LEVERAGE SCORES

Claim: No matter how large n is, >_iL, 7; = d for a matrix
A e RY, :

% ¢ (ATAY

7y\

U b a7

1\ A
- e (Y Rem))
“Zero-sum” law for the importance of matrix rows.

49



MAIN RESULT

Naive e-net argument leads to d? dependence since we need to
set § = c9. Getting the right dlog d dependence below requires
a standard “matrix Chernoff bound” (see e.g. Tropp 2015).

Theorem (Subspace Embedding from Subsampling)

For each i, and fixed constant c, let p; = min (1, Clogd '7','). Let

€2
A have rows sampled from A with probabilities p1, . .., pn.
With probability 9/10,
(1= e)lIAx[13 < [|Ax]13 < (1+ e)l|AX|3,

and A has O(d log d/€?) rows in expectation.

50



SPECTRAL SPARSIFICATION COROLLARY

For any graph G with d nodes, there exists a graph G with
O(dlog d/€?) edges such that, for all , ||Bx|3 = (1= €)||Bx||3.

As a result, the value of any cut in G is within a (1 + ) factor of
the value in G, the Laplacian eigenvalues are with a (1 =+ ¢€)
factors, etc.

51



THANK YOU!

Thank you all for a great course! If you are interested in
learning even more, there are several seminars at NYU that you
might be interested in attending:

Theoretical Computer Science Seminar:
https://csefoundations.engineering.nyu.edu/seminarhtml.

Math and Data Seminar: https://mad.cds.nyu.edu/seminar/.

Computational Math and Scientific Computing Seminar:
https://cims.nyu.edu/dynamic/calendars/seminars/computational-
mathematics-and-scientificccomputing-seminar/.

52
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