
CS-GY 6763: Lecture 14
Finish Sparse Recovery and Compressed
Sensing, Introduction to Leverage Score
Sampling

NYU Tandon School of Engineering, Prof. Christopher Musco
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ADMINISTRATIVE

This is our last class!

• Final project due next Tuesday.
• Exam study guide was released. Same rules as midterm
(cheat sheet allowed). will be a 1.5 hour test.

• Solutions for last problem sets will be released tonight.
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COURSE FEEDBACK

This course is taught every year and is now one of the primary
ways of filling the theory breadth requirement for Ph.D.
students, so it is important that we keep improving it.

Graduate Section
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COURSE FEEDBACK

Undergraduate Section

4



SPARSITY RECOVERY/COMPRESSED SENSING

Design A ∈ Rm×n with m < n rows so that we can recover k
sparse vector x ∈ Rn from b = Ax.
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RESTRICTED ISOMETRY PROPERTY

Definition ((q, ϵ)-Restricted Isometry Property)
A matrix A satisfies (q, ϵ)-RIP if, for all x with ∥x∥0 ≤ q,

(1− ϵ)∥x∥22 ≤ ∥Ax∥22 ≤ (1+ ϵ)∥x∥22.

Can argue this property holds for random JL matrice with
m = O

(
q log(n/q)

ϵ2

)
rows.
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RESTRICTED ISOMETRY PROPERTY FROM JL

Theorem (Subspace Embedding from JL)
Let U ⊂ Rn be a q-dimensional linear subspace in Rn. If
Π ∈ Rm×n is chosen from any distribution D satisfying the
Distributional JL Lemma, then with probability 1− δ,

(1− ϵ)∥v∥22 ≤ ∥Πv∥22 ≤ (1+ ϵ)∥v∥22

for all v ∈ U , as long as m = O
(
q+log(1/δ)

ϵ2

)
.

We will use union bound to apply this theorem to a collection
of linear subspaces.
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RESTRICTED ISOMETRY PROPERTY FROM JL

Let Sk = {x : ∥x∥0 ≤ q} be the collection of all q sparse vectors.

S = U1 ∪ . . . ∪ UT,

where T =
(n
q
)
.
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RESTRICTED ISOMETRY PROPERTY FROM JL

Theorem (Subspace Embedding from JL)
Let U ⊂ Rn be a q-dimensional linear subspace in Rn. If
Π ∈ Rm×n is chosen from any distribution D satisfying the
Distributional JL Lemma, then with probability 1− δ,

(1− ϵ)∥v∥22 ≤ ∥Πv∥22 ≤ (1+ ϵ)∥v∥22

for all v ∈ U , as long as m = O
(
q+log(1/δ)

ϵ2

)
.

As long as we take a JL matrix with O(q+log(T)
ϵ2

) rows then it will
preserve the norm of all vectors in S = U1 ∪ . . . ∪ UT with high
probability.

log(T) = log

(
n
q

)
=
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FIRST SPARSE RECOVERY RESULT

Theorem (ℓ0-minimization)
Suppose we are given A ∈ Rm×n and b = Ax for an unknown
k-sparse x ∈ Rn. If A is (2k, ϵ)-RIP for any ϵ < 1 then x is the
unique minimizer of:

min∥z∥0 subject to Az = b.

Problem: This optimization problem naively takes O(nk) time
to solve.

10



POLYNOMIAL TIME SPARSE RECOVERY

Convex relaxation of the ℓ0 minimization problem:
Problem (Basis Pursuit, i.e. ℓ1 minimization.)

min
z
∥z∥1 subject to Az = b.

• Objective is convex.

• Optimizing over convex set.

Can be solved in poly(n) time using a linear program or using
e.g. projected gradient descent. Other similar relaxations also
work. E.g. Lasso regularization minz ∥Az− b∥2 + λ∥z∥1.
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BASIS PURSUIT ANALYSIS

Theorem
If A is (3k, ϵ)-RIP for ϵ < .17 and ∥x∥0 = k, then x is the unique
optimal solution of the Basis Pursuit optimization problem.

Two surprising things about this result:

• Exponentially improve computational complexity with only
a constant factor overhead in measurement complexity.

• Typical “relax-and-round” algorithm, but rounding is not
even necessary! Just return the solution of the relaxed
problem.

Why ℓ1 norm instead of ℓ2 norm?
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BASIS PURSUIT INTUITION

Suppose A is 2× 1, so b is just a scalar and x is a
2-dimensional vector.

Vertices of level sets of ℓ1 norm
correspond to sparse solutions.

This is not the case e.g. for the ℓ2

norm.

min
z
∥z∥1 subject to Az = b.
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BASIS PURSUIT ANALYSIS

Theorem
If A is (3k, ϵ)-RIP for ϵ < .17 and ∥x∥0 = k, then x is the unique
optimal solution of the Basis Pursuit LP).

Similar proof to ℓ0 minimization:

• By way of contradiction, assume x is not the optimal
solution. Then there exists some non-zero ∆ such that:

• ∥x+∆∥1 ≤ ∥x∥1
• A(x+∆) = Ax. I.e. A∆ = 0.

Difference is that we can no longer assume that ∆ is sparse.

We will argue that ∆ is “approximately” sparse.
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TOOLS NEEDED

First tool:

For any q-sparse vector w, ∥w∥2 ≤ ∥w∥1 ≤
√
q∥w∥2

Second tool:

For any norm and vectors a,b, ∥a+ b∥ ≥ ∥a∥ − ∥b∥
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BASIS PURSUIT ANALYSIS

Some definitions: S is the set of k non-zero indices in x. T̄1 is the set
of 2k indices not in S with largest magnitude in ∆. T̄2 is the set of 2k
indices not in S with next largest magnitudes, etc.

T1 contains the 2k indices with largest value in ∆ that are zero in x.
T2 contains the next 2k largest entries, etc.
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BASIS PURSUIT ANALYSIS

Recall: By way of contradiction, if x is not the minimizer of the
ℓ1 problem, then there is some ∆ such that A(x+∆) = b and
∥x+∆∥1 ≤ ∥x∥1.

Claim 1 (approximate sparsity of ∆): ∥∆S∥1 ≥ ∥∆S̄∥1
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BASIS PURSUIT ANALYSIS

Claim 2 (ℓ2 approximate sparsity): ∥∆S∥2 ≥
√
2
∑

j≥2 ∥∆Tj∥2:

We have:

∥∆s∥2 ≥
1√
k
∥∆S∥1 ≥

1√
k
∥∆S̄∥1 =

1√
k

∑
j≥1

∥∆Tj∥1.

So it suffices to show that: ∥∆Tj∥1 ≥
√
2k∥∆Tj+1∥2
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BASIS PURSUIT ANALYSIS

Finish up proof by contradiction: Recall that A is assumed to
have the (3k, ϵ) RIP property. And by way of contradiction
A(x+∆) = b.

0 = ∥A∆∥2 ≥ ∥A∆S∪T1∥2 −
∑
j≥2

∥A∆Tj∥2
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BASIS PURSUIT ANALYSIS

We have that (1− ϵ)− 1+ϵ√
2 ≥ 0 whenever ϵ < .17.

Theorem
If A is (3k, ϵ)-RIP for ϵ < .17 and ∥x∥0 = k, then x is the unique
optimal solution of the Basis Pursuit optimization problem,
which can be solved in polynomial time.
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FASTER METHODS

A lot of interest in developing even faster algorithms that
avoid using the “heavy hammer” of linear programming, which
runs in roughly O(n3.5) time.

• Iterative Hard Thresholding: Looks a lot like projected
gradient descent. Solve minz ∥Az− b∥ with gradient
descent while continually projecting z back to the set of
k-sparse vectors. Runs in time ∼ O(nk log n) for Gaussian
measurement matrices and O(n log n) for subsampled
Fourer matrices.

• Other “first order” type methods: Orthogonal Matching
Pursuit, CoSaMP, Subspace Pursuit, etc.
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FASTER METHODS

When A is a subsampled Fourier matrix, there are now
methods that run in O(k logc n) time [Hassanieh, Indyk,
Kapralov, Katabi, Price, Shi, etc. 2012+].

Wait a minute...
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SPARSE FOURIER TRANSFORM

Corollary: When x is k-sparse, we can compute the inverse
Fourier transform F∗Fx of Fx in O(k logc n) time!

• Randomly subsample Fx.
• Feed that input into our sparse recovery algorithm to
extract x.

Fourier and inverse Fourier transforms in sublinear time when
the output is sparse.

Applications in: Wireless communications, GPS, protein
imaging, radio astronomy, etc. etc. 23



COMPRESSED SENSING FOR IMAGES

Compressed sensing for image data is based on the idea that
“natural images” are sparse if some basis. E.g. the DCT or
Wavelet basis.

I.e. there is some representation of the image that requires
many fewer numbers than explicitly writing down the pixels.
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COMPRESSED SENSING RELATED TO MODERN DEEP LEARNING METHOD
METHODS
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COMPRESSED SENSING FROM GENERATIVE MODELS

For most generative models (e.g., GANs) output is
parameterized by a short seed vector z.

Process: measure image x by computing b = Ax for a random
matrix A. Use gradient descent to find z ∈ Rk to minimize:

∥AG(z)− b∥.

Return G(z). 26



A LITTLE ABOUT MY RESEARCH
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SUBSPACE EMBEDDINGS REWORDED

Theorem (Subspace Embedding)
Let A ∈ Rn×d be a matrix. If Π ∈ Rm×n is chosen from any
distribution D satisfying the Distributional JL Lemma, then
with probability 1− δ,

(1− ϵ)∥Ax∥22 ≤ ∥ΠAx∥22 ≤ (1+ ϵ)∥Ax∥22

for all x ∈ Rd, as long as m = O
(
d+log(1/δ)

ϵ2

)
.

Implies regression result, and more.

Example: Any singular value σ̃i of ΠA is a (1± ϵ) approximation
to the true singular value σi of B.
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SUBSAMPLING METHODS

Recurring research interest: Replace random projection
methods with random sampling methods. Prove that for
essentially all problems of interest, can obtain same

asymptotic runtimes.

Sampling has the added benefit of preserving matrix sparsity
or structure, and can be applied in a wider variety of settings

where random projections are too expensive.
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SUBSAMPLING METHODS

Goal: Can we use sampling to obtain subspace embeddings?
I.e. for a given A find Ã whose rows are a (weighted) subset of
rows in A and:

(1− ϵ)∥Ax∥22 ≤ ∥Ãx∥22 ≤ (1+ ϵ)∥Ax∥22.
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EXAMPLE WHERE STRUCTURE MATTERS

Let B be the edge-vertex incidence matrix of a graph G with
vertex set V, |V| = d. Recall that BTB = L.

Recall that if x ∈ {−1, 1}n is the cut indicator vector for a cut S
in the graph, then 1

4∥Bx∥22 = cut(S, V \ S). 30



LINEAR ALGEBRAIC VIEW OF CUTS

x = [1, 1, 1,−1, 1,−1,−1,−1]

x ∈ {−1, 1}d is the cut indicator vector for a cut S in the graph,
then 1

4∥Bx∥22 = cut(S, V \ S)
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WEIGHTED CUTS

Extends to weighted graphs, as long as square root of weights
is included in B. Still have the BTB = L.

And still have that if x ∈ {−1, 1}d is the cut indicator vector for
a cut S in the graph, then 1

4∥Bx∥22 = cut(S, V \ S).
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SPECTRAL SPARSIFICATION

Goal: Approximate B by a weighted subsample. I.e. by B̃ with
m ≪ |E| rows, each of which is a scaled copy of a row from B.

Natural goal: B̃ is a subspace embedding for B. In other words,
B̃ has ≈ O(d) rows and for all x,

(1− ϵ)∥Bx∥22 ≤ ∥B̃x∥22 ≤ (1+ ϵ)∥Bx∥22.
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HISTORY SPECTRAL SPARSIFICATION

B̃ is itself an edge-vertex incidence matrix for some sparser
graph G̃! G̃ is called a spectral sparsifier for G.

For example, we have that for any set S,

(1− ϵ) cutG(S, V \ S) ≤ cutG̃(S, V \ S) ≤ (1+ ϵ) cutG(S, V \ S).

So G̃ can be used in place of G in solving e.g. max/min cut
problems, balanced cut problems, etc.

In contrast ΠB would look nothing like an edge-vertex
incidence matrix if Π is a JL matrix.
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HISTORY OF SPECTRAL SPARSIFICATION

Spectral sparsifiers were introduced in 2004 by Spielman and
Teng in an influential paper on faster algorithms for solving
Laplacian linear systems.

• Generalize the cut sparsifiers of Benczur, Karger ‘96.
• Further developed in work by Spielman, Srivastava +
Batson, ‘08.

• Have had huge influence in algorithms, and other areas of
mathematics – this line of work lead to the 2013 resolution
of the Kadison-Singer problem in functional analysis by
Marcus, Spielman, Srivastava.

Rest of class: Learn about an important random sampling
algorithm for constructing spectral sparsifiers, and subspace
embeddings for matrices more generally.
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ANOTHER APPLICATION: ACTIVE REGRESSION

In many applications, computational costs are second order to
data collection costs. We have a huge range of possible data
points a1, . . . , an that we can collect labels/values b1, . . . ,bn
for. Goal is to learn x such that:

aTi x ≈ bi.

Want to do so after observing as few b1, . . . ,bn as possible.
Applications include healthcare, environmental science, etc.
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ANOTHER APPLICATION: ACTIVE REGRESSION

• Tons of applications in computational science (e.g. we
have a DOE award on learning based methods for
parametric PDEs).

• How you collect samples really matters!
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ANOTHER APPLICATION: ACTIVE REGRESSION

Can be solved via random sampling for linear models.

Claim: Let Ã is an O(1)-factor subspace embedding for A
(obtained via leverage score sampling). Then
x̃ = argmin ∥Ãx− b̃∥22 satisfies:

∥Ax̃− b∥22 ≤ O(1)∥Ax∗ − b∥22,

Computing x̃ only requires collecting Õ(d) labels! 38



NATURAL FIRST ATTEMPT

Goal: Find Ã such that ∥Ãx∥22 = (1± ϵ)∥Ax∥22 for all x.

Possible Approach: Construct Ã by uniformly sampling rows
from A.

Can check that this approach fails even for the special case of
a graph vertex-edge incidence matrix. 39



IMPORTANCE SAMPLING FRAMEWORK

Key idea: Importance sampling. Select some rows with higher
probability.

Suppose A has n rows a1 . . . , an. Let p1, . . . ,pn ∈ [0, 1] be
sampling probabilities. Construct Ã as follows:

• For i = 1, . . . ,n
• Select ai with probability pi.
• If ai is selected, add the scaled row 1√pi

ai to Ã.

Remember, ultimately want that ∥Ãx∥22 = (1± ϵ)∥Ax∥22 for all x.

Claim 1: E[∥Ãx∥22] = ∥Ax∥22.

Claim 2: Expected number of rows in Ã is
∑n

i=1 pi.
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LECTURE OUTLINE

How should we choose the probabilities p1, . . . ,pn?
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MAIN RESULT

For i = 1, . . . ,n, define the statistical leverage score as:

τi = aTi (ATA)−1ai.

Theorem (Subspace Embedding from Subsampling)

For each i, and fixed constant c, let pi = min
(
1, c log d

ϵ2
· τi

)
. Let

Ã have rows sampled from A with probabilities p1, . . . ,pn.
With probability 9/10,

(1− ϵ)∥Ax∥22 ≤ ∥Ãx∥22 ≤ (1+ ϵ)∥Ax∥22,

and Ã has O(d log d/ϵ2) rows in expectation.
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VECTOR SAMPLING

How should we choose the probabilities p1, . . . ,pn?

As usual, consider a single vector x and understand how to
sample to preserve norm of y = Ax:

∥Ãx∥22 = ∥SAx∥22 = ∥Sy∥22 ≈ ∥y∥22 = ∥Ax∥22.

Then we can union bound over an ϵ-net to extend to all x.

43



VECTOR SAMPLING

As discussed a few lectures ago, uniform sampling only works
well if y = Ax is “flat”.

Instead consider sampling with probabilities at least
proportional to the magnitude of y’s entries:

pi > c ·
y2i

∥y∥22
for constant c to be determined.
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VARIANCE ANALYSIS

Using a Bernstein bound (or Chebyshev’s inequality if you don’t
care about the δ dependence) we have that if c = log(1/δ)

ϵ2
then:

Pr[
∣∣∥ỹ∥22 − ∥y∥22

∣∣ ≥ ϵ∥y∥22] ≤ δ.

The number of samples we take in expectation is:

n∑
i=1

pi =
n∑
i=1

c ·
y2i

∥y∥22
=

log(1/δ)
ϵ2

.
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MAJOR CAVEAT!

We don’t know y1, . . . , yn! And in fact, these values aren’t fixed.
We wanted to prove a bound for y = Ax for any x.

Idea behind leverage scores: Sample row i from A using the
worst case (largest necessary) sampling probability:

τi = max
x

y2i
∥y∥22

where y = Ax.

If we sample with probability pi = 1
ϵ2
· τi, then we will be

sampling by at least 1
ϵ2
· y2i
∥y∥22

, no matter what y is.
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CLOSED FORM EXPRESSION FOR LEVERAGE SCORES

τi = max
x

y2i
∥y∥22

where y = Ax.

A little messy algebra shows that x∗ = (ATA)−1ai.

47



LEVERAGE SCORE SAMPLING

Leverage score sampling:

• For i = 1, . . . ,n,
• Compute τi = aTi (ATA)−1ai.
• Set pi =

c log(1/δ)
ϵ2 · τi.

• Add row ai to Ã with probability pi and reweight by 1√pi
.

For any fixed x, we will have that
(1− ϵ)∥Ax∥22 ≤ ∥Ãx∥22 ≤ (1+ ϵ)∥Ax∥22 with probability (1− δ).

Two remaining concerns:

1) How do we extend from any x to all x?

2) The number of samples we take will be roughly
∑n

i=1 τi. How
do we bound this?
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SUM OF LEVERAGE SCORES

Claim: No matter how large n is,
∑n

i=1 τi = d for a matrix
A ∈ Rd.

“Zero-sum” law for the importance of matrix rows.
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MAIN RESULT

Naive ϵ-net argument leads to d2 dependence since we need to
set δ = cd. Getting the right d log d dependence below requires
a standard “matrix Chernoff bound” (see e.g. Tropp 2015).

Theorem (Subspace Embedding from Subsampling)

For each i, and fixed constant c, let pi = min
(
1, c log d

ϵ2
· τi

)
. Let

Ã have rows sampled from A with probabilities p1, . . . ,pn.
With probability 9/10,

(1− ϵ)∥Ax∥22 ≤ ∥Ãx∥22 ≤ (1+ ϵ)∥Ax∥22,

and Ã has O(d log d/ϵ2) rows in expectation.
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SPECTRAL SPARSIFICATION COROLLARY

For any graph G with d nodes, there exists a graph G̃ with
O(d log d/ϵ2) edges such that, for all x, ∥B̃x∥22 = (1± ϵ)∥Bx∥22.

As a result, the value of any cut in G̃ is within a (1± ϵ) factor of
the value in G, the Laplacian eigenvalues are with a (1± ϵ)

factors, etc.
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THANK YOU!

Thank you all for a great course! If you are interested in
learning even more, there are several seminars at NYU that you
might be interested in attending:

Theoretical Computer Science Seminar:
https://csefoundations.engineering.nyu.edu/seminar.html.

Math and Data Seminar: https://mad.cds.nyu.edu/seminar/.

Computational Math and Scientific Computing Seminar:
https://cims.nyu.edu/dynamic/calendars/seminars/computational-
mathematics-and-scientific-computing-seminar/.
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