
CS-GY 6763: Lecture 13
Fast Johnson-Lindenstrauss Transform, Sparse
Recovery and Compressed Sensing

NYU Tandon School of Engineering, Prof. Christopher Musco
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RANDOMIZED NUMERICAL LINEAR ALGEBRA

Main idea: Speed up classical linear algebra problems using
randomization.

Input: A ∈ Rn×d, b ∈ Rn.

Algorithm: Let x̃∗ = argminx ∥ΠAx−Πb∥22.

Goal: Want ∥Ax̃∗ − b∥22 ≤ (1+ ϵ)minx ∥Ax− b∥22
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RANDOMIZED NUMERICAL LINEAR ALGEBRA

Theorem (Example: Randomized Linear Regression)
Let Π be a properly scaled JL matrix (random Gaussian, sign,
sparse random, etc.) with m = O

(
d
ϵ2

)
rows. Then with

probability 9/10, for any A ∈ Rn×d and b ∈ Rn,

∥Ax̃− b∥22 ≤ (1+ ϵ)∥Ax∗ − b∥22

where x̃ = argminx ∥ΠAx−Πb∥22.

Reduce from a O(nd2) time computation to an O(d3) time
problem.
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RANDOMIZED NUMERICAL LINEAR ALGEBRA

Theorem (Second Example: Randomized Low-Rank
Approximation1)
Let Π be a properly scaled JL matrix (random Gaussian, sign,
sparse random, etc.) with m = O

(
k
ϵ

)
rows. Then with

probability 9/10, for any A ∈ Rn×d,

∥A− AṼkṼTk∥22 ≤ (1+ ϵ)∥A− Ak∥22

where Ṽk contains the top k right singular vectors of Ã.

Reduce from a O(ndk) time computation to an O(dk2) time
problem.
1See e.g. Sarlos, 2006 or Halko, Martinson, Tropp, 2011.

4



SUBSPACE EMBEDDINGS

Key Ingredient:
Theorem (Subspace Embedding JL)
Let U ⊂ Rn be a d-dimensional linear subspace in Rn. If
Π ∈ Rm×d is chosen from any distribution D satisfying the
Distributional JL Lemma, then with probability 1− δ,

(1− ϵ)∥v∥22 ≤ ∥Πv∥22 ≤ (1+ ϵ)∥v∥22

for all v ∈ U , as long as m = O
(
d log(1/ϵ)+log(1/δ)

ϵ2

)
.
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SUBSPACE EMBEDDING PROOF

Proof idea: Construct ϵ-net, Nϵ, for the unit sphere, S.

1. Prove that ∥Πw∥22 = (1± ϵ)∥w∥22 for all w ∈ Nϵ using union
bound.

2. Use a direct argument to extend to the rest of sphere.
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ϵ-NET FOR THE SPHERE

Lemma (ϵ-net for the sphere)
Let S be a d dimensional union sphere. For any ϵ ≤ 1, there
exists a set Nϵ ⊂ S with |Nϵ| =

( 3
ϵ

)d such that ∀v ∈ S,

min
w∈Nϵ

∥v− w∥2 ≤ ϵ.

We skipped the proof of this last time.

We will prove it using a common technique known as a
“volume” argument.
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ϵ-NET FOR THE SPHERE

Lemma (ϵ-net for the sphere)
Let S be a d dimensional union sphere. For any ϵ ≤ 1, there
exists a set Nϵ ⊂ S with |Nϵ| =

( 3
ϵ

)d such that ∀v ∈ S,

min
w∈Nϵ

∥v− w∥2 ≤ ϵ.

Imaginary algorithm for constructing Nϵ:

• Set Nϵ = {}
• While such a point exists, choose an arbitrary point v ∈ S
where there is no w ∈ Nϵ with ∥v− w∥ ≤ ϵ.

• Add v to Nϵ.

After running this procedure, we have Nϵ = {w1, . . . ,w|Nϵ|} and
minw∈Nϵ ∥v− w∥ ≤ ϵ for all v ∈ S as desired. 8



ϵ-NET FOR THE SPHERE

How many steps does this procedure take?

Can place a ball of radius ϵ/2 around each wi without
intersecting any other balls. All of these balls live in a ball of
radius 1+ ϵ/2.
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ϵ-NET FOR THE SPHERE

Volume of d dimensional ball of radius r is

vol(d, r) = c · rd,

where c is a constant that depends on d, but not r. From

previous slide we have:

vol(d, ϵ/2) · |Nϵ| ≤ vol(d, 1+ ϵ/2)

|Nϵ| ≤
vol(d, 1+ ϵ/2)
vol(d, ϵ/2)

≤
(
1+ ϵ/2
ϵ/2

)d
≤

(
3
ϵ

)d
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MAIN RESULT

Theorem (Example: Randomized Linear Regression)
Let Π be a properly scaled JL matrix (random Gaussian, sign,
sparse random, etc.) with m = O

(
d
ϵ2

)
rows. Then with

probability 9/10, for any A ∈ Rn×d and b ∈ Rn,

∥Ax̃− b∥22 ≤ (1+ ϵ)∥Ax∗ − b∥22

where x̃ = argminx ∥ΠAx−Πb∥22.
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RUNTIME CONSIDERATION

For ϵ, δ = O(1), we need Π to have m = O(d) rows.

• Cost to solve ∥Ax− b∥22:
• O(nd2) time for direct method. Need to compute
(ATA)−1ATb.

• O(nd) · (# of iterations) time for iterative method (GD, AGD,
conjugate gradient method).

• Cost to solve ∥ΠAx−Πb∥22:
• O(d3) time for direct method.
• O(d2) · (# of iterations) time for iterative method.
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RUNTIME CONSIDERATION

But time to compute ΠA is an (m× n)× (n× d) matrix
multiply: O(mnd) = O(nd2) time.

Goal: Develop faster Johnson-Lindenstrauss projections.

Typically using sparse or structured matrices instead of fully
random JL matrices.

Useful in many other applications two. For example, faster
methods are often used in LSH systems to implement SimHash. 13



RETURN TO SINGLE VECTOR PROBLEM

Goal: Develop methods that reduce a vector x ∈ Rn down to
m ≈ log(1/δ)

ϵ2
dimensions in o(mn) time and guarantee:

(1− ϵ)∥x∥22 ≤ ∥Πx∥22 ≤ (1+ ϵ)∥x∥22

Recall that once the bound above is proven, linearity lets us
preserve things like ∥y− z∥22 or ∥Ax− b∥22 for all x.
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THE FAST JOHNSON-LINDENSTRAUSS TRANSFORM

Subsampled Randomized Hadamard Transform2 (SHRT)
(Ailon-Chazelle, 2006)

Theorem (The Fast JL Lemma)
Let Π = SHD ∈ Rm×n be a subsampled randomized Hadamard
transform with m = O

(
log(n/δ) log(1/δ)

ϵ2

)
rows. Then for any fixed x,

(1− ϵ)∥x∥22 ≤ ∥Πx∥22 ≤ (1+ ϵ)∥x∥22

with probability (1− δ) and Πx can be computed in O(n log n)
(nearly linear) time.

Very little loss in embedding dimension compared to standard JL.
2One of my favorite randomized algorithms.
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SOLUTION FOR “FLAT” VECTORS

Let S be a random sampling matrix. Every row contains a value
of s =

√
n/m in a single location, and is zero elsewhere.

If we take m samples, x̃ can be computed in O(m) time.
Woohoo!

What is the problem with this approach? 16



VECTOR SAMPLING

Sampling only works well if y = Ax is “flat”.

Claim
If x2i ≤

c
n∥x∥22 for all i then m = O(c log(1/δ)/ϵ2) samples

suffices to ensure the (1− ϵ)∥x∥22 ≤ ∥Sx∥22 ≤ (1+ ϵ)∥x∥22 with
probability 1− δ.

This just follows from standard Hoeffding inequality.
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THE FAST JOHNSON-LINDENSTRAUSS TRANSFORM

Key idea: First multiply x by a “mixing matrix” M which ensures
it cannot be too concentrated in one place.

M will have the properties that

1. ∥Mx∥22 = ∥x∥22 exactly.
2. Every entry in Mx is bounded. I.e. [Mx]2i ≤

c
n∥Mx∥22 for some

factor c to be determined.
3. We will be able to multiply by M in O(n log n) time.

Then we will multiply by a subsampling matrix S to do the
actual dimensionality reduction:

Πx = SMx
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THE FAST JOHNSON-LINDENSTRAUSS TRANSFORM

Good mixing matrices should look random:

In fact, I claim to mix any x with high probability, M needs to be
chosen randomly. Why?

Hint: Recall that ∥Mx∥2 = ∥x∥2, so M is orthogonal.
19



THE FAST JOHNSON-LINDENSTRAUSS TRANSFORM

Good mixing matrices should look random:

But for this approach to work, we need to be able to compute
Mx very quickly. So we will use a pseudorandom matrix

instead.
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THE FAST JOHNSON-LINDENSTRAUSS TRANSFORM

Subsampled Randomized Hadamard Transform

Π = SM where M = HD:

• D ∈ n× n is a diagonal matrix with each entry uniform ±1.
• H ∈ n× n is a Hadamard matrix.

The Hadarmard matrix is an orthogonal matrix closely related
to the discrete Fourier matrix. It has three critical properties:

1. ∥Hv∥22 = ∥v∥22 exactly. Thus ∥HDx∥22 = ∥x∥22
2. ∥Hv∥22 can be computed in O(n log n) time.
3. All of the entries in H have the same magnitude. I.e. the

matrix is “flat”/
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HADAMARD MATRICES RECURSIVE DEFINITION

Assume that n is a power of 2. For k = 0, 1, . . . , the kth

Hadamard matrix Hk is a 2k × 2k matrix defined by:

H0 = 1 H1 =
1√
2

[
1 1
1 −1

]
H2 =

1√
4


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1



Hk =
1√
2

[
Hk−1 Hk−1
Hk−1 −Hk−1

]

The n× n Hadamard matrix has all entries as ± 1√
n .

22



HADAMARD MATRICES ARE ORTHOGONAL

Property 1: For any k = 0, 1, . . ., we have ∥Hkv∥22 = ∥v∥22 for all v.
I.e., Hk is orthogonal.
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HADAMARD MATRICES

Property 2: Can compute Πx = SHDx in O(n log n) time.
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RANDOMIZED HADAMARD TRANSFORM

Property 3: The randomized Hadamard matrix is a good
“mixing matrix” for smoothing out vectors.

Deterministic
Hadamard matrix.

Randomized
Hadamard PHD.

Fully random sign
matrix.

Blue squares are 1/
√
n’s, white squares are −1/

√
n’s.

Pseudorandom objects like this appear all the time in
computer science! Error correcting codes, efficient hash
functions, etc. 25



RANDOMIZED HADAMARD ANALYSIS

Lemma (SHRT mixing lemma)
Let H be an (n× n) Hadamard matrix and D a random ±1
diagonal matrix. Let z = HDx for x ∈ Rn. With probability
1− δ, for all i simultaneously,

z2i ≤
c log(n/δ)

n ∥z∥22

for some fixed constant c.

The vector is very close to uniform with high probability. As
we saw earlier, we can thus argue that ∥Sz∥22 ≈ ∥z∥22. I.e. that:

∥Πx∥22 = ∥SHDx∥22 ≈ ∥x∥22
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JOHNSON-LINDENSTRAUSS WITH SHRTS

The main result then follows directly from our sampling result
from earlier:
Theorem (The Fast JL Lemma)
Let Π = SHD ∈ Rm×n be a subsampled randomized
Hadamard transform with m = O

(
log(n/δ) log(1/δ)

ϵ2

)
rows. Then

for any fixed x,

(1− ϵ)∥x∥22 ≤ ∥Πx∥22 ≤ (1+ ϵ)∥x∥22

with probability (1− δ).
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RANDOMIZED HADAMARD ANALYSIS

SHRT mixing lemma proof: Need to prove (zi)2 ≤ c log(n/δ)
n ∥z∥22.

Let hT
i be the ith row of H. zi = hT

i Dx where:

hT
i D =

1√
n

[
1 1 . . . −1 −1

]

D1

D2
. . .

Dn


where D1, . . . ,Dn are random ±1’s.

This is equivalent to

hT
i D =

1√
n

[
R1 R2 . . . Rn

]
,

where R1, . . . ,Rn are random ±1’s.
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RANDOMIZED HADAMARD ANALYSIS

So we have, for all i, zi = hT
i Dx = 1√

n
∑n

i=1 Rixi.

• zi is a random variable with mean 0 and variance 1
n∥x∥22,

which is a sum of independent random variables.
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RANDOMIZED HADAMARD ANALYSIS

zi is a random variable with mean 0 and variance 1
n∥x∥22, which

is a sum of independent random variables.

• By Central Limit Theorem, we expect that:

Pr[|zi| ≥ t · ∥x∥2√
n
] ≤ e−O(t2).

• Setting t =
√
log(n/δ), we have for constant c,

Pr

[
|zi| ≥ c

√
log(n/δ)

n ∥x∥2

]
≤ δ

n
.

• Applying a union bound to all n entries of z gives the SHRT
mixing lemma.
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RADEMACHER CONCENTRATION

Can use Bernstein type concentration inequality to prove the
bound:
Lemma (Rademacher Concentration)
Let R1, . . . ,Rn be Rademacher random variables (i.e. uniform
±1’s). Then for any vector a ∈ Rn,

Pr

[ n∑
i=1

Riai ≥ t∥a∥2

]
≤ e−t2/2.

This is called the Khintchine Inequality. It is specialized to
sums of scaled ±1’s, and is a bit tighter and easier to apply
than using a generic Bernstein bound.
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FINISHING UP

Recall that z = HDx.

With probability 1− δ, we have that for all i,

zi ≤
√

c log(n/δ)
n ∥x∥2 =

√
c log(n/δ)

n ∥z∥2.

As shown earlier, we can thus guarantee that:

(1− ϵ)∥z∥22 ≤ ∥Sz∥22 ≤ (1+ ϵ)∥z∥22

as long as S ∈ Rm×n is a random sampling matrix with

m = O
(
log(n/δ) log(1/δ)

ϵ2

)
rows.

∥Sz∥22 = ∥SHDx∥22 = ∥Πx∥22 and ∥z∥22 = ∥x∥22, so we are done.
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LINEAR REGRESSION WITH SHRTS

Upshot for regression: Compute ΠA in O(nd log n) time instead
of O(nd2) time. Compress problem down to Ã with O(d2)

dimensions.

33



BRIEF COMMENT ON OTHER METHODS

O(nd log n) is nearly linear in the size of A when A is dense.

Clarkson-Woodruff 2013, STOC Best Paper: Let O (nnz(A)) be
the number of non-zeros in A. It is possible to compute Ã with
poly(d) rows in:

O (nnz(A)) time.

Π is chosen to be an ultra-sparse random matrix. Uses totally
different techniques (you can’t do JL + ϵ-net).

Lead to a whole close of matrix algorithms (for regression, SVD,
etc.) which run in time:

O (nnz(A)) + poly(d, ϵ).
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WHAT WERE AILON AND CHAZELLE THINKING?

Simple, inspired algorithm that has been used for accelerating:

• Vector dimensionality reduction

• Linear algebra

• Locality sensitive hashing
(SimHash)

• Randomized kernel learning
methods.
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BREAK
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WHAT WERE AILON AND CHAZELLE THINKING?

The Hadamard Transform is closely related to the Discrete
Fourier Transform.

Fj,k = e−2πi j·kn , F∗F = I.

Real part of Fj,k.

Fy computes the Discrete Fourier Transform of the vector y.
Can be computed in O(n log n) time using a divide and conquer
algorithm (the Fast Fourier Transform). 36



FOURIER TRANSFORM

The real part of e−2πi j·kn equals cos(2πj · k). So, the jth row of F
looks like a cosine wave with frequency 2πj.

Computing Fx computes inner products of x with a bunch of
different frequencies, which can be used to decompose the
vector into a sum of those frequencies.
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THE UNCERTAINTY PRINCIPAL

The Uncertainty Principal (informal): A function and it’s
Fourier transform cannot both be concentrated.

Vector y. Fourier transform Fy.
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THE UNCERTAINTY PRINCIPAL

Sampling does not preserve norms, i.e. ∥Sy∥2 ̸≈ ∥y∥2 when y
has a few large entries.

Taking a Fourier transform exactly eliminates this hard case,
without changing y’s norm.

One of the central tools in the field of sparse recovery aka
compressed sensing.
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SPARSE RECOVERY/COMPRESSED SENSING PROBLEM SETUP

Goal: Recover a vector x from linear measurements.

Choose A ∈ Rm×n with m < n. Assume we can access b = Ax
via some black-box measurement process. Try to recover x
from the information in b.

• Infinite possible solutions y to Ay = b, so in general, it is
impossible to recover x from b.

• Can often be possible if x has additional structure! 40



EXAMPLE APPLICATION: SINGLE PIXEL CAMERA

Typical acquisition of image by camera:

Requires one image sensor per pixel captured.
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EXAMPLE APPLICATION: SINGLE PIXEL CAMERA

Compressed acquisition of image:

b =
∑
i=1

xi =
[
1
n

1
n . . . 1

n

]

x1
x2
...
xn


Does not provide very much information about the image.
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EXAMPLE APPLICATION: SINGLE PIXEL CAMERA

But you can get more information from other linear
measurements via masking!

bi = ⟨ai, x⟩ =
[
0 1 0 0 . . . 1

]

x1
x2
...
xn


Piece together many of these masked measurements, and can
recover the whole image!
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EXAMPLE APPLICATION: SINGLE PIXEL CAMERA

Applications in:

• Imaging outside of the visible spectrum (more expensive
sensors).

• Microscopy.
• Other scientific imaging.
• We will discuss other applications shortly.

The theory we will discuss does not exactly describe these
problems, but has been very valuable in modeling them.
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SPARSITY RECOVERY/COMPRESSED SENSING

Need to make some assumption to solve the problem. Given
A ∈ Rm×n with m < n, b ∈ Rm, want to recover x.

• Assume x is k-sparse for small k. ∥x∥0 = k.

• In many cases can recover x with ≪ n rows. In fact, often
∼ O(k) suffice.
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SPARSITY ASSUMPTION

Is sparsify a reasonable assumption?

For some of the approachs we will discuss, it suffices to
assume that x is sparse in any fixed (and known) basis. I.e.
that Vx is sparse for some n× n orthogonal V. E.g. images are
sparse in the Discrete Cosine Transform basis.

Sparsity is a starting point for considering other more complex
structure. 46



REQUIREMENTS FOR MEASUREMENT MATRIX

What matrices A would definitely not allow us to recover x?
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ASSUMPTIONS ON MEASUREMENT MATRIX

Many ways to formalize our intuition

• A has Kruskal rank r. All sets of r columns in A are linearly
independent.

• Recover vectors x with sparsity k = r/2.
• A is µ-incoherent. |ATi Aj| ≤ µ∥Ai∥2∥Aj∥2 for all columns
Ai,Aj, i ̸= j.

• Recover vectors x with sparsity k = 1/µ.

• Focus today: A obeys the Restricted Isometry Property.
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RESTRICTED ISOMETRY PROPERTY

Definition ((q, ϵ)-Restricted Isometry Property)
A matrix A satisfies (q, ϵ)-RIP if, for all x with ∥x∥0 ≤ q,

(1− ϵ)∥x∥22 ≤ ∥Ax∥22 ≤ (1+ ϵ)∥x∥22.

• Johnson-Lindenstrauss type condition.
• A preserves the norm of all q sparse vectors, instead of
the norms of a fixed discrete set of vectors, or all vectors
in a subspace (as in subspace embeddings).

• Preview: A random matrix A with ∼ O(q log(n/q)) rows
satisfies RIP.
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FIRST SPARSE RECOVERY RESULT

Theorem (ℓ0-minimization)
Suppose we are given A ∈ Rm×n and b = Ax for an unknown
k-sparse x ∈ Rn. If A is (2k, ϵ)-RIP for any ϵ < 1 then x is the
unique minimizer of:

min∥z∥0 subject to Az = b.

• Establishes that information theoretically we can recover
x. Solving the ℓ0-minimization problem is computationally
difficult, requiring O(nk) time. We will address faster
recovery shortly.
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FIRST SPARSE RECOVERY RESULT

Claim: If A is (2k, ϵ)-RIP for any ϵ < 1 then x is the unique
minimizer of minAz=b ∥z∥0.

Proof: By contradiction, assume there is some y ̸= x such that
Ay = b, ∥y∥0 ≤ ∥x∥0.
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ROBUSTNESS

Important note: There are robust versions of this theorem and
the others we will discuss. These are much more important
practically. Here’s a flavor of a robust result:

• Suppose b = A(x+ e) where x is k-sparse and e is dense
but has bounded norm.

• Recover some k-sparse x̃ such that:

∥x̃− x∥2 ≤ ∥e∥1

or even

∥x̃− x∥2 ≤ O
(

1√
k

)
∥e∥1.
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ROBUSTNESS

We will not discuss robustness in detail, but along with
computational considerations, it is a big part of what has
made compressed sensing such an active research area in the
last 20 years. Non-robust compressed sensing results have
been known for a long time:

Gaspard Riche de Prony, Essay experimental et analytique: sur
les lois de la dilatabilite de fluides elastique et sur celles de la

force expansive de la vapeur de l’alcool, a differentes
temperatures. Journal de l’Ecole Polytechnique, 24–76. 1795.
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RESTRICTED ISOMETRY PROPERTY

What matrices satisfy this property?

• Random Johnson-Lindenstrauss matrices (Gaussian, sign,
etc.) with m = O(k log(n/k)

ϵ2
) rows are (k, ϵ)-RIP.

Some real world data may look random, but this is also a
useful observation algorithmically when we want to design A.
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THE DISCRETE FOURIER MATRIX

The n× n discrete Fourier matrix F is defined:

Fj,k = e
−2πi
n j·k,

where i =
√
−1. Recall e−2πi

n j·k = cos(2πjk/n)− i sin(2πjk/n).
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PSEUDORANDOM RIP MATRICES

In many applications can compute measurements of the form
Ax = SFx, where F is the Discrete Fourier Transform matrix
(what an FFT computes) and S is a subsampling matrix.

F decomposes x into different frequencies: [Fx]j is the
component with frequency j/n.
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THE DISCRETE FOURIER MATRIX

If A = SF is a subset of rows from F, then Ax is a subset of
random frequency components from x’s discrete Fourier
transform.

In many scientific applications, we can collect entries of Fx one
at a time for some unobserved data vector x.
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APPLICATION: MEDICAL IMAGING

Warning: very cartoonish explanation of very complex problem.
Medical Imaging (MRI)

How do we measure entries of Fourier transform Fx? Blast the
body with sounds waves of varying frequency.

• Especially important when trying to capture something
moving (e.g. lungs, baby, child who can’t sit still).

• Can also cut down on high power requirements.
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APPLICATION: GEOPHYSICS

Warning: very cartoonish explanation of very complex problem.

Understanding what material is beneath the crust:
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APPLICATION: GEOPHYSICS

Vibrate the earth at different frequencies! And measure the
response.

Vibroseis Truck

Can also use airguns, controlled explorations, vibrations from
drilling, etc. The fewer measurements we need from Fx, the
cheaper and faster our data acquisition process becomes.
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RESTRICTED ISOMETRY PROPERTY

Setting A to contain a random m ∼ O
(
k log2 k log n

ϵ2

)
rows of the

discrete Fourier matrix F yields a matrix that with high
probability satisfies (k, ϵ)-RIP. [Haviv, Regev, 2016].

Improves on a long line of work: Candès, Tao, Rudelson,
Vershynin, Cheraghchi, Guruswami, Velingker, Bourgain.

Proving this requires similar tools to analyzing subsampled
Hadamard transforms!
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RESTRICTED ISOMETRY PROPERTY

Definition ((q, ϵ)-Restricted Isometry Property – Candes, Tao
’05)
A matrix A satisfies (q, ϵ)-RIP if, for all x with ∥x∥0 ≤ q,

(1− ϵ)∥x∥22 ≤ ∥Ax∥22 ≤ (1+ ϵ)∥x∥22.

The vectors that can be written as Ax for q sparse x lie in a
union of q dimensional linear subspaces:

62



RESTRICTED ISOMETRY PROPERTY

Candes, Tao 2005: A random JL matrix with O(q log(n/q)/ϵ2)
rows satisfies (q, ϵ)-RIP with high probability.

Any ideas for how you might prove this? I.e. prove that a
random matrix preserves the norm of every x in this union of

subspaces?
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RESTRICTED ISOMETRY PROPERTY FROM JL

Theorem (Subspace Embedding from JL)
Let U ⊂ Rn be a q-dimensional linear subspace in Rn. If
Π ∈ Rm×n is chosen from any distribution D satisfying the
Distributional JL Lemma, then with probability 1− δ,

(1− ϵ)∥v∥22 ≤ ∥Πv∥22 ≤ (1+ ϵ)∥v∥22

for all v ∈ U , as long as m = O
(
q+log(1/δ)

ϵ2

)
.

Quick argument:
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