
CS-GY 676 : Lecture
Spectral clustering, stochastic Block Model,
subspace embeddings + ε-net arguments

NYU Tandon School of Engineering, Prof. Christopher Musco



SPECTRAL GRAPH THEORY

Main idea: Understand graph data by constructing natural
matrix representations, and studying that matrix’s spectrum
(eigenvalues/eigenvectors).

For now assume G = (V, E) is an undirected, unweighted graph
with n nodes.



MATRIX REPRESENTATIONS OF GRAPHS

Two most common representations: n× n adjacency matrix A
and graph Laplacian L = D− A where D is the diagonal degree
matrix.

Also common to look at normalized versions of both of these:
Ā = D− / AD− / and L̄ = I− D− / AD− / .

→ # o fnodes

O O

000 000



THE LAPLACIAN VIEW

L = BTB where B is the signed “edge-vertex incidence” matrix.

B has a row for every edge in G. The row for edge (i, j) has a +

at position i, a − at position j, and zeros elsewhere.

:

- ,
B

n....Ej
t

# o fdost 1 = 1



THE LAPLACIAN VIEW

Conclusions from L = BTB

• L is positive semidefinite: xTLx ≥ for all x.

• L = VΣ VT where UΣVT is B’s SVD. Columns of V are
eigenvectors of L.

• For any vector x ∈ Rn,

xTLx =
∑

(i,j)∈E

(x(i)− x(j)) .

=

I
1113×115=1,55553x = x t L ×



THE LAPLACIAN VIEW

xTLx =
∑

(i,j)∈E(x(i)− x(j)) . So xTLx is small if x is a “smooth”
function with respect to the graph.
O



THE LAPLACIAN VIEW

Another conclusion from L = BTB:

For a cut indicator vector c ∈ {− , }n with c(i) = − for i ∈ S
and c(i) = for i ∈ T = V \ S:

cTLc =
∑

(i,j)∈E

(c(i)− c(j)) = · cut(S, T). ( )

a ,

[
" ' " " " ÷ : ' "

"€§§€¥
¥¥ #



SPECTRAL GRAPH PARTITIONING

• Introduce NP-hard graph partitioning problem important
in:

• Understanding social networks.
• Unsupervised machine learning (spectral clustering).
• Graph visualization.
• Mesh partitioning.

• See how this problem can be solved heuristically using
Laplacian eigenvectors.

• Give an “average case” analysis of the method for a
common random graph model.

• Use two tools: matrix concentration and eigenvector
perturbation bounds.

I
1

,
711



BALANCED CUT

Goal: Given a graph G = (V, E), partition nodes along a cut that:

• Has few crossing edges: |{(u, v) ∈ E : u ∈ S, v ∈ T}| is small.
• Separates large partitions: |S|, |T| are not too small.

Example application: Understanding community structure in
social networks.

÷



SOCIAL NETWORKS IN THE 97 S

Wayne W. Zachary ( ). An Information Flow Model for
Conflict and Fission in Small Groups.

“At the beginning of the study there was an incipient conflict
between the club president, John A., and Mr. Hi over the price of
karate lessons. Mr. Hi, who wished to raise prices, claimed the
authority to set his own lesson fees, since he was the instructor.
John A., who wished to stabilize prices, claimed the authority to set
the lesson fees since he was the club’s chief administrator. As time
passed the entire club became divided over this issue, and the
conflict became translated into ideological terms by most club
members.”

Zachary constructed a social network by hand and used a minimum
cut algorithm to correctly predict who sided with who in the
conflict. Beautiful paper – definitely worth checking out!

=



SPECTRAL CLUSTERING

Idea: Construct synthetic graph for data that is hard to cluster.

Spectral Clustering, Laplacian Eigenmaps, Locally linear
embedding, Isomap, etc.

@ ' Q .



TONS OF OTHER APPLICATIONS!

Balanced cut algorithms are also use in distributing data in
graph databases, for partitioning finite element meshes in
scientific computing (e.g., that arise when solving differential
equations), and more.

Lots of good software packages (e.g. METIS).

ifI
-



SPECTRAL GRAPH PARTITIONING

There are many way’s to formalize Zachary’s problem:

β-Balanced Cut:

min
S

cut(S, V \ S) such that min (|S|, |V \ S|) ≥ β · n for β ≤ .

Sparsest Cut:

min
S

cut(S, V \ S)
min (|S|, |V \ S|)

All natural formalizations lead to NP-hard problems. Lots of
interest in designing polynomial time approximation
algorithms, but tend to be slow. In practice, much simpler
methods based on the graph spectrum are used.

Spectral methods run no more than O(n ) time (must faster if
you use iterative methods for computing eigenvectors).

- - -

=

E -



SPECTRAL GRAPH PARTITIONING

Basic spectral clustering method:

• Compute second smallest eigenvector of graph, vn− .
• vn− has an entry for every node i in the graph.
• If the ith entry is positive, put node i in T.
• Otherwise if the ith entry is negative, put i in S.

This shouldn’t make much sense yet! We will see that is a
“relax and round” algorithm in disguise.
g

,

f""""



THE LAPLACIAN VIEW

For a cut indicator vector c ∈ {− , }n with c(i) = − for i ∈ S
and c(i) = for i ∈ T:

• cTLc = · cut(S, T).
• cT = |T|− |S|.

Want to minimize both cTLc (cut size) and |cT | (imbalance).

' "

' I I
0
te l l - - I p--O



THE LAPLACIAN VIEW

Equivalent formulation if we divide everything by
√
n so that c

has norm . Then c ∈ {−√
n ,

√
n}

n and:

• cTLc = n · cut(S, T).
• cT = √

n(|T|− |S|).

Want to minimize both cTLc (cut size) and |cT | (imbalance).

Yell,I z



RELAX AND ROUND

Perfectly balanced balanced cut problem:

min
c∈{−√

n ,
√

n}
n
cTLc such that cT = .

Relaxed perfectly balanced balanced cut problem:

min
‖c‖ =

cTLc such that cT = .

Claim: The relaxed problem is exactly minimized by the second
smallest eigenvector vn− of L.

Approach: Relax, find vn− , then round back to a vector with
−√

n ,
√
n entries.

i +
,÷÷
Ac tc = A

⇐
a r g m i n x ' I x = Vu



SMALLEST LAPLACIAN EIGENVECTOR

Claim: The smallest eigenvector/singular vector of any graph
Laplacian L always equals:

vn = argmin
v∈Rn with ‖v‖=

vTLv = √
n
·

with vTnLvn = .

O
y

0 0 0 0

t - t - o - z

✓
u - i
t ru = 0

Un-z'-Va = O

i .
U ,t U n = O



SECOND SMALLEST LAPLACIAN EIGENVECTOR

By Courant-Fischer, vn− is given by:

vn− = argmin
‖v‖= , vTnv=

vTLv

which is equivalent to

vn− = argmin
‖v‖= , Tv=

vTLv.

-

.toooo



CUTTING WITH THE SECOND LAPLACIAN EIGENVECTOR

Final relax and round algorithm: Compute

vn− = argmin
v∈Rn with ‖v‖= , vT =

vTLv

Set S to be all nodes with vn− (i) < , and T to be all with
vn− (i) ≥ . I.e. set c = sign(vn− )
-

-

t.t
t..

i n '

00µV



SPECTRAL PARTITIONING IN PRACTICE

Lots of different variants used in practice:

• Often do some sort of normalization of edge weights by
degree. E.g. the Shi-Malik normalized cuts algorithm use
the normalized Laplacian L = D− / LD− / .

• Different methods for how to choose the threshold to
partition the second smallest eigenvector.

• Lots of variants to split the graph into more than two parts.

- -

I



SPECTRAL PARTITIONING IN PRACTICE

Multiway spectral partitioning:

• Compute smallest " eigenvectors vn− , . . . , vn−! of L.
• Represent each node by its corresponding row in V ∈ Rn×!

whose rows are vn− , . . . vn−!.
• Cluster these rows using k-means clustering (or really any
clustering method).

• Often we choose " = k, but not necessarily.

O O _ 0

1

FEET



LAPLACIAN EMBEDDING

Original Data: (not linearly separable)



LAPLACIAN EMBEDDING

k-Nearest Neighbors Graph:

Iii:



LAPLACIAN EMBEDDING

Embedding with eigenvectors vn− , vn− : (linearly separable)¢g±
⇒÷÷



WHY DOES THIS WORK?

Intuitively, since v ∈ vn− , . . . vn−! are smooth over the graph,
∑

i,j∈E

(v[i]− v[j])

is small for each coordinate. I.e. this embedding explicitly
encourages nodes connected by an edge to be placed in
nearby locations in the embedding.

Also useful e.g., in graph drawing.

VitLv;
•

a



GENERATIVE MODELS

So far: Showed that spectral clustering partitions a graph
along a small cut between large pieces.

• No formal guarantee on the ‘quality’ of the partitioning.
• Can fail for worst case input graphs.

Common approach: Design a natural generative model that
produces random but realistic inputs and analyze how the
algorithm performs on inputs drawn from this model.

• Very common in algorithm design and analysis. Great way
to start approaching a problem. Often our best way to
understand why some algorithms “just work” in practice.

• Similar approach to Bayesian modeling in machine
learning.



STOCHASTIC BLOCK MODEL

Ideas for a generative model for social network graphs that
would allow us to understand partitioning?

u

6¥11:*: ÷ *
: * :

FE I ÷÷÷.



STOCHASTIC BLOCK MODEL

Stochastic Block Model (Planted Partition Model):

Let Gn(p,q) be a distribution over graphs on n nodes, split
equally into two groups B and C, each with n/ nodes.

• Any two nodes in the same group are connected with
probability p (including self-loops).

• Any two nodes in different groups are connected with
prob. q < p.

-
Gu(p)

°, a



LINEAR ALGEBRAIC VIEW

Let G be a stochastic block model graph drawn from Gn(p,q).

• Let A ∈ Rn×n denote the adjacency matrix of G.

Note that we are arbitrarily ordering the nodes in A by group.
In reality A would look “scrambled” as on the right.

tooo



STOCHASTIC BLOCK MODEL

Goal is to find the “ground truth” balanced partition B, C using
our standard spectal method.

To do so, we need to understand the second smallest
eigenvector of L = D− A. We will start by considering the
expected value of these matrices:

E[L] = E[D]− E[A].

"""" #""÷
".

V a u eigenvectoro f
LEAD]:
(Is.

+g-g)±

CI-HIA)

E-(A) .

E l l )v : cIv-Elk]r
= w - A r
--K-d)r .

O -



EXPECTED ADJACENCY SPECTRUM

Letting G be a stochastic block model graph drawn from
Gn(p,q) and A ∈ Rn×n be its adjacency matrix. (E[A])i,j = p for
i, j in same group, (E[A])i,j = q otherwise.

U ,i 1

E lf )v,:(IP t I q).I

EE i i : """"i÷÷
÷¥¥

I I ,
Y U ,

= I p-Zf )V r



EXPECTED LAPLACIAN

What is the expected Laplacian of Gn(p,q)?

E[A] and E[L] have the same eigenvectors and eigenvalues are
equal up to a shift/inversion. So second largest eigenvector of

E[A] is the same as the second smallest of E[L]



EXPECTED ADJACENCY SPECTRUM

Letting G be a stochastic block model graph drawn from
Gn(p,q) and A ∈ Rn×n be its adjacency matrix, what are the
eigenvectors and eigenvalues of E[A]?



EXPECTED ADJACENCY SPECTRUM

• v̄ ∼ with eigenvalue λ = (p+q)n .
• v̄ ∼ χB,C with eigenvalue λ = (p−q)n .

If we compute v̄ then we exactly recover the communities B
and C!

O o :



EXPECTED LAPLACIAN SPECTRUM

Upshot: The second smallest eigenvector of E[L], equivalently
the second largest of E[A], is exactly χB,C – the indicator vector
for the cut between the communities.

• If the random graph G (equivilantly A and L) were exactly
equal to its expectation, partitioning using this
eigenvector would exactly recover communities B and C.

How do we show that a matrix (e.g., A) is close to its
expectation? Matrix concentration inequalities.

• Analogous to scalar concentration inequalities like
Markovs, Chebyshevs, Bernsteins.

-



MATRIX CONCENTRATION

Alon, Krivelevich, Vu, :

Matrix Concentration Inequality: If p ≥ O
(
log n

n

)
, then

with high probability

‖A− E[A]‖ ≤ O(
√
pn).

where ‖ · ‖ is the matrix spectral norm (operator norm).

Recall that ‖X‖ = maxz∈Rd:‖z‖ = ‖Xz‖ = σ (X).

‖A‖ is on the order of O(p
√
n) so another way of thinking

about the right hand side is ‖A‖√p . I.e. get’s better with p.

1113lb = mix "3¥,!!
-

.

O - = D
''1¥)

-



EIGENVECTOR PERTURBATION

For the stochastic block model application, we want to show
that the second eigenvectors of A and E[A] are close. How
does this relate to their difference in spectral norm?

Davis-Kahan Eigenvector Perturbation Theorem: Sup-
pose A,A ∈ Rd×d are symmetric with ‖A − A‖ ≤ ε

and eigenvectors v , v , . . . , vn and v̄ , v̄ , . . . , v̄n. Letting
θ(vi, v̄i) denote the angle between vi and v̄i, for all i:

sin[θ(vi, v̄i)] ≤
ε

minj &=i |λi − λj|

where λ , . . . ,λn are the eigenvalues of A.

We will apply with Ā = E[A].

= ÷



EIGENVECTOR PERTURBATION

⇐in? I
5=10,7#€wi i . l'd



APPLICATION TO STOCHASTIC BLOCK MODEL

Claim (Matrix Concentration): For p ≥ O
(

log n
n

)
,

‖A− E[A]‖ ≤ O(
√
pn).

Recall: E[A], has eigenvalues λ = (p+q)n , λ = (p−q)n , λi =

for i ≥ .

min
j "=i

|λi − λj| = min

(
qn, (p− q)n

)
.

Assume (p−q)n will be the minimum of these two gaps.

Claim (Davis-Kahan): For p ≥ O
(

log n
n

)
,

sin θ(v , v̄ ) ≤ O(√pn)
minj "=i |λi − λj|

≤ O(√pn)
(p− q)n/

= O
( √p
(p− q)

√
n

)

(A slightly trickier analysis can remove the qn term entirely.)

- -

- a
=L I

-

,



APPLICATION TO STOCHASTIC BLOCK MODEL

So far: sin θ(v , v̄ ) ≤ O
( √p

(p−q)
√
n

)
. What does this give us?

• Can show that this implies ‖v − v̄ ‖ ≤ O
(

p
(p−q) n

)
(exercise).

• v̄ is √
nχB,C: the community indicator vector.

• We want to show that sign(v ) and v̄ are close. They only differ
at locations where v and v̄ differ in sign.

-

- a -

j¥0of
O
o 0 , 0 0



APPLICATION TO STOCHASTIC BLOCK MODEL

Main argument:

• Every i where v (i), v̄ (i) differ in sign contributes ≥ n to
‖v − v̄ ‖ .

• We know that ‖v − v̄ ‖ ≤ O
(

p
(p−q) n

)
.

• So v and v̄ differ in sign in at most O
(

p
(p−q)

)
positions.

-

- - -

. f r



APPLICATION TO STOCHASTIC BLOCK MODEL

Upshot: If G is a stochastic block model graph with adjacency
matrix A, if we compute its second largest eigenvector v and
assign nodes to communities according to the sign pattern of
this vector, we will correctly assign all but O

(
p

(p−q)

)
nodes.

• Hard case: Suppose q = . p so p
(p−q) = /p. Even if p is

really small, i.e. p = /n, then we assign roughly % of
nodes to the right partition.

O
- -

O- .

¥py = ¥ s @



RANDOMIZED NUMERICAL LINEAR ALGEBRA

Forget about the previous problem, but still consider the
matrix M = E[A].

• Dense n× n matrix.
• Computing top eigenvectors takes ≈ O(n /

√
ε) time.

If someone asked you to speed this up and return approximate
top eigenvectors, what could you do?

O.O



RANDOMIZED NUMERICAL LINEAR ALGEBRA

Main idea: If you want to compute singular vectors, multiply
two matrices, solve a regression problem, etc.:

. Compress your matrices using a randomized method (e.g.
subsampling).

. Solve the problem on the smaller or sparser matrix.
• Ã called a “sketch” or “coreset” for A.

00000



BREAK



RANDOMIZED NUMERICAL LINEAR ALGEBRA

Approximate matrix multiplication:

Approximate regression:



SKETCHED REGRESSION

Today’s example: Randomized approximate regression using a
Johnson-Lindenstrauss matrix for compression.

Input: A ∈ Rn×d, b ∈ Rn.

Goal: Let x∗ = argminx ‖Ax− b‖ . Let x̃ = argminx ‖ΠAx−Πb̃‖

Want: ‖Ax̃− b‖ ≤ ( + ε) ‖Ax∗ − b‖

x#=€ µ t b = 0 (nd})
O ( n d -

0 € 3ns: 2 u

d a t

- - - ←



TARGET RESULT

Theorem (Randomized Linear Regression)
Let Π be a properly scaled JL matrix (random Gaussian, sign,
sparse random, etc.) with m = O

(
d
ε

)
rows . Then with

probability / , for any A ∈ Rn×d and b ∈ Rn,

‖Ax̃− b‖ ≤ ( + ε)‖Ax∗ − b‖

where x̃ = argminx ‖ΠAx−Πb‖ .

This can be improved to O(d/ε) with a tighter analysis

÷



PLAN

• Prove this theorem using an ε-net argument, which is a
popular technique for applying our standard
concentration inequality + union bound argument to an
infinite number of events.

• These sort of arguments appear all the time in theoretical
algorithms and ML research, so this part of lecture is as
much about the technique as the final result.

• For the bonus problem on your last problem set you will
use an ε-net argument to prove a matrix concentration
inequality on your last problem set.

a



SKETCHED REGRESSION

Claim: Suffices to prove that for all x ∈ Rd,

( − ε)‖Ax− b‖ ≤ ‖ΠAx−Πb‖ ≤ ( + ε)‖Ax− b‖

O'*s¥÷I#⇒?i÷±""
E ¥ HITAxle-THE

E ' I I 11Axt-blue

Edt26)11Ax ' - H E



DISTRIBUTIONAL JOHNSON-LINDENSTRAUSS REVIEW

Lemma (Distributional JL)
If Π is chosen to a properly scaled random Gaussian matrix,
sign matrix, sparse random matrix, etc., with O

(
log( /δ

ε

)
rows

then for any fixed y,

( − ε)‖y‖ ≤ ‖Πy‖ ≤ ( + ε)‖y‖

with probability ( − δ).

Corollary: For any fixed x, with probability ( − δ),

( − ε)‖Ax− b‖ ≤ ‖ΠAx−Πb‖ ≤ ( + ε)‖Ax− b‖ .

O

-
-

L t



FOR ANY TO FOR ALL

How do we go from “for any fixed x” to “for all x ∈ Rd”.

This statement requires establishing a Johnson-Lindenstrauss
type bound for an infinity of possible vectors (Ax− b), which
can’t be tackled directly with a union bound argument.

Note that all vectors of the form (Ax− b) lie in a low
dimensional subspace: spanned by d+ vectors, where d is
the width of A. So even though the set is infinite, it is “simple”
in some way. Parameterized by just d+ numbers.

O
O O

O



SUBSPACE EMBEDDINGS

Theorem (Subspace Embedding from JL)
Let U ⊂ Rn be a d-dimensional linear subspace in Rn. If
Π ∈ Rm×d is chosen from any distribution D satisfying the
Distributional JL Lemma, then with probability − δ,

( − ε)‖v‖ ≤ ‖Πv‖ ≤ ( + ε)‖v‖

for all v ∈ U , as long as m = O
(
d log( /ε)+log( /δ)

ε

)
.

It’s possible to obtain a slightly tighter bound of O
(

d+log( /δ)
ε

)
. It’s a nice

challenge to try proving this.

=-oo



SUBSPACE EMBEDDING TO APPROXIMATE REGRESSION

Corollary: If we choose Π and properly scale, then with
O
(
d/ε

)
rows,

( − ε)‖Ax− b‖ ≤ ‖ΠAx−Πb‖ ≤ ( + ε)‖Ax− b‖

for all x and thus

‖Ax̃− b‖ ≤ ( + O(ε))min
x

‖Ax− b‖ .

I.e., our main theorem is proven.

Proof: Apply Subspace Embedding Thm. to the (d+ )

dimensional subspace spanned by A’s d columns and b. Every
vector Ax− b lies in this subspace.

°§÷.-okay
-



SUBSPACE EMBEDDINGS

Theorem (Subspace Embedding from JL)
Let U ⊂ Rn be a d-dimensional linear subspace in Rn. If
Π ∈ Rm×d is chosen from any distribution D satisfying the
Distributional JL Lemma, then with probability − δ,

( − ε)‖v‖ ≤ ‖Πv‖ ≤ ( + ε)‖v‖ ( )

for all v ∈ U , as long as m = O
(
d log( /ε)+log( /δ)

ε

)

Subspace embeddings have tons of other applications!

8.0
• s o

°



SUBSPACE EMBEDDING PROOF

( − ε)‖v‖ ≤ ‖Πv‖ ≤ ( + ε)‖v‖ ( )

First Observation: The theorem holds as long as ( ) holds for
all w on the unit sphere in U . Denote the sphere SU :

SU = {w |w ∈ U and ‖w‖ = }.

Follows from linearity: Any point v ∈ U can be written as cw
for some scalar c and some point w ∈ SU .

• If ( − ε)‖w‖ ≤ ‖Πw‖ ≤ ( + ε)‖w‖ .
• then c( − ε)‖w‖ ≤ c‖Πw‖ ≤ c( + ε)‖w‖ ,
• and thus ( − ε)‖cw‖ ≤ ‖Πcw‖ ≤ ( + ε)‖cw‖ .

↳
U

=

-

•

F l u 1 h4¥11% ) H u l k



SUBSPACE EMBEDDING PROOF

Intuition: There are not too many “different” points on a
d-dimensional sphere:

Nε is called an “ε”-net.

If we can prove

( − ε)‖w‖ ≤ ‖Πw‖ ≤ ( + ε)‖w‖

for all points w ∈ Nε, we can hopefully extend to all of SU .

•

For anyv e su,
000 3-w e He s-t.

11w - ✓I l-EE.



ε-NET FOR THE SPHERE

Lemma (ε-net for the sphere)

For any ε ≤ , there exists a set Nε ⊂ SU with |Nε| =
(
ε

)d such
that ∀v ∈ SU ,

min
w∈Nε

‖v− w‖ ≤ ε.

Take this claim to be true for now: we will prove later.

O 3 -



SUBSPACE EMBEDDING PROOF

. Preserving norms of all points in net Nε.

Set δ′ = |Nε| · δ =
(
ε
)d · δ. As long as Π has O

(
log( /δ′)

ε

)

= O
(
d log( /ε)+log( /δ)

ε

)
rows, then by a union bound,

( − ε)‖w‖ ≤ ‖Πw‖ ≤ ( + ε)‖w‖ .

for all w ∈ Nε ,with probability − δ.

O = &
I C

log(t"¥)= log((3¥):dlog(3le)tlgcµ



SUBSPACE EMBEDDING PROOF

. Extending to all points in the sphere.

For some w ,w ,w . . . ∈ Nε, any v ∈ SU . can be written:

v = w + c w + c w + . . .

for constants c , c , . . . where |ci| ≤ εi.

O - -
- ÷÷÷.

S E D

* 'i.....}" V : t o o t qie.



SUBSPACE EMBEDDING PROOF

. Extending to all points in the sphere.

For some w ,w ,w . . . ∈ Nε, any v ∈ SU . can be written:

v = w + c w + c w + . . .

for constants c , c , . . . where |ci| ≤ εi.

Greedy construction:

w = min
w∈Nε

‖v− w ‖ r = v− w

w = min
w∈Nε

∥∥∥∥
r
‖r ‖ − w

∥∥∥∥ c = ‖r ‖ r = v− w − c w

w = min
w∈Nε

∥∥∥∥
r
‖r ‖ − w

∥∥∥∥ c = ‖r ‖ r = v− w − c w − c w

...

E E ' g z

•

a
-

- I - - - -µ

" r i ved
"r.ie#I.IIFfHritt



SUBSPACE EMBEDDING PROOF

. Extending to all points in the sphere.

Applying triangle inequality, we have that:

‖Πv‖ = ‖Πw + c Πw + c Πw + . . . ‖
≤ ‖Πw ‖+ c ‖Πw ‖+ c ‖Πw ‖+ . . .

≤ ‖Πw ‖+ ε‖Πw ‖+ ε ‖Πw ‖+ . . .

≤ ( + ε) + ε( + ε) + ε ( + ε) + . . .

≤ + ε.

µ#He
11014=1

E z a

-

1 0 ¥
" a . . . . . . . . .

" ' " '"

-

= (Hue) Hullo

E I t 2 ( z a ) = I t Y e f o r E E 1 / 2 ,



SUBSPACE EMBEDDING PROOF

. Preserving norm of v.

Similarly,

‖Πv‖ = ‖Πw + c Πw + c Πw + . . . ‖
≥ ‖Πw ‖ − ε‖Πw ‖ − ε ‖Πw ‖ − . . .

≥ ( − ε)− ε( + ε)− ε ( + ε)− . . .

≥ − ε.

11a + toll,2 Hall,-1lb1 h

I I
Hall,E Hatbll,t 11611-

7 .
trangi refu l .

Applied t o

Atb , - b



SUBSPACE EMBEDDING PROOF

So we have proven

( − O(ε)) ‖v‖ ≤ ‖Πv‖ ≤ ( + O(ε)) ‖v‖

for all v ∈ SU , which in turn implies,

( − O(ε)) ‖v‖ ≤ ‖Πv‖ ≤ ( + O(ε)) ‖v‖

Adjusting ε proves the Subspace Embedding theorem.



SUBSPACE EMBEDDINGS

Theorem (Subspace Embedding from JL)
Let U ⊂ Rn be a d-dimensional linear subspace in Rn. If
Π ∈ Rm×d is chosen from any distribution D satisfying the
Distributional JL Lemma, then with probability − δ,

( − ε)‖v‖ ≤ ‖Πv‖ ≤ ( + ε)‖v‖ ( )

for all v ∈ U , as long as m = O
(
d log( /ε)+log( /δ)

ε

)

Subspace embeddings have many other applications!

For example, if m = O(k/ε), ΠA can be used to compute an
approximate partial SVD, which leads to a ( + ε) approximate
low-rank approximation for A.



ε-NET FOR THE SPHERE

Lemma (ε-net for the sphere)

For any ε ≤ , there exists a set Nε ⊂ SU with |Nε| =
(
ε

)d such
that ∀v ∈ SU ,

min
w∈Nε

‖v− w‖ ≤ ε.

Imaginary algorithm for constructing Nε:

• Set Nε = {}
• While such a point exists, choose an arbitrary point v ∈ SU
where !w ∈ Nε with ‖v− w‖ ≤ ε. Set Nε = Nε ∪ {w}.

After running this procedure, we have Nε = {w , . . . ,w|Nε|} and
minw∈Nε ‖v− w‖ ≤ ε for all v ∈ SU as desired.



ε-NET FOR THE SPHERE

How many steps does this procedure take?

Can place a ball of radius ε/ around each wi without
intersecting any other balls. All of these balls live in a ball of
radius + ε/ .

2 -2 M ¥Ha-blue

= Hall,+11611224" ff¥gs
¥ ) Z - Z + D - = D '

2 cost
h i t s



ε-NET FOR THE SPHERE

Volume of d dimensional ball of radius r is

vol(d, r) = c · rd,

where c is a constant that depends on d, but not r. From

previous slide we have:

vol(d, ε/ ) · |Nε| ≤ vol(d, + ε/ )

|Nε| ≤
vol(d, + ε/ )

vol(d, ε/ )

≤
(

+ ε/

ε/

)d
≤

(

ε

)d



TIGHTER BOUND

You can actually show that m = O
(
d+log( /δ)

ε

)
suffices to be a d

dimensional subspace embedding, instead of the bound we
proved of m = O

(
d log( /ε)+log( /δ)

ε

)
.

The trick is to show that a constant factor net is actually all
that you need instead of an ε factor.



RUNTIME CONSIDERATION

For ε, δ = O( ), we need Π to have m = O(d) rows.

• Cost to solve ‖Ax− b‖ :
• O(nd ) time for direct method. Need to compute
(ATA)− ATb.

• O(nd) · (# of iterations) time for iterative method (GD, AGD,
conjugate gradient method).

• Cost to solve ‖ΠAx−Πb‖ :
• O(d ) time for direct method.
• O(d ) · (# of iterations) time for iterative method.



RUNTIME CONSIDERATION

But time to compute ΠA is an (m× n)× (n× d) matrix
multiply: O(mnd) = O(nd ) time!

Goal: Develop faster Johnson-Lindenstrauss projections.

Typically using sparse and structured matrices.

Next class: We will describe a construction where ΠA can be
computed in O(nd log n) time.



RETURN TO SINGLE VECTOR PROBLEM

Goal: Develop methods that reduce a vector x ∈ Rn down to
m ≈ log( /δ)

ε
dimensions in o(mn) time and guarantee:

( − ε)‖x‖ ≤ ‖Πx‖ ≤ ( + ε)‖x‖

There is a truly brilliant method that runs in O(n log n) time.
Preview: Will involve Fast Fourier Transform in disguise.


