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Power Method, Krylov Subspace Methods,
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NYU Tandon School of Engineering, Prof. Christopher Musco
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SINGULAR VALUE DECOMPOSITION

One of the most fundamental results in linear algebra.

Any matrix X can be written:

Where UTU = I, VTV = I, and σ1 ≥ σ2 ≥ . . . σd ≥ 0.

Singular values are unique. Factors are not. E.g. would still get
a valid SVD by multiplying both ith column of V and U by −1. 2



IMPORTANT NOTE FOR PROBLEM SET

If X has rank r ≤ min(n,d) it only have r non-zero singular
values. Some software packages will still return a full size U
and V matrix.
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OTHER THINGS TO NOTE

∥X∥2F =
d∑
i=1

σ2
i

∥X∥2 = σ1
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LOW-RANK APPROXIMATION

Approximate X as the product of two rank k matrices:

Typically choose C and B to minimize:

min
B,C

∥X− CB∥

for some matrix norm. Common choice is ∥X− CB∥2F. 5



EQUIVALENT FORMULATION

When measuring error with the Frobenius norm (or spectral
norm) it suffices to find d× k orthogonal matrix W minimizing:

∥X− XWWT∥F

I.e., best low-rank approximation projects X’s rows to a lower
dimensional space.
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EQUIVALENT FORMULATION

Alternatively, suffices to find n× k orthogonal matrix Z
minimizing:

∥X− ZZTX∥F
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WHY IS DATA LOW-RANK

Row redundancy: If a data set only had k unique data points,
it would be exactly rank k. If it has k “clusters” of data points
(e.g. the 10 digits) it’s often very close to rank k.
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WHY IS DATA LOW-RANK

Column redundancy: Colinearity/correlation of data features
leads to a low-rank data matrix.
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APPLICATIONS OF LOW-RANK APPROXIMATION

Fact that ∥xi − xj∥2 ≈ ∥xTiWWT − xTjWWT∥2 = ∥ci − ci∥2 leads to
lots of applications.

• Data compression. E.g. used in state-of-the-art data
dependent methods for nearest neighbor search.

• Data visualization when k = 2 or 3.

• Data embeddings (e.g. word2vec, node2vec). 10



APPLICATIONS OF LOW-RANK APPROXIMATION

• Reduced order modeling for solving physical equations.

• Constructing preconditioners in optimization.
• Noisy triangulation (on problem set).
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PARTIAL SVD

Key result: Can find the best projection from the singular value
decomposition.

Uk = argmin
orthogonal Z∈Rd×k

∥X− ZZTX∥2F

Vk = argmin
orthogonal W∈Rd×k

∥X− XWWT∥2F 12



OPTIMAL LOW-RANK APPROXIMATION

Claim: Xk = UkΣkVTk = UkUT
kX = XVkVTk.
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OPTIMALITY OF SVD

Claim 1:

argmin
rank k B

∥X− B∥2F =
[
argmin
rank kB

∥UΣ− B∥2F
]
· VT
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OPTIMALITY OF SVD

Claim 2:

argmin
rank k B

∥UΣ− BT∥2F = argmin
rank k B

∥Σ− UTBT∥2F

Choose BT so that UTBT is an optimal rank k approximation of
Σ. I.e., Σk.
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USEFUL OBSERVATIONS

Observation 1:

argmin
W∈Rd×k

∥X− XWWT∥2F = argmax
W∈Rd×k

∥XWWT∥2F

Follows from fact that for all orthogonal W:

∥X− XWWT∥2F = ∥X∥2F − ∥XWWT∥2F
This is often the perspective people take when thinking about
Principal Component Analysis. 16



USEFUL OBSERVATIONS

Claim:

∥X− XWWT∥2F = ∥X∥2F − ∥XWWT∥2F
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USEFUL OBSERVATIONS

Observation 2: The optimal low-rank approximation error
Ek = ∥X− Xk∥2F = ∥X∥2F − ∥Xk∥2F can be written:

Ek =
d∑

i=k+1
σ2
i .
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SPECTRAL PLOTS

Observation 2: The optimal low-rank approximation error
Ek = ∥X− Xk∥2F = ∥X∥2F − ∥Xk∥2F can be written:

Ek =
d∑

i=k+1
σ2
i .

Can immediately get a sense of “how low-rank” a matrix is
from it’s spectrum:
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COMPUTING THE SVD

Suffices to compute right singular vectors V:

• Compute XTX.
• Find eigendecomposition VΛVT = XTX using e.g. QR
algorithm.

• Compute L = XV. Set σi = ∥Li∥2 and Ui = Li/∥Li∥2.

Total runtime ≈
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COMPUTING THE SVD (FASTER)

How to go faster?

• Compute approximate solution.
• Only compute top k singular vectors/values.
• Iterative algorithms achieve runtime ≈ O(ndk) vs. O(nd2)
time.

• Krylov subspace methods like the Lanczos method are
most commonly used in practice.

• Power method is the simplest Krylov subspace method,
and still works very well.
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POWER METHOD

Today: What about when k = 1?

Goal: Find some z ≈ v1.

Input: X ∈ Rn×d with SVD UΣVT.

Power method:

• Choose z(0) randomly. z0 ∼ N (0, 1).
• z(0) = z(0)/∥z(0)∥2
• For i = 1, . . . , T

• z(i) = XT · (Xz(i−1))

• ni = ∥z(i)∥2
• z(i) = z(i)/ni

Return z(T)
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POWER METHOD INTUITION
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POWER METHOD FORMAL CONVERGENCE

Theorem (Basic Power Method Convergence)
Let γ = σ1−σ2

σ1
be parameter capturing the “gap” between the

first and second largest singular values. If Power Method is
initialized with a random Gaussian vector then, with high
probability, after T = O

(
log d/ϵ

γ

)
steps, we have either:

∥v1 − z(T)∥2 ≤ ϵ or ∥v1 − (−z(T))∥2 ≤ ϵ.

Total runtime: O
(
nd · log d/ϵ

γ

)
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ONE STEP ANALYSIS OF POWER METHOD

Write z(i) in the right singular vector basis:

z(0) = c(0)1 v1 + c(0)2 v2 + . . .+ c(0)d vd
z(1) = c(1)1 v1 + c(1)2 v2 + . . .+ c(1)d vd

...

z(i) = c(i)1 v1 + c(i)2 v2 + . . .+ c(i)d vd

Note: [c(i)1 , . . . , c(i)d ] = c(i) = VTz(i).

Also: Since V is orthogonal and ∥z(i)∥2 = 1, ∥c(i)∥22 = 1.
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ONE STEP ANALYSIS OF POWER METHOD

Claim: After update z(i) = 1
niX

TXz(i−1),

c(i)j =
1
ni
σ2
j c

(i−1)
j

z(i) = 1
ni

[
c(i−1)
1 σ2

1 · v1 + c(i−1)
2 σ2

2 · v2 + . . .+ c(i−1)
d σ2

d · vd
]

Equivalently: c(i) = 1
niΣ

2c(i−1).
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MULTI-STEP ANALYSIS OF POWER METHOD

Claim: After T updates:

z(T) = 1∏T
i=1 ni

[
c(0)1 σ2T

1 · v1 + c(0)2 σ2T
2 · v2 + . . .+ c(0)d σ2T

d · vd
]

Let αj =
1∏T

i=1 ni
c(0)j σ2T

j . Goal: Show that αj ≪ α1 for all j ̸= 1.

29



POWER METHOD FORMAL CONVERGENCE

Since z(T) is a unit vector,
∑d

i=1 α
2
i = 1. So |α1| ≤ 1.

If we can prove that
∣∣∣αj
α1

∣∣∣ ≤ √
ϵ
2d then we will have that

∥v1 − z(T)∥22 ≤ ϵ.

α2
j ≤ α2

1 ·
ϵ

2d

1 = α2
1 +

d∑
j=2

α2
d ≤ α2

1 +
ϵ

2

α2
1 ≥ 1− ϵ

2
|α1| ≥ 1− ϵ

2

∥v1 − z(T)∥22 = 2− 2⟨v1, z(T)⟩ ≤ ϵ
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POWER METHOD FORMAL CONVERGENCE

Let’s see how many steps T it takes to ensure that
∣∣∣αj
α1

∣∣∣ ≤ √
ϵ
2d

where αj =
1∏T

i=1 ni
c(0)j σ2T

j

Assumption: Starting coefficient on first eigenvector is not too
small: ∣∣∣c(0)1

∣∣∣ ≥ O
(

1√
d

)
.

We will prove shortly that it holds with probability 99/100.

|αj|
|α1|

=
σ2T
j

σ2T
1

·
|c(0)j |

|c(0)1 |
≤

Need T =
31



STARTING COEFFICIENT ANALYSIS

Need to prove: Starting coefficient on first eigenvector is not
too small. I.e., with probability 99/100,∣∣∣c(0)1

∣∣∣ ≥ O
(

1√
d

)
.

Prove using Gaussian anti-concentration. First use rotational
invariance of Gaussian:

c(0) = VTz(0)
∥z(0)∥2

=
VTz(0)

∥VTz(0)∥2
∼ g

∥g∥2
,

where g ∼ N (0, 1)d.
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STARTING COEFFICIENT ANALYSIS

Need to show that with high probability, first entry of
g

∥g∥2 ≥ c · 1√
d
.

Part 1: With super high probability (e.g. 99/100),

∥g∥22 ≤
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STARTING COEFFICIENT ANALYSIS

Need to show that with high probability, the magnitude of the
first entry of g ≥ c for a constant c. Think e.g. c = 1/10.

Part 2: With probablility 1− O(α),

|g1| ≥ α.
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POWER METHOD FORMAL CONVERGENCE

Theorem (Basic Power Method Convergence)
Let γ = σ1−σ2

σ1
be parameter capturing the “gap” between the

first and second largest singular values. If Power Method is
initialized with a random Gaussian vector then, with high
probability, after T = O

(
log d/ϵ

γ

)
steps, we have either:

∥v1 − z(T)∥2 ≤ ϵ or ∥v1 − (−z(T))∥2 ≤ ϵ.

The method truly won’t converge if γ is very small. Consider
extreme case when γ = 0.

z(T) = 1∏T
i=1 ni

[
c(0)1 σ2T

1 · v1 + c(0)2 σ2T
2 · v2 + . . .+ c(0)d σ2T

d · vd
]
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POWER METHOD – NO GAP DEPENDENCE

Theorem (Gapless Power Method Convergence)
If Power Method is initialized with a random Gaussian vector
then, with high probability, after T = O

(
log d/ϵ

ϵ

)
steps, we

obtain a z satisfying:

∥X− XzzT∥2F ≤ (1+ ϵ)∥X− Xv1vT1∥2F

Intuition: For a good low-rank approximation, we don’t
actually need to converge to v1 if σ1 and σ2 are the same or
very close. Would suffice to return either v1 or v2, or some
linear combination of the two.
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GENERALIZATIONS TO LARGER k

• Block Power Method aka Simultaneous Iteration aka
Subspace Iteration aka Orthogonal Iteration

Power method:

• Choose G ∈ Rd×k be a random Gaussian matrix.
• Z0 = orth(G).
• For i = 1, . . . , T

• Z(i) = XT · (XZ(i−1))

• Z(i) = orth(Z(i))
Return Z(T)

Guarantee: After O
(
log d/ϵ

ϵ

)
iterations:

∥X− XZZT∥2F ≤ (1+ ϵ)∥X− XVkVkT∥2F.

Runtime: O(nnz(X) · k · T) ≤ O(ndk · T). 37



KRYLOV METHODS

Possible to “accelerate” these methods.

Convergence Guarantee: T = O
(
log d/ϵ√

ϵ

)
iterations to obtain a

nearly optimal low-rank approximation:

∥X− XZZT∥2F ≤ (1+ ϵ)∥X− XVkVkT∥2F.
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KRYLOV SUBSPACE METHODS

For a normalizing constant c, power method returns:

z(q) = c ·
(
XTX

)q · g
Along the way we computed:

Kq =
[
g,
(
XTX

)
· g,

(
XTX

)2 · g, . . . , (XTX)q · g]
K is called the Krylov subspace of degree q.

Idea behind Krlyov methods: Don’t throw away everything
before

(
XTX

)q · g.
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KRYLOV SUBSPACE METHODS

Want to find v, which minimizes ∥X− XvvT∥2F.

Lanczos method:

• Let Q ∈ Rd×k be an orthonormal span for the vectors in K.
• Solve minv=Qw ∥X− XvvT∥2F.

• Find best vector in the Krylov subspace, instead of just
using last vector.

• Can be done in O
(
ndk+ dk2

)
time.

• What you’re using when you run svds or eigs in MATLAB
or Python.
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LANCZOS METHOD ANALYSIS

For a degree t polynomial p, let vp = p(XTX)g
∥p(XTX)g∥2 . We always have

that vp ∈ Kt, the Krylov subspace contructed with t iterations.

Power method returns:

vxt .

Lanczos method returns vp∗ where:

p∗ = argmin
degree t p

∥X− XvpvTp∥2F.
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LANCZOS METHOD ANALYSIS

Claim: There is a t = O
(√

q log 1
∆

)
degree polynomial p̂

approximating xq up to error ∆ on [0, σ2
1 ].

∥X− Xvp∗vTp∗∥2F ≤ ∥X− Xvp̂vTp̂∥
2
F ≈ ∥X− XvxqvTxq∥2F ≈ ∥X− Xv1vT1∥2F

Runtime: O
(
log(d/ϵ)√

ϵ
· nnz(X)

)
vs. O

(
log(d/ϵ)

ϵ · nnz(X)
)
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GENERALIZATIONS TO LARGER k

• Block Krylov methods

• Let G ∈ Rd×k be a random Gaussian matrix.
• Kq =

[
G,

(
XTX

)
· G,

(
XTX

)2 · G, . . . , (XTX)q · G]
Runtime: O

(
nnz(X) · k · log d/ϵ√

ϵ

)
to obtain a nearly optimal

low-rank approximation.
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BREAK
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SPECTRAL GRAPH THEORY

Main idea: Understand graph data by constructing natural
matrix representations, and studying that matrix’s spectrum
(eigenvalues/eigenvectors).

For now assume G = (V, E) is an undirected, unweighted graph
with n nodes.
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MATRIX REPRESENTATIONS OF GRAPHS

Two most common representations: n× n adjacency matrix A
and graph Laplacian L = D− A where D is the diagonal degree
matrix.

Also common to look at normalized versions of both of these:
Ā = D−1/2AD−1/2 and L̄ = I− D−1/2AD−1/2.
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SPECTRAL GRAPH THEORY TIDBITS

• If L have k eigenvalues equal to 0, then G has k connected
components.

• Sum of cubes of A’s eigenvalues is equal to number of
triangles in the graph times 6.

• Sum of eigenvalues to the power q is proportional to the
number of q cycles.

• Today: Eigenvectors of super useful in clustering graph
data.
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THE LAPLACIAN VIEW

L = BTB where B is the signed “edge-vertex incidence” matrix.

B =
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THE LAPLACIAN VIEW

L = BTB = b1bT
1 + b2bT

2 + . . .+ bmbT
m,

where bi is the ith row of B (each row corresponds to a single
edge).
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THE LAPLACIAN VIEW

Conclusions from L = BTB

• L is positive semidefinite: xTLx ≥ 0 for all x.

• L = VΣ2VT where UΣVT is B’s SVD. Columns of V are
eigenvectors of L.

• For any vector x ∈ Rn,

xTLx =
∑
(i,j)∈E

(x(i)− x(j))2.
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THE LAPLACIAN VIEW

xTLx =
∑

(i,j)∈E(x(i)− x(j))2. So xTLx is small if x is a “smooth”
function with respect to the graph.

Eigenvectors of the Laplacian with small eigenvalues
correspond to smooth functions over the graph.
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ANOTHER EXAMPLE OF A SMOOTH FUNCTION

Any function that only has a large change across a small cut in
the graph is also smooth.
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SMALLEST LAPLACIAN EIGENVECTOR

Courant–Fischer min-max principle

Let V = [v1, . . . , vn] be the eigenvectors of L.

vn = argmin
∥v∥=1

vTLv

vn−1 = argmin
∥v∥=1,v⊥vn

vTLv

vn−2 = argmin
∥v∥=1,v⊥vn,vn−1

vTLv

...
v1 = argmin

∥v∥=1,v⊥vn,...,v2
vTLv
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LARGEST LAPLACIAN EIGENVECTOR

Courant–Fischer min-max principle

Let V = [v1, . . . , vn] be the eigenvectors of L.

v1 = argmax
∥v∥=1

vTLv

v2 = argmax
∥v∥=1,v⊥v1

vTLv

v3 = argmax
∥v∥=1,v⊥v1,v2

vTLv

...
vn = argmax

∥v∥=1,v⊥v1,...,vn−1

vTLv
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EXAMPLE APPLICATION OF SPECTRAL GRAPH THEORY

• Study graph partitioning problem important in 1)
understanding social networks 2) nonlinear clustering in
unsupervised machine learning (spectral clustering). 3)
Graph visualization 4) Mesh partitioning

• See how this problem can be solved heuristically using
Laplacian eigenvectors.

• Give a full analysis of the method for a common random
graph model.

• Use two tools: matrix concentration and eigenvector
perturbation bounds.
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BALANCED CUT

Common goal: Given a graph G = (V, E), partition nodes along
a cut that:

• Has few crossing edges: |{(u, v) ∈ E : u ∈ S, v ∈ T}| is small.
• Separates large partitions: |S|, |T| are not too small.

Important in understanding community structure in social
networks. 55



SOCIAL NETWORKS IN THE 1970S

Wayne W. Zachary (1977). An Information Flow Model for
Conflict and Fission in Small Groups.

“The network captures 34 members of a karate club, documenting
links between pairs of members who interacted outside the club.
During the study a conflict arose between the administrator ”John A”
and instructor ”Mr. Hi” (pseudonyms), which led to the split of the
club into two. Half of the members formed a new club around Mr. Hi;
members from the other part found a new instructor or gave up
karate. Based on collected data Zachary correctly assigned all but
one member of the club to the groups they actually joined after the
split.” – Wikipedia

Beautiful paper – definitely worth checking out!
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BALANCED CUT

Common goal: Given a graph G = (V, E), partition nodes along
a cut that:

• Has few crossing edges: |{(u, v) ∈ E : u ∈ S, v ∈ T}| is small.
• Separates large partitions: |S|, |T| are not too small.

Important in understanding community structure in social
networks. 57



SPECTRAL CLUSTERING

Idea: Construct synthetic graph for data that is hard to cluster.

Spectral Clustering, Laplacian Eigenmaps, Locally linear
embedding, Isomap, etc.
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SPECTRAL GRAPH PARTITIONING

There are many way’s to formalize Zachary’s problem:

β-Balanced Cut:

min
S

cut(S, V \ S) such that min (|S|, |V \ S|) ≥ β for β ≤ .5

Sparsest Cut:

min
S

cut(S, V \ S)
min (|S|, |V \ S|)

Most formalizations lead to NP-hard problems. Lots of interest
in designing polynomial time approximation algorithms, but
tend to be slow. In practice, much simpler methods based on
the graph spectrum are used.

Spectral methods run in at worst O(n3) time (faster if you use
iterative methods). 59



SPECTRAL GRAPH PARTITIONING

Basic spectral clustering method:

• Compute second smallest eigenvalue of graph, vn−1.
• vn−1 has an entry for every node i in the graph.
• If the ith entry is positive, put node i in T.
• Otherwise if the ith entry is negative, put i in S.

This shouldn’t make much sense yet! We will see that is a
“relax and round” algorithm in disguise.
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THE LAPLACIAN VIEW

Another conclusion from L = BTB:

For a cut indicator vector c ∈ {−1, 1}n with c(i) = −1 for i ∈ S
and c(i) = 1 for i ∈ T = V \ S:

cTLc =
∑
(i,j)∈E

(c(i)− c(j))2 = 4 · cut(S, T). (1)
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THE LAPLACIAN VIEW

For a cut indicator vector c ∈ {−1, 1}n with c(i) = −1 for i ∈ S
and c(i) = 1 for i ∈ T:

• cTLc = 4 · cut(S, T).
• cT1 = |T| − |S|.

Want to minimize both cTLc (cut size) and |cT1| (imbalance).
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THE LAPLACIAN VIEW

Equivalent formulation if we divide everything by
√
n so that c

has norm 1. Then c ∈ {− 1√
n ,

1√
n}

n and:

• cTLc = 4
n · cut(S, T).

• cT1 = 1√
n(|T| − |S|).

Want to minimize both cTLc (cut size) and |cT1| (imbalance).
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RELAX AND ROUND

Consider the “perfectly balanced” version of the balanced cut
problem:

min
c∈{− 1√

n ,
1√
n}

n
cTLc such that cT1 = 0.

Claim: If we relax the constraint c ∈ {− 1√
n

1√
n}

n to ∥c∥2 = 1,
then this problem is exactly minimized by the second smallest
eigenvector vn−1 of L.

Approach: Relax, find vn−1, then round back to a vector with
− 1√

n ,
1√
n entries.
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SMALLEST LAPLACIAN EIGENVECTOR

The smallest eigenvector/singular vector vn satisfies:

vn =
1√
n
· 1 = argmin

v∈Rn with ∥v∥=1
vTLv

with vTnLvn = 0.
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SECOND SMALLEST LAPLACIAN EIGENVECTOR

By Courant-Fischer, vn−1 is given by:

vn−1 = argmin
∥v∥=1, vTnv=0

vTLv

which is equivalent to

vn−1 = argmin
∥v∥=1, 1Tv=0

vTLv.
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CUTTING WITH THE SECOND LAPLACIAN EIGENVECTOR

Final relax and round algorithm: Compute

vn−1 = argmin
v∈Rn with ∥v∥=1, vT1=0

vTLv

Set S to be all nodes with vn−1(i) < 0, and T to be all with
vn−1(i) ≥ 0. I.e. set c = sign(vn−1)
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SPECTRAL PARTITIONING IN PRACTICE

The Shi-Malik normalized cuts algorithm is one of the most
commonly used variants of this approach, using the
normalized Laplacian L = D−1/2LD−1/2.

Important consideration: What to do when we want to split
the graph into more than two parts?
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SPECTRAL PARTITIONING IN PRACTICE

Spectral Clustering:

• Compute smallest k eigenvectors vn−1, . . . , vn−ℓ of L.
• Represent each node by its corresponding row in V ∈ Rn×ℓ

whose rows are vn−1, . . . vn−ℓ.
• Cluster these rows using k-means clustering (or really any
clustering method).

• Often we choose ℓ = k, but not necessarily.
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LAPLACIAN EMBEDDING

Original Data: (not linearly separable)
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LAPLACIAN EMBEDDING

k-Nearest Neighbors Graph:
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LAPLACIAN EMBEDDING

Embedding with eigenvectors vn−1, vn−2: (linearly separable)
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WHY DOES THIS WORK?

Intuitively, since v ∈ v1, . . . vk are smooth over the graph,∑
i,j∈E

(v[i]− v[j])2

is small for each coordinate. I.e. this embedding explicitly
encourages nodes connected by an edge to be placed in
nearby locations in the embedding.

Also useful e.g., in graph drawing.
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TONS OF OTHER APPLICATIONS!

Fast balanced partitioning algorithms are also use in
distributing data in graph databases, for partitioning finite
element meshes in scientific computing (e.g., that arise when
solving differential equations), and more.

Lots of good software packages (e.g. METIS).

74



GENERATIVE MODELS

So far: Showed that spectral clustering partitions a graph
along a small cut between large pieces.

• No formal guarantee on the ‘quality’ of the partitioning.
• Difficult to analyze for general input graphs.

Common approach: Design a natural generative model that
produces random but realistic inputs and analyze how the
algorithm performs on inputs drawn from this model.

• Very common in algorithm design and analysis. Great way
to start approaching a problem.

• This is also the whole idea behind Bayesian Machine
Learning (can be used to justify ℓ2 linear regression,
k-means clustering, PCA, etc.)
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STOCHASTIC BLOCK MODEL

Ideas for a generative model for social network graphs that
would allow us to understand partitioning?
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STOCHASTIC BLOCK MODEL

Stochastic Block Model (Planted Partition Model):

Let Gn(p,q) be a distribution over graphs on n nodes, split
equally into two groups B and C, each with n/2 nodes.

• Any two nodes in the same group are connected with
probability p (including self-loops).

• Any two nodes in different groups are connected with
prob. q < p.
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STOCHASTIC BLOCK MODEL

Next class we will analyze spectral clustering for SBM graphs.

Have a good Thanksgiving break!
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