CS-GY 6763: Lecture 10
Ellipsoid Method, Linear Programming,
Singular Value Decomposition

NYU Tandon School of Engineering, Prof. Christopher Musco



DIMENSION DEPENDENT CONVEX OPTIMIZIATION

Consider a convex function f(x) be bounded between [—B, B]
on a constraint set S.

Theorem (Dimension Dependent Convex Optimization)
The Center-of-Gravity Method finds X satisfying

f(X) < minges f(X) +;ysing O(d log(B/¢)) calls to a function
and gradient oracle for convexf.

—~




CENTER OF GRAVITY METHOD

Natural “cutting plane” method.

-5 =8 =
s Fort=1,...,T:

- Compute Vf(cy).
© 1 = {x|(Vf(ct),x — ¢t) < 0}
* S =8NH

- Return X = arg min, f(¢;)



CENTER OF GRAVITY METHOD

Natural “cutting plane” method.

-5 =8
s Fort=1,...,T:
- ¢; = center of gravity of S;.

© 1 = {x|(Vf(ct),x — ¢t) < 0}
* S =8NH

- Return X = arg min, f(¢;)



CENTER OF GRAVITY METHOD

Natural “cutting plane” method.

- &$5=S$

cFort=1,...,T:
- ¢; = center of gravity of S;.
- Compute Vf(cy).

- Return X = arg min, f(c;)




CENTER OF GRAVITY METHOD

Proof Reminder: Ve

- By Grunbaum’s Theorem, cut the volume of the search
space by a constant every step.

- Need to reduce to a convex body whose volume is roughly
<? smaller than the volume of S.

+ Final number of iterations scales with log(1/¢)

= &&DéQk/@




RUNTIME ISSUE

In general computing the centroid is hard. #P-hard even when
when S is an intersection of half-spaces (a polytope).

Even if the problem isn't hard for your starting convex body S,
it likely will become hard forSNH N H, N Hs .. ..

So while the oracle complexity of dimension-dependent
optimization was settled in the 60s, a number of basic
questions in terms of computational complexity.

We will see how to resolve thi ue with an elegant cutting

plane methods called the\Ellipsoid Method that was

introduced by Naum Shor in 1977.




PROBLEM S!MPLiFiCATION

Slightly more general problem: Given a convex set K via access to
separation oracle Sk for the set,(determine if ICis empty, or
otherwise return any point x € K

0 ifyek.

S =

K) {separating hyperplane (a@ ify ¢ K.
— 57 0 507 =

let H = {x:ax = c}. .)\,k

For Uy 2 EL(/

2Tn < ¢

keo
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SEPARATION ORACLE

Example: How would you implement a separation oracle for a

polytope {x: Ax > b}. XT&, % \a\
Xa, 2 bs
a;
X "Gy > L,

276 7 b fer gllzeke




FROM MEMBERSHIP TO OPTIMIZATION

How to reduce to determining if a convex set K is empty or not?

constraint set § 't%) (9/«)




FROM MEMBERSHIP TO OPTIMIZATION

Original problem: minyes f(X).

How to reduce to determining if a convex set K is empty or not?
constraint set §

level sets of f(x)

Binary search! For a convex function f(x), {x: f(x) < c} is
convex, and you can get a separation oracle via the gradient.



ELLIPSOID METHOD SKETCH

Goal of ellipsoid algorithm: Solve “Is K empty or not?” given a
separation oracle for K under the assumptions that:

1. KC B(CR, _R_)
2. If non-empty, K contains B(c,éjfor somer < R.

B(cg,R)



ELLIPSOID METHOD SKETCH

B(cg,R)

Application to original problem: For a convex function f such
that ||[Vf(x)||2 < G, it can be checked that the convex set
{x: f(x) < €} contains a ball of radius ¢/G.



ELLIPSOID METHOD SKETCH

Iterative method similar to center-of-gravity:

1. Check if center cg of B(cgr,R) is in K.
2. Ifitis, we are done.

3. If not, cut search space in half, using separating
hyperplane.
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ELLIPSOID METHOD SKETCH

Key insight: Before moving on, approximate new search region
by something that we can easily compute the centroid of.
Specifically an ellipse!

.,
.,
o,

Produce a sequence of ellipses that alvvaygcontain K and
decrease in volume: B(cg,R) = Eq, E,,.... Once we get to an
ellipse with volume < B(c,, r), we know that KL must be empty. 15



ELLIPSE

some constant ¢ and matrix A. The center-gf-mas$ is c.
7(QHN

{x: Mx-c)i'< a}  {x: ID(x-c)lI’< a} /{x: IA(x-C)II'< a}

An ellipse is a convex set of the form: {x [|A(X —‘aia} for

G-«

Often re-parameterized to say that the ellipse is all x with
{x:(x—c)Q"(x—¢c) <1} 16



ELLIPSOID UPDATE

There is a closed form solution for the equation of the
smallest ellipse containing a given half-ellipse. l.e. let E; have
parameters Q;, ¢; and consider the half-ellipse:

En{x:a/x<alg}.

Bl S Rl i B

Theis the ellipse with parameters:

e

where h = ,/alQ;a; - a;. (\;T & ‘R

Computing the update takes Q(d?) time. \v
Lpe

17



GEOMETRIC OBSERVATION

o 6Y
Claim: vol(Ej;1) < (1— 54) vol(E). (|- i)

—

Proof: Via reduction to the “isotropic case”. | will post a proof

on the course website if you are interested. /

Not as good as the (1 — 1) constant-factor volume reduction
we got from center-of-gravity, but still very good! 18



GEOMETRIC OBSERVATION

4.}1{)('/@)

Claim: vol(Ej;1) < (1— 55) vol(E;)

j:é O Q&K‘
chL v l‘\o (177/ (‘) s LQ?)\

O
DN
......

After O(d) iterations, we reduce the volume by a constant.

In total require O(d? log(R/r)) iterations to solve the problem.
19



LINEAR PROGRAMMING

Linear programs (LPs) are one of the most basic convex
constrained, convex optimization problems:

Letc e RY b € R", A € R"*? be fixed vectors that define the
problem, and let x be our variable parameter.

- T
minJ(X) =CX

_ ,._(_.) _7 Cred
subject to Ax > b.

Fxel
Think about Ax > b as a union of half-space constraints:
{x:ajx> b}

{x:alx> by}

;
X:a,X>b
{ n™ — ﬂ} 20



KILLER APPLICATION: LINEAR PROGRAMMING




LINEAR PROGRAMMING APPLICATIONS

- Classic optimization applications: industrial resource

optimization problems were killer app in the 70s.

- Robust regression: miny [|Ax — blls.

- L1 constrained regression: fniny ||x||3/subject to Ax = b. Lots

of applications in sparse recovery/compressed sensing.

- Solve miny ||AX — b||c-

- Polynomial time algorithms for Markov Decision Processes.
ILESSES.

(

Many combinatorial optimization problems can be solved
via LP relaxations.

22



LINEAR PROGRAMMING

Theorem (Khachiyan, 1979)
Assume n = d. The ellipsoid method solves any linear

program with L-bit integer valued constraints exactly in

O(n“L) time.
-

A Soviet Discovery Rocks World of Mathematics

By MALCOLM W. BROWNE

A surprise discovery by an obscure
Soviet mathematician has rocked the
world of mathematics and computer
analysis, and experts have begun explor-
ing its practical applications.

Mathematicians describe the discov-
ery by L.G. Khachian as a method by
which computers can find guaranteed
solutions to a class of very difficult prob-
lems that have hitherto been tackled on a
kind of hit-or-miss basis.

Apart from its profound theoretical in-

in weather prediction, complicated indus-
trial processes, petroleum refining, the
scheduling of workers at large factories,
secret codes and many other things.

““I have been deluged with calls from
virtually every department of govern-
ment for an interpretation of the signifi-
cance of this,” a leading expert on com-
puter methods, Dr. George B. Dantzig of
Stanford University, said in an interview.

The solution of mathematical problems
by computer must be broken down into a
serles of steps. One class of problem

terest, the y may be

S0 many steps that it

could take billions of years to compute,

The Russian discovery offers a way by
which the number of steps in a solution
can be dramatically reduced. It also of-
fers the mathematician a way of learning
quickly ap has a soluti
or not, without having to complete the en-
tire immense computation that may be
required.

According to the American journal Sci-

Continued on Page A20, Column 3

ONLY $10.00 A MONTH!!! 24 Hr. Phone Anawering
Service. Totally New Concept™ Increfible®” 279-3670—ADV

Front page of New York Times, November 9, 1979.
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INTERIOR POINT METHODS

Theorem (Karmarkar,
{armarka
Assume n = d. The(interior point method solves any linear

program with L-bit integer valued constraints in O(n3>L) time.

Breakthrough in Problem Solving

By JAMES GLEICK

- A 28year-old mathematician at
A.T.&T. Bell Laboratories has made a

ments of great progress, and this may
well be one of them.”

in linear pro-

startling theoretical gh in
the solving of sy of that
often grow Loo vast and for the

g can have billions or more

most powerful computers.

The discovery, which is to be for-
mally published next month, is already
circulating rapidly through the mathe-
matical world. It has also set off a del-
uge of inquiries from brokerage
houses, oil companies and airlines, in-
dustries with millions of dollars at
stake in problems known as linear pro-
gramming. .

, even hij
computers cannot check every one. So
computers must use a special proce-
dure, an algorithm, to examine as few
answers as possible before finding the
best one — typically the one that mini-
mizes cost or maximizes efficiency.
A procedure devised in 1947, the sim-
plex method, is now used for such prob-

Continued on Page Al9, Column 1

Front page of New York Times, November 19, 1984.

24



INTERIOR POINT METHODS

Lecture notes are posted on the website (optional reading).

X

Projected Gradient Descent Optimization Path

25



INTERIOR POINT METHODS

Lecture notes are posted on the website (optional reading).

. o — o o

“ Yo |2 VA

&

Ideal Interior Point Optimization Path



POLYNOMIAL TIME LINEAR PROGRAMMING

Both results had a huge impact on the theory of optimization,
although at the time neither the ellipsoid method or interior
point method were faster than a heuristic known at the

These days, improved interior point methods compete with
and often outperform simplex.

Polynomial time linear programming algorithms have also had
a huge impact of combinatorial optimization. They are often
the work-horse behind approximation algorithms for NP-hard

problems,

27



EXAMPLE: VERTEX COVER

Given a graph G with n_nodes and edge set E. Each node is
assigned a weight wy, ..., Wy.

'
5 1 .5

(01 1©o &7
Sy Il S 2.0

/\zl
Z X T3
Goal: Select subset of nodes with minimum total weight that

covers all edges.
28



EXAMPLE: VERTEX COVER

oo oop

Given a graph G with n nodes and edge set E. Each’node is 1
assigned a weight wy, ..., wp. @ I, >~

Formally: Denote if node | is selected by assigning variabl@
toOor 1 Letx = [x1,...,Xn].

. n 2(0\75{0\.&? (—\
mxmz;x,-m//,-/ subject to X € {O,1}for‘aD
=

-

Ng-hard to solve exactly. We wi
a 2-approximation in polynomial time. );‘/\J

Xi+x; > 1forall (i,)) € E

—_—

[l use convex optimization give

Function to minimize is linear (so convex) but constraint set is
not convex. Why? N

s S Q(?Q vl &CK% ? e 29
S



RELAX-AND-ROUND

High level approach:

- Relax to a problem with convex constraints.
pptimal solution of convex problem back to

original constraint set. RS

7 \4. D\‘L ——(h\\ﬂQ_k



RELAX-AND-ROUND

High level approach:

- Relax to a problem with convex constraints.
- Round optimal solution of convex problem back to
original constraint set.

@@ g

\VO /’D> 31



RELAX-AND-ROUND

i ~ ‘,\,\‘ (b%)""SQ’L;\’)
High level approach: oD

lem with convex constraints.

al solution of convex problem back to

original ¢onstraint set.

Let S 2@)9 the relaxed constraint set. Let x* = arg min,s f(X)
P\’_A
and let X* = arg min, s f(x). We always have that:

fIX*) < f(x7).

-—

So typically the goal is to round x* to S in such a way that we
don't increase the function value too much.

32



RELAXING VERTEX COVER

Vertex Cover:

n
min > xw;  subjectto x; € {0,1} for all i
=1

Xi+x; > 1forall (i,)) € E

Relaxed Vertex Cover:

subject to r all i

Xi+% > 1forall (i,)) € E

The second problem is a linear program! It can be solved in

poly(n) time! (_.&
(R < wea £)

33



ROUNDING VERTEX COVER

Simply set all variable x; = 1 of X > 1/2 and x; = 0 otherwise.

€l o) 6]

Observation 1: All edges remain covered. l.e, the constraint
xi +x; > 1forall (i,j) € E is not violated.

34



ROUNDING VERTEX COVER

Observation 2: Let x be the rounded version of X*. We have
f(x) < 2 f(xJ, and thus f(x) < 2- f(x").

Proof:

(). 2w ART LT s 2
e 27/%:(7(@
&) - 5w it )

=)

1

) < §(x*<)

35



VERTEX COVER

So, a polynomial time algorithm for solving LPs immediately
yields a 2-approximation algorithm for the NP-hard problem of
vertex cover.

« Proven that it is NP-hard to do better than a

approximation in [Dinur, Safra, 2002].)

- Recently improved to v2 ~ 1.410n [Khot Minzer, Safra
ZQLSJ which proved the 2-to-2 games conjecture.

- Widely believed that doing better than is NP-hard for
any e > 0, and this is implied by Subhash Khot's Unique
Games Conjecture.

There is a simpler greedy 2-approximation algorithm that
doesn’t use optimization at all. Try coming up with it on your

own!
36
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SPECTRAL METHODS

Next section of course: Spectral methods and numerical linear
algebra.

Spectral methods generally refer to methods based on the
“spectrum” of a matrix. l.e. on it's eigenvectors/eigenvalues
and singular vectors/singular values. We will look at
applications in:

- Low-rank approximation and dimensionality reduction.
- Data clustering and related problems.
- Constructing data embeddings (e.g. Word2Vec).

37



SPECTRAL METHODS

Reminder: A vector v e R is an eigenvector of a matrix
X € R9*4 if there exists a s_%@r A such that

Xv = \v

The scalar A is called the eigenvalue gssociated with v.

Matrices can often be written completely in terms of their
eigenvectors and eigenvalues. This is called
eigendecomposition.

We will actually focus on a related tool called(singu lar value

decomposition)
)

38



LINEAR ALGEBRA REMINDER

If a square matrix has orthonormal rows, it also has
orthonormal columns:

VT B v vo= M
—-0.62 0.78 —-0.M —0.62 —-0.28 —-0.73

1
-0.28 —-035 —-0.89|-| 078 —-035 —-0.52| =10
—0.73 —=0.52 0.44 —-0.11 —-0.89 0.44 0

39



LINEAR ALGEBRA REMINDER

Implies that for any vector x, V|13 = [Ix]|2 and ||VTX|)3.

IVXIIE =([IXII)and [IVTX|IE = [IX]7

Same th@oes for Frobenius norm: for any matri@
|

40



LINEAR ALGEBRA REMINDER

The same is not true for rectangular matrices:

VT

VT

Forany x, |

S5 -1 7

16 -.44 42
78 42 -5
-2 20 11
-1.5 .55 3.2

-2
-1.5
- .67
8.0
5

.67 -2.8 -2.4 1.6
9.0 87 -77 178

W' £ |

Vx|[3 = [Ix|3 but [[V7x]3 # [IX||3 in general.
_—

41



LINEAR ALGEBRA REMINDER

Multiplying a vector by V with orthonormal columns rotates
and/or reflects the vector.

\Y

za/g> .o’ b
H A SR
b 2 oTb
Va

2

2,
4

SN
%\)

4



LINEAR ALGEBRA REMINDER

Multiplying a vector by a rectangular matrix V7 with
orthonormal rows projects the vector (representing it as
coordinates in the lower dimensional space).

Yb: —v— ¢ w
V1 VTb/
%
s o 2
®VTa

So we always have that [[V'x||2 < ||X]|2. 43



SINGULAR VALUE DECOMPOSITION

One of the most fundamental results in linear algebra.

Any matrix X can be written:

C| left singular vectory’ /singular values “right singular vectors

0,
o O

X |- @ 3 v
@ Og-1

n Oy

N

Where U'U=1,VIV=1land o1 >0, > ...04 > 0.

Singular values are unique. Factors are not. E.g. would still get
a valid SVD by multiplying both it" column of V and U by —1. 44



SINGULAR VALUE DECOMPOSITION

Important take away from singular value decomposition.

Multiplying any vector a by a matrix X to form Xa can be viewed
as a composition of 3 operations:

1. Rotate/reflect the vector (multiplication by to V7).
2. Scale the coordinates (multiplication b@
3. Rotate/reflect the vector again (multiplication by U).

Y o
W)

45



SINGULAR VALUE DECOMPOSITION: ROTATE/REFLECT

N .

3VTa YA UZVT;R u,

46



COMPARISON TO EIGENDECOMPOSITION

(Recall that an eigenvalue of a square matrix X € R9x9 is any

vector v such that Xv = AV/A matrix has at most d linearly
independent eigenvectors. If a matrix has a full set of d
eigenvectors vy, ..., Vg with eigenvalues Ay, ..., Aq it is called
“diagonalizable” and can be written as:

x ~ VAV,

V's columns are vy, ..., V. &/

Y . Vg

47



COMPARISON TO EIGENDECOMPOSITION

Singluar value decompositio

- Exists for all matrices,
square or rectangular.

- Singular values are alway
positive.

- Factors U and V are
orthogonal.

n

/

Eigendecomposition

matrices.

- Exists for some squa;/

- Eigenvalues can be )

positive or negative.

- Factor V is orthogonal if

and only if X is symmetric.

48



CONNECTION TO EIGENDECOMPOSITION

ontains the orthogonal eigenvectors of@ ))
ontains the orthogonal eigenvectors of X'X.

(2= M09 = 40

49



SVD APPLICATIONS

Lots of applications.

- Compute pseudoinverse VE~'UT.

+ Read off condition number of X, o7 /o3

- Compute matrix norms. E.g. IX||F =

- Compute matrix square root — nd a?a:trix B such that
BB’ sed e.g. in sampling from Gaussian with
covariance X. 0. s\ \J’T

- Principal component analysis.

Killer app: Read off optimal low-rank approximations for X.

-

50



RANK

The bf a matrix X € R is the set of all vectors
that can be written as@or some a.

The dimension of the column Span is the maximum
number of linear independent vectors in that set.

The row span of a matrix X € R"*9 is the set of all vectors that
can be written as@for some b.

The dimension of the row span, D, is the maximum number of
linear independent vectors in that set.

51



For a matrix X € R"<4 we have:

Dr<n
We call the value of D, = D, the rank of X.

ronle € oo (%m)

52



LOW-RANK APPROXIMATION

Approximate X as the product of two rank k matrices:

k d
[ 1
X [ 2
Xy G .bk
" matrix B /
W =
X c,
matrix X matrix C/

Typically choose C and B to minim

for some matrix norm. Common choice is ||X — CBJ|Z

ize:

min ||X — CB||
B,C

W <<d

53



APPLICATIONS OF LOW-RANK APPROXIMATION

X4 (@] o
X3 G -
matrix B

[

xn Cn ~
matrix X matrix C 4 OCV\ d )

- CB takes O(k(n + d)) space to store instead of O(nd).

- Regression problems involvinan be solved in O(nk?)
instead of O(nd?) time.

« Will see a bunch more in a minute.

54



LOW-RANK APPROXIMATION

Without loss of generality canassume that the right matrix is
orthogonal. l.e. W™ vvit
d d

L A
) £ ) r [ |

X/ @ W o
X, C, j”k o)
matrix WT/
(-
Xn Ch
matrix X matrix C) [C ; p.,) W

)
Then we should choose G to minimize:

X~ Wl

b lx, - TN
min
b ~eem [0, x, 127
This is just n least squares regression problems! ©)

- 55



LOW-RANK APPROXIMATION

o

‘7(~,A4\X‘IV’“’/ X - %G

) ,\g\)‘ —
by >4 ¢; = arg min | Wc — x;|2

C

Lo W) 0T L ox; 0

¢ >

" pin XA !

L ) %\\70 _}C)\)U"“(a

So our optimal low-rank approximation always has the form:

X ~ XWW'

S S R ERN e
G 55 o 56



PROJECTION MATRICES

WWT is a symmetric projection matrix.

X1 W WT = X‘l

57



LOW-RANK APPROXIMATION

w0 g

C = XW can be used as a compressed version of data matrix X.

58



DATA COMPRESSION

G - X,w Qb-: )(')\«\

Let C = XW. We have that:

guxﬁNwT—xﬁNwTuz lei — i

Similarly, we expect that:

How does this compare to Johnson-Lindenstrauss projection?

59



WHY IS DATA APPROXIMATELY LOW-RANK?

Rows of X (data points) are approximately spanned by k
vectors. Columns of X (data features) are approximately
spanned by k vectors.

@ o

60



ROW REDUNDANCY

If a data set only had k unique data points, it would be exactly
rank k. If it has k “clusters” of data points (e.g. the 10 digits) it's
often very close to rank k.

projections onto 15
784 dimensional vectors ~ dimensional space  orthonormal basis v4,...,V1s

=2E0

&

Nlel-lo
SESE
e

61



COLUMN REDUNDANCY

Colinearity/correlation of data features leads to a low-rank

data matrix.

home 1
home 2

home n

bedrooms

bathrooms

sq.ft.

floors

2
285

a5

1800
2700

3600

2
1

62



APPLICATIONS OF LOW-RANK APPROXIMATION

Fact that ||x; — x;||> ~ [|[x[WwW' — ijWWT||2 = |l¢; — ¢i|2 leads to
lots of applications.
- Data compression. E.g. used in state-of-the-art data

dependent methods for nearest neighbor search.
- Data visualization when k =2 or 3.

- Data embeddings (next lecture). 6



APPLICATIONS OF LOW-RANK APPROXIMATION

- Reduced order modeling for solving physical equations.

u(x,t) ~ i+ Ev;.\x)m,\/J
POD 2
<) B

4
sew

- Constructing preconditioners in optimization.

- Noisy triangulation (on problem set).

64



PARTIAL SVD

Can find the best projection from the singular value
decomposition.

d left singular vectors  singular values right singular vectors
o, T
Oy Vk
X, = | Yk 1%
n
_ . T2
Vi, = arg min IX — XWW' ||z

orthogonal WERdxk

65



OPTIMAL LOW-RANK APPROXIMATION

Claim: X = UpX V], = XV, V],

66



OPTIMALITY OF SVD

Claim 1:

argmin |[X — B|# = U - argmin || V' — BJ|?
rank k B rank k B

‘X3

VT Rotated by U
on the left

67



OPTIMALITY OF SVD

Claim 2:

arg min ||ZV! — B||2 = arg min |[VE — BT||?
B

rank k B rank
Claim 3:

arg min |VE — B'||2 = arg min ||Z — V/B'||2

rank k B rank k B

Chose B” so that VB = X,.

68



USEFUL OBSERVATIONS

d left singular vectors  singular values  right singular vectors

vT

Oy k

X = | Uy 2

]

Observation 1:

arg min ||X — XWWT||Z = arg max | XWW/||2
WeRdIXxR WeRdIXR

Follows from fact that for all orthogonal W:

[IX = XWWT[Z = X[ — [XWW|[Z

69



USEFUL OBSERVATIONS

Claim:

X = XWWT[Z = X[ — [XWw|2

70



USEFUL OBSERVATIONS

d left singular vectors  singular values right singular vectors

o va

Ok

Xy = | Uy I

Observation 2: The optimal low-rank approximation error
Er = |[X — XVLVL||2 = [|X||z — [[XV,V}||# can be written:

d
Er = Z 012.

i=k-+1

71



SPECTRAL PLOTS

Observation 2: The optimal low-rank approximation error
Er = X — XVLVL[|2 = ||X||z — [[XV,V}||# can be written:

d
Er = Z 0,2.

i=k+1
Can immediately get a sense of “how low-rank” a matrix is
from it's spectrum:

784 dimensional vectors

E singular

) |
- ' - 72



SPECTRAL PLOTS

Observation 2: The optimal low-rank approximation error
Er = X — XVLVL[|2 = ||X||z — [[XV,V}||# can be written:

d
E= Z a,-z.

i=k+1
Can immediately get a sense of “how low-rank” a matrix is
from it's spectrum:

784 dimensional vectors

singular _
value g, .




SPECTRAL PLOTS

Observation 2: The optimal low-rank approximation error
Er = X — XVLVL[|2 = ||X||z — [[XV,V}||# can be written:

d
E= Z a,-z.

i=k+1
Can immediately get a sense of “how low-rank” a matrix is
from it's spectrum:

singular
value o,
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COMPUTING THE SVD

Suffices to compute right singular vectors V:

- Compute XX,

- Find eigendecomposition VAV" = X'X using e.g. QR
algorithm.

- Compute L = XV. Set o; = ||Lj||> and U; = L;/||L;||2.

Total runtime ~

75



COMPUTING THE SVD (FASTER)

Next class:

- Compute approximate solution.

- Only compute top k singular vectors/values. Runtime will
depend on k. When k = d we can’'t do any better than
classical algorithms based on eigendecomposition.

- Iterative algorithms achieve runtime ~ O(ndk) vs. O(nd?)
time.

- Krylov subspace methods like the Lanczos method are
most commonly used in practice.

- Power method is the simplest Krylov subspace method,
and still works very well.
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