New York University Tandon School of Engineering
 Computer Science and Engineering

CS-GY 6763: Homework 4.

Due Thursday, December 14th, 2023, 11:59pm.
Collaboration is allowed on this problem set, but solutions must be written-up individually. Please list collaborators for each problem separately, or write "No Collaborators" if you worked alone.

Problem 1: Approximating Eigenvalues Moments

(15 pts) Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be a square symmetric matrix, which means it it guaranteed to have a symmetric eigendecomposition with real eigenvalues, $\lambda_{1} \geq \ldots \geq \lambda_{n}$, and orthogonal eigenvectors. While computing these eigenvalues naively takes $O\left(n^{3}\right)$ time, we can compute their sum much more quickly: with n operations. This is because $\sum_{i=1}^{n} \lambda_{i}$ is exactly equal to the trace of \mathbf{A}, i.e. the sum of its diagonal entries $\operatorname{tr}(\mathbf{A})=$ $\sum_{i=1}^{n} \mathbf{A}_{i i}$. We can also compute the sum of squared eigenvalues in $O\left(n^{2}\right)$ time by taking advantage of the fact that $\sum_{i=1}^{n} \lambda_{i}^{2}=\|\mathbf{A}\|_{F}^{2}$ where $\|\mathbf{A}\|_{F}^{2}$ is the Frobenius norm. What about $\sum_{i=1}^{n} \lambda_{i}^{3}$? Or $\sum_{i=1}^{n} \lambda_{i}^{4}$? It turns out that no exact algorithms faster than a full eigendecomposition are known.

In this problem, however, we show how to approximate $\sum_{i=1}^{n} \lambda_{i}^{k}$ for any positive integer k in $O\left(n^{2} k\right)$ time. By the way, this is not a contrived problem - it has a ton of applications in machine learning and data science that you can ask me about in office hours!
(a) Show that $\sum_{i=1}^{n} \lambda_{i}^{k}=\operatorname{tr}\left(\mathbf{A}^{k}\right)$ where \mathbf{A}^{k} denotes the chain of matrix products $\mathbf{A} \cdot \mathbf{A} \cdot \ldots \cdot \mathbf{A}$, repeated k times. For the remainder of the problem we use the notation $\mathbf{B}=\mathbf{A}^{k}$.
(b) Let $\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(m)} \in \mathbb{R}^{n}$ be m independent random vectors, all with i.i.d. $\{+1,-1\}$ uniform random entries. Let $Z=\frac{1}{m} \sum_{i=1}^{m}\left(\mathbf{x}^{(i)}\right)^{T} \mathbf{B} \mathbf{x}^{(i)}$. We will show that Z is a good estimator for $\operatorname{tr}(\mathbf{B})$ and thus for $\sum_{i=1}^{n} \lambda_{i}^{k}$. Give a short argument that Z can be computed in $O\left(n^{2} k m\right)$ time (recall that $\left.\mathbf{B}=\mathbf{A}^{k}\right)$.
(c) Prove that:

$$
\mathbb{E}[Z]=\operatorname{tr}(\mathbf{B}) \quad \text { and } \quad \operatorname{Var}[Z] \leq \frac{2}{m}\|\mathbf{B}\|_{F}^{2}
$$

Hint: Use linearity of variance but be careful about what things are independent!
(d) Show that if $m=O\left(\frac{1}{\epsilon^{2}}\right)$ then, with probability $9 / 10$,

$$
|\operatorname{tr}(\mathbf{B})-Z| \leq \epsilon\|\mathbf{B}\|_{F}
$$

(e) Argue that, when \mathbf{A} is positive semidefinite, $\epsilon\|\mathbf{B}\|_{F} \leq \epsilon \operatorname{tr}(\mathbf{B})$, so the above guarantee actually gives the relative error bound,

$$
(1-\epsilon) \operatorname{tr}(\mathbf{B}) \leq Z \leq(1+\epsilon) \operatorname{tr}(\mathbf{B})
$$

all with just $O\left(n^{2} k / \epsilon^{2}\right)$ computation time.

Problem 2: Accelerated Gradient Descent Through the Polynomial Lens

(10 pts) In Lecture 7, we saw how to analyze gradient descent for $f(\mathbf{x})=\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{2}^{2}$, which has gradient $\nabla f(\mathbf{x})=2 \mathbf{A}^{T} \mathbf{A} \mathbf{x}-2 \mathbf{A}^{T} \mathbf{b}$. The dominant cost for each gradient descent iteration is multiplying \mathbf{x} by $\mathbf{A}^{T} \mathbf{A}$ to compute the gradient, which takes $O(n d)$ time when A is $n \times d$.

We obtained a convergence bound depending on the largest and smallest eigenvalues of $\mathbf{A}^{T} \mathbf{A}$, which we denote λ_{1} and λ_{d} respectively. We did so by rearranging the gradient descent update rule:

$$
\begin{aligned}
\mathbf{x}^{(i)} & =\mathbf{x}^{(i-1)}-\eta\left(2 \mathbf{A}^{T} \mathbf{A} \mathbf{x}^{(i-1)}-2 \mathbf{A}^{T} \mathbf{b}\right) \\
\mathbf{x}^{(i)}-\mathbf{x}^{*} & =\mathbf{x}^{(i-1)}-\eta\left(2 \mathbf{A}^{T} \mathbf{A} \mathbf{x}^{(i-1)}-2 \mathbf{A}^{T} \mathbf{A} \mathbf{x}^{*}\right)-\mathbf{x}^{*} \quad \text { since } \nabla f\left(\mathbf{x}^{*}\right)=\mathbf{0}, \text { so } \mathbf{A}^{T} \mathbf{A} \mathbf{x}^{*}=\mathbf{A}^{T} \mathbf{b} \\
\mathbf{x}^{(i)}-\mathbf{x}^{*} & =\left(\mathbf{I}-2 \eta \mathbf{A}^{T} \mathbf{A}\right)\left(\mathbf{x}^{(i-1)}-\mathbf{x}^{*}\right) .
\end{aligned}
$$

By induction, it follows that the error $\mathbf{x}^{(i)}-\mathbf{x}^{*}$ equals $\mathbf{x}^{(i)}-\mathbf{x}^{*}=\left(\mathbf{I}-2 \eta \mathbf{A}^{T} \mathbf{A}\right)^{i}\left(\mathbf{x}^{(0)}-\mathbf{x}^{*}\right)$. This allowed us to obtain a convergence bound by arguing that, if we set $\eta=1 / 2 \lambda_{1}$ where λ_{1} is the largest eigenvalue of $\mathbf{A}^{T} \mathbf{A}$, then $\left(\mathbf{I}-\frac{1}{\lambda_{1}} \mathbf{A}^{T} \mathbf{A}\right)^{i}$ has top eigenvalue $<\epsilon$ after $i=O\left(\frac{\lambda_{1}}{\lambda_{d}} \log (1 / \epsilon)\right)$ iterations. In this problem you will prove an "accelerated" version of this bound with a significantly improve condition number dependence of $O\left(\sqrt{\frac{\lambda_{1}}{\lambda_{d}}} \log (1 / \epsilon)\right)$ iterations.

1. Let p be any degree q polynomial. I.e. $p=c_{0}+c_{1} x+\ldots+c_{q} x^{q}$. Show that, for any p with $p(1)=c_{0}+c_{1}+\ldots+c_{q}=1$ and any starting vector $\mathbf{x}^{(0)}$, we can compute in q iterations (i.e., using q gradient computations and up to $O(n d q)$ additional runtime) a vector $\mathbf{x}^{(q)}$ such that:

$$
\mathbf{x}^{(q)}-\mathbf{x}^{*}=p\left(\mathbf{I}-\frac{1}{\lambda_{1}} \mathbf{A}^{T} \mathbf{A}\right)\left(\mathbf{x}^{(0)}-\mathbf{x}^{*}\right)
$$

Note that this result strictly generalizes what we know from gradient descent, which computes $\mathbf{x}^{(q)}$ satisfying the equation for the polynomial $p(x)=x^{q}$, which satisfies our restriction that $p(1)=1$.
2. Prove that for $q=O\left(\sqrt{\frac{\lambda_{1}}{\lambda_{d}}} \log (1 / \epsilon)\right)$, there exists a polynomial p with coefficients $c_{0}+c_{1}+\ldots+c_{q}=1$ such that the top eigenvalue of $p\left(\mathbf{I}-\frac{1}{\lambda_{1}} \mathbf{A}^{T} \mathbf{A}\right) \leq \epsilon$. Hint: You might want to use Claim 4 in the supplemental notes on the Lanczos method posted for Lecture 11.

By Part 2, above, it follows that $\left\|\mathbf{x}^{(q)}-\mathbf{x}^{*}\right\|_{2}=\left\|p\left(\mathbf{I}-\frac{1}{\lambda_{1}} \mathbf{A}^{T} \mathbf{A}\right)\left(\mathbf{x}^{(0)}-\mathbf{x}^{*}\right)\right\|_{2} \leq \epsilon\left\|\mathbf{x}^{(0)}-\mathbf{x}^{*}\right\|_{2}^{2}$ as long as we use degree $q=O\left(\sqrt{\frac{\lambda_{1}}{\lambda_{d}}} \log (1 / \epsilon)\right)$ - i.e. run for $O\left(\sqrt{\frac{\lambda_{1}}{\lambda_{d}}} \log (1 / \epsilon)\right)$ iterations.

Problem 3: Spectral Methods for Cliques

(15 pts) A common tasks in data mining is to identify large cliques in a graph. For example, in social networks, large cliques can be indicators of fraudulent accounts or networks of accounts designed to promote certain content. In this problem, we consider a spectral heuristic for finding a large clique based on the top eigenvector of the graph adjacency matrix A :

- Compute the leading eigenvector v_{1} of A.
- Let $i_{1}, \ldots, i_{k} \in\{1, \ldots, n\}$ be the indices of the k entries in v_{1} with largest absolute value.
- Check if nodes i_{1}, \ldots, i_{k} form a k-clique.

We will analyze this heuristic on a natural random graph model. Specifically, let G be an Erdos-Renyi random graph: we start with n nodes, and for every pair of nodes (i, j), we add an edge between the pair with probability $p<1$. To simplify the math, also assume that we add a self-loop at every vertex i with probability p. Then, choose a fixed subset S of k nodes to form a clique. Connect all nodes in S with edges and add self-loops. We will argue that, for sufficiently large k, we can expect the heuristic above to identify the nodes in the clique.

1. Let A be the adjacency matrix of a random graph generated as above. What is $\mathbb{E}[A]$? Prove that the rank of $\mathbb{E}[A]$ is 2 . In other words, the matrix only has two non-zero eigenvalues.
2. Derive expressions for the two non-zero eigenvalues of $\mathbb{E}[A]$, and their corresponding eigenvectors. Hint: First argue that, up to multiplying by a constant, any eigenvector v must have $v[i]=1$ for all $i \notin S$ and $v[i]=\alpha$ for all $i \in S$, where α is a constant. Then use some high school algebra 2 !
3. Using your results from (2) above, argue that, up to a positive scaling, the top eigenvector v_{1} has $v[i]=1$ for all $i \notin S$ and $v[i]=\alpha$ for all $i \in S$, where $\alpha>1$. In other words, the largest entries of v_{1} exactly correspond to the nodes in the clique!
4. To prove the algorithm works, it is possible to use a matrix concentration inequality to argue that the top eigenvector of A is close to that of $E[A]$. Instead of doing that, let's verify things experimentally. Generate a graph G according to the prescribed model with $n=900, k=|S|=30$, and $p=.1$. Compute the top eigenvector of A and look at its 30 largest entries in magnitude. What fraction of nodes in the clique S are among these 30 entries? Repeat the experiment and report the average fraction recovered.

Problem 4 (Bonus): Matrix Concentration from Scalar Concentration

($\mathbf{1 0} \mathbf{~ p t s) ~ T h i s ~ p r o b l e m ~ a s k s ~ y o u ~ t o ~ p r o v e ~ a ~ s i m p l i f i e d ~ (a n d ~ s l i g h t l y ~ w e a k e r) ~ v e r s i o n ~ o f ~ t h e ~ m a t r i x ~ c o n c e n t r a t i o n ~}$ result used in Lecture 12. Construct a random symmetric matrix $R \in \mathbb{R}^{n \times n}$ by setting $R_{i j}=R_{j i}$ to +1 or -1 , uniformly at random. Prove that, with high probability,

$$
\|R\|_{2} \leq c \sqrt{n \log n}
$$

for some constant c. This is much better than the naive bound of $\|R\|_{2} \leq\|R\|_{F}=n$ and it's nearly tight: we always have that $\|R\|_{2}^{2} \geq\|R\|_{F}^{2} / n$ (do you see why?) so $\|R\|_{2} \geq \sqrt{n}$ no matter what.

Here are a few hints that might help you along:

- Recall that for a matrix $R,\|R\|_{2}=\max _{x \in \mathbb{R}^{n}} \frac{\|R x\|_{2}}{\|x\|_{2}}$. When R is symmetric, it also holds that $\|R\|_{2}=$ $\max _{x \in \mathbb{R}^{n}} \frac{\left|x^{T} R x\right|}{x^{T} x}$.
- Try to first bound $\frac{\left|x^{T} R x\right|}{x^{T} x}$ for one particular x. You might want to use a Hoeffding bound.
- Then try to extend the result to hold for all x simultaneously, using an ϵ-net argument.

