
New York University Tandon School of Engineering
Computer Science and Engineering

CS-GY 6763: Homework 3.
Due Tuesday, November 21st, 2021, 11:59pm.

Collaboration is allowed on this problem set, but solutions must be written-up individually. Please list
collaborators for each problem separately, or write “No Collaborators” if you worked alone.

Problem 1: Concentration of Random Vectors

(10 pts) In Stochastic Gradient Descent, we replace the true gradient vector with a stochastic gradient that
is equal to the true gradient in expectation. Our analysis in class only used equality in expectation, although
more refined analysis of SGD often requires understanding how well the stochastic gradient concentrates
around its expectation. Previously, all concentration results we studied apply to random numbers. For this
problem, you will prove a basic concentration inequality for random vectors.

In particular, let x1, . . . ,xk ∈ Rd be i.i.d. random vectors in d dimensions (independent, drawn from the
same distribution) with mean µ. I.e., E[xi] = µ. Further suppose that E

[
‖xi − µ‖22

]
= σ2. σ2 is a natural

generalization of “variance” to a random vector. Let s = 1
k

∑k
i=1 xi. Prove that if k ≥ O(1/δ

ε2) then

Pr [‖s− µ‖2 ≥ εσ] ≤ δ.

Problem 2: Regularization

(10 pts) Regularization is a popular technique in machine learning. It is often used to improve final test
error, but can also help speed-up optimization methods like gradient descent by improving the condition
number of the function being regularized. In particular, let f(x) be a differentiable function mapping a
length d vector x to a scalar value. Let g be the function with added Euclidean regularization:

g(x) = f(x) + λ‖x‖22

Above λ > 0 is a non-negative constant that controls the amount of regularization. Suppose f is α1-strongly
convex and β1-smooth, so has condition number β1/α1. Prove that g is also convex and its condition number
less than or equal to that of f .

Problem 3: Separation Oracles

(12 pts) Describe efficient separation oracles for each of the following families of convex sets. Here, “efficient”
means linear time plus O(1) calls to any additional oracles provided to you.

(a) The set A ∩B, given separation oracles for A and B.

(b) The `1 ball: ‖x‖1 ≤ 1.

(c) Any convex set A, given a projection oracle for A. Recall that a projection oracle, given a point x,
returns

ProjA(x) = arg min
y∈A

‖x− y‖2.

Above you may wish to use the following fact that was stated but not proven in class: for any point x,
convex set A, and z ∈ A, ‖z− ProjA(x)‖2 ≤ ‖z− x‖2.

Problem 4: Gradient Descent with Decaying Step-size

(10 pts) In class we showed that gradient descent with step size η = R/G
√
T converges to an ε approximate

minimizer of a convex G-Lipschitz function in T = R2G2/ε2 steps if our starting point x(0) satisfies ‖x(0) −
x∗‖2 ≤ R. Choosing this step size requires knowing G, R and moreover T in advance, which might not be
reasonable in a lot of settings. For example, when training machine learning models, we might not be able
to estimate how long it will take to reach a point where test accuracy levels off. Instead, we want to be able
to keep running the algorithm, achieving better and better accuracy as we do.

Here, we analyze a variant of gradient descent with a variable step size that avoids this limitation. In
particular, consider running gradient descent with the update x(i+1) = x(i) − η∇f(x(i)), where

η =
f(x(i))− f(x∗)

‖∇f(x(i))‖22
.

This step size requires knowledge of f(x∗), but not x∗, which may be reasonable in some settings. Moreover,
since it’s just one parameter, grid search can be more easily used to “guess” f(x∗) than the three parameters
G,R, T . More complex approaches can remove the need to know this value entirely.

Prove that, if we run gradient descent for T = O(R2G2/ε2) steps using the step size above then x̂ =
mini∈0,...,T f(x(i)) satisfies f(x̂) ≤ f(x∗) + ε. Hint: Prove that our distance from the optimum ‖x(i) − x∗‖2
always decreases with this choice of step size, and the decrease is larger if our gap from the objective value
f(x(i))− f(x∗) is larger.

Problem 5: Locating Points via the SVD

(15 pts) Suppose you are given all pairs distances between a set of points x1, . . . ,xn ∈ Rd. You can assume
that d� n. Formally, you are given an n×n matrix D with Di,j = ‖xi−xj‖22. You would like to recover the
location of the original points, at least up to possible rotation and translation (which do not change pairwise
distances). Since we can only recover up to a translation, it may be easiest to assume that the points are
centered around the origin. I.e. that

∑n
i=1 xi = 0.

(a) Under this assumption, describe an efficient algorithm for learning
∑n
i=1 ‖xi‖22 from D.

(b) Next, describe an efficient algorithm for learning ‖xi‖22 for each i ∈ 1, . . . , n.

(c) Finally, describe an algorithm for recovering a set of points x1, . . . ,xn which realize the distances in
D. Hint: This is where you will use the SVD! It might help to prove that D has rank ≤ d+ 2.

(d) Implement your algorithm and run it on the U.S. cities dataset provided in UScities.txt. Note that
the distances in the file are unsquared Euclidean distances, so you need to square them to obtain D.
Plot your estimated city locations on a 2D plot and label the cities to make it clear how the plot is
oriented. Submit these images and your code with the problem set.

	Problem 1: Concentration of Random Vectors
	Problem 2: Regularization
	Problem 3: Separation Oracles
	Problem 4: Gradient Descent with Decaying Step-size
	Problem 5: Locating Points via the SVD

