
New York University Tandon School of Engineering
Computer Science and Engineering

CS-GY 6763: Homework 2.
Due Tuesday, October 17th, 2023, 11:59pm ET.

Collaboration is allowed on this problem set, but solutions must be written-up individually. Please list
collaborators for each problem separately, or write “No Collaborators” if you worked alone.

Problem 1: Hashing around the clock.

(15 pts) In modern systems, hashing is often used to distribute data items or computational tasks to a
collection of servers. What happens when a server is added or removed from a system? Most hash functions,
including those discussed in class, are tailored to the number of servers, n, and would change completely if
n changes. This would require rehashing and moving all of our m data items, an expensive operation.

Figure 1: Each data item is stored on the server with matching color.

Here we consider an approach to avoid this problem. Assume we have access to a completely random
hash function that maps any value x to a real value h(x) ∈ [0, 1]. Use the hash function to map both data
items and servers randomly to [0, 1]. Each data item is stored on the first server to its right on the number
line (with wrap around – i.e. a job hashed below 1 but above all serves is assigned to the first server after
0). When a new server is added to the system, we hash it to [0, 1] and move data items accordingly.

1. Suppose we have n servers initially. When a new server is added to the system, what is the expected
number of data items that need to be relocated?

2. Show that, with probability > 9/10, no server “owns” more than an O(log n/n) fraction of the interval
[0, 1]. Hint: This can be proven without a concentration bound.

3. Show that if we have n servers and m items and m > n, the maximum load on any server is no more
than O(mn log n) with probability > 9/10.

Problem 2(a): Analyzing Sign-JL and JL for Inner Products

(15 pts) Often practitioners prefer JL matrices with discrete random entries instead of Gaussians because
they take less space to store and are easier to generate. We analyze one construction below.

Suppose that Π is a “sign Johnson-Lindenstrauss matrix” with n columns, k rows, and i.i.d. ±1 entries
scaled by 1/

√
k. In other words, each entry in the matrix has values −1/

√
k with probability 1/2 and 1/

√
k

with probability 1/2.

1. Prove that for any vector x ∈ Rn, E[‖Πx‖22] = ‖x‖22 and that Var[‖Πx‖22] ≤ 2
k‖x‖

4
2. This is the meat

of the problem and will take some effort.

2. Use the above to prove that Pr
[∣∣‖Πx‖22 − ‖x‖22

∣∣ ≥ ε‖x‖22] ≤ δ as long as we choose k = O
(

1/δ
ε2

)
. Note

that this bound almost matches the distributed JL lemma proven in class, but with a worse failure
probability dependence of 1/δ in place of log(1/δ).

With more work, it’s possible to improve the dependence to log(1/δ) for the sign-JL matrix, but we
won’t do so here.

3. Generalize your analysis above to show that JL matrices are also useful in approximating inner products
between two vectors. For vectors x,y ∈ Rn prove that Pr [|〈Πx,Πy〉 − 〈x,y〉| ≥ ε‖x‖2‖y‖2] ≤ δ as

long as we choose k = O
(

1/δ
ε2

)
.

This result can also be improved to have a log(1/δ) dependence in place of 1/δ. .

Problem 2(b): Join Size Estimation

(5 pts) One powerful application of sketching is in database applications. For example, a common goal is
to estimate the inner join size of two tables without performing an actual inner join (which is expensive, as
it requires enumerating the keys of the tables). Formally, consider two sets of unique keys X = {x1, . . . , xm}
and Y = {y1, . . . , yn} which are subsets of 1, 2, . . . , U . Our goal is to estimate |X ∩ Y | based on small space
compressions of X and Y .

Using your result from Problem 1, describe a method based on inner product estimation that constructs
independent sketches of X and Y of size k = O

(
1
ε2

)
and from these sketches can return an estimate Z for

|X ∩ Y | satisfying

|Z − |X ∩ Y || ≤ ε
√
|X||Y |

with probability 9/10.

Problem 3: Compressed classification.

(10 pts) In machine learning, the goal of many classification methods (like support vector machines) is to
separate data into classes using a separating hyperplane.

Recall that a hyperplane in Rd is defined by a unit vector a ∈ Rd (‖a‖2 = 1) and scalar c ∈ R. It contains
all h ∈ Rd such that 〈a, h〉 = c.

Suppose our dataset consists of n unit vectors in Rd (i.e., each data point is normalized to have norm
1). These points can be separated into two sets X,Y , with the guarantee that there exists a hyperplane
such that every point in X is on one side and every point in Y is on the other. In other words, for all
x ∈ X, 〈a, x〉 > c and for all y ∈ Y, 〈a, y〉 < c.

Furthermore, suppose that the `2 distance of each point in X and Y to this separating hyperplane is at
least ε. When this is the case, the hyperplane is said to have “margin” ε.

1. Show that this margin assumption equivalently implies that for all x ∈ X, 〈a, x〉 ≥ c + ε and for all
y ∈ Y, 〈a, y〉 ≤ c− ε.

2. Show that if we use a Johnson-Lindenstrauss map Π to reduce our data points to O(log n/ε2) dimen-
sions, then the dimension reduced data can still be separated by a hyperplane with margin ε/4, with
high probability (say > 9/10).

Problem 4: LSH in the Wild

This exercise does not involve formal proofs or analysis like more typical problem set problems. It will likely
involve some coding or spreadsheet work.

(10 pts) To support its largely visual platform, Pinterest runs a massive image de-duplication operation
built on Locality Sensitive Hashing for Cosine Similarity. You can read about the actual system here. All
information and numbers below are otherwise purely hypothetical.

Pinterest has a database of N = 1 billion images. Each image in the database is pre-processed and
represented as a vector q ∈ Rd. When a new image is pinned, it is also processed to form a vector y ∈ Rd.
The goal is to check for any existing duplicates or near-duplicates to y in the database. Specifically, Pinterest
would like to flag an image q as a near-duplicate to y if cos(θ(q,y)) ≥ .98. We want to find any near-duplicate
with probability ≥ 99%.

https://medium.com/pinterest-engineering/detecting-image-similarity-using-spark-lsh-and-tensorflow-618636afc939

Given this requirement, your job is to design a multi-table LSH scheme using SimHash to find candidate
near-duplicates, which can then be checked directly against y. To support this task, Pinterest has collected
data on the empirical distribution of cos(θ(q,y)) for a typical new image y. It roughly follows a bell-curve:

Pinterest wants to consider two possible computational targets for your LSH scheme, which will determine
the speed of the de-duplication algorithm:

1. Ensure that no more than 1 million candidate near-duplicates are checked on average when a new
image is pinned. “Checked” means that the image’s cosine similarity with the new image is computed
explicitly, which is a computationally expensive operation.

2. Ensure that no more than 200, 000 candidates are checked on average when a new image is pinned.

Based on the data above, describe how to set parameters for your LSH scheme to minimize the space (i.e.,
number of tables) used, while achieving each of the above goals. Justify your answers, and any assumptions
you make. If you code anything up to help calculate your answer, please attach the code. As in lecture, you
can assume that each hash table has m = O(N) slots and this is large enough to ignore lower order terms
depending on 1/m.

Extra Credit: Revisiting Wikipedia Size Estimation

(10 pts) Many students observed that, when trying to estimate the number of articles on Wikipedia in the
last homework, the mark-and-recapture method consistently returned an estimate below the claimed number
of articles on Wikipedia. In this problem we will try to understand why. My guess is that the underestimate
is due to the fact that Wikipedia’s random article generator does not return truly uniform random articles.
As discussed here, Wikipedia assigns each article i a random id ri, which we can model as a random real
number in [0, 1]. Then, to pick a random article, a random real number in [0, 1] is sampled and article i is
return if that number lies in the range [ri, ri+1]. That is, the range [0, 1] is partitioned into n intervals and
the probability of returning article i is equal to the length of the ith interval, which we denote by pi. Since
these intervals themselves are random, the probability distribution won’t be perfectly uniform.

1. Prove that, when the interval lengths are not perfectly uniform, the mark-and-recapture method should
be expected to underestimate the number of articles. Hint: Prove that the expected number of
collisions D after m samples equals

(
m
2

)∑n
i=1 p

2
i , and show that this expectation is minimized when

p1 = . . . = pn = 1
n . So, we get too many collisions for a non-uniform distribution, causing an

underestimate of n.

2. Show that, if Wikipedia uses the scheme above, we expect that the mark-and-recapture method will
systematically underestimate the number of articles by almost exactly a factor of two. Hint: Try to
prove a bound on E

[∑n
i=1 p

2
i

]
.

https://en.wikipedia.org/wiki/Wikipedia:FAQ/Technical#random

	Problem 1: Hashing around the clock.
	Problem 2(a): Analyzing Sign-JL and JL for Inner Products
	Problem 2(b): Join Size Estimation
	Problem 3: Compressed classification.
	Problem 4: LSH in the Wild
	Extra Credit: Revisiting Wikipedia Size Estimation

